
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 2292 

 
 

ACTIVE CONTROL OPTIMIZATION OF THE STRUCTURE BY 
EARTHQUAKE 

 
 

Peter ROSKO1 
 
 

SUMMARY 
 
The aim of the contribution is the numerical analysis of structural response suppression by earthquake. 
The proposed solution way uses actuators. The closed-loop control is applied. 
 
The discrete model of the structure is built on the base of the finite element method. The nodal dynamic 
excitation is applied. The time history analysis results the response in all nodes.  
 
The control problem is as an optimization problem defined. The objective of the optimization is the time 
integral of weighted displacement-velocity function square and weighted control force function square. 
The problem of objective function minimization is constrained with D’Alembert equilibrium equation, 
stress inequality constraint and control force inequality constraint. The optimization problem definition 
enables using of the Lagrange multiplier method effectively. The application of the Lagrange multiplier 
method leads to the Riccati equation. With help of the determined Riccati matrix is obtained the solution 
for optimal control. The control low can be modified in dependence in the stress and control force at every 
time step. The stress constraint at every step controls the Riccati matrix calculation through stiffness 
matrix. Linear and nonlinear cases are considered. The nonlinear case uses GAP element model for crack. 
Displacement and control force at every time step result the control energy. The control energy is 
calculated for all possible actuator positions. Only actuators with the highest integral values of consuming 
control energy are finally chosen. The procedure of displacements and control forces calculation on the 
base of above introduced optimization has to be repeated for the finally placed actuators. 
 
Examples illustrate the theoretical solution. 
 

INTRODUCTION 
 
The foundation of control concepts for mechanical systems is connected with radar work during the 
Second World War. Applications in civil engineering are related to advances in computational technology, 
mechanical and electrical engineering during last three decades. The modern trend in active control of 
civil structures is to use response depending systems (closed-loop systems). The measured response 
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(output) of the system is used for input – control force to the system. The paper is focused on 
mathematical and numerical issues of controllability in engineering practice. In our research we calculate 
control forces, without discussion about technical details of actuators. We take into consideration that 
control forces are technologically constrained. The optimization of controlled system means the 
minimization of the structural response in connection with the minimization of control energy by 
satisfying all structural, material and technological constraints.  
 

MODEL OF THE STRUCTURE 
 
The civil engineering structure is given. The discrete model of the structure is built on the base of the 
finite element method (FEM) and is characterized with help of stiffness-, mass- and damping matrices. 
The reduction of FE model to system with low number of degrees of freedom system (Single-Degree-of 
Freedom: SDOF as well Multiple-Degree-of-Freedom: MDOF) is prepared for the further analysis.  
 

DYNAMIC LOADING 
 
Corrected time history acceleration data are used in this work as input for the dynamic analysis. 
Accelerograms are chosen from Database of European Strong-Motion Data [2]. The nodal excitation of 
the structure is applied.  
 

DYNAMIC ANALYSIS 
 
Dynamic analysis and control calculation follow the concept of Hart and Wong [3].  
The set of dynamic equilibrium equations is 
 

( ) ( ) ( ) ( ) ( )    e ct t t t t+ + = +M X C X Κ X F D f&& &       (1) 

 
where 
M  mass matrix 
C  damping matrix 
K  stiffness matrix 

( )e tF  external force vector 

( )c tf  control force vector 

D control force distribution matrix 

( ) ( ) ( )  ,  t , t tX X X& && displacement-, velocity- and acceleration- vector 

 
(1) rewritten for earthquake excitation 
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where 

( ) a t  earthquake acceleration time history  

{ }I  identity vector 
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from (2) follows 
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shortly written 
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where 
 
a(t) acceleration vector 
 
Numerical solution of (5) using direct integration, see [3] gives 
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OPTIMAL CONTROL 

 
The objective function is defined 
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where Q  and  R  are weighting matrices 



 
(10) for discrete time  
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The Lagrange multiplier method is suitable for the minimization of (11) considering (7). 
The Lagrangian  
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where 

1k+λ   is the Lagrange multiplier 
 
advantageous form of the Hamiltonian is 
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Substitute (13) into (12). 
The equation: variation of the Lagrangian is equal zero gives the set of equations. Solving them 
we obtain expressions for:  
■ control force 
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where 
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is the Riccati equation with Riccati matrix P; 
 
■ displacement - velocity vector 
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In case that the stiffness is constant during the whole period of earthquake,  P,  and   ( EQ )
f dF H will be 

calculated only one time. When stresses exceed the value of the limit stress, the damaged part of the 
structure loses its stiffness. The new stiffness value has to be inputed into (14) and (16) at the same time 
step.  
Calculated control force is compared with the technologically given limit force. There are two 
possibilities, when the control force exceeds the limit: change the weighting matrix R, or replace the 
calculated value with the limit value.  
Displacement-velocity vector and control force at every time step result the control energy. The control 
energy is calculated for all actuator positions. Only actuators with the highest integral values of 
consuming control energy are finally chosen. The procedure of displacements and control forces 
calculation on the base of above introduced optimization is repeated for the finally placed actuators. 
 
Examples illustrate the theoretical solution. The numerical research was realized in MATLAB. 
 

EXAMPLES 
 
Accelerogram is chosen from Database of European Strong-Motion Data [2]. The acceleration time history 
of Friuli earthquake measured on 6-th May1976 in Tolmezzo-Diga Ambiesta is used. The magnitude of 
this earthquake was 6,5 Mw.  
 

 
Fig.1 Acceleration time history – Friuli earthquake 

1. Example  
The example illustrates the case when the stress achieves the limit value and a part of the structure is 
damaged. The stiffness change at the moment has influence to change of the Riccati matrix and low of the 
control force calculation. In the presented example the 2/3 stiffness reduction during the earthquake is 



analyzed. At every step nodal displacements are calculated and compared with the not controlled 
displacement. The structural model data are m = 175118,1102 kg, k = 27654651,97 N/m, ζ =0,05.  
Figures 2, 3 and 4 present the control force and response of the undamaged structure. For comparison 
figures 5, 6 and 7 present the control force and response when 4,3 s after the earthquake beginning the 
structure is partially damaged and the stiffness is reduced by 2/3. 

 
Fig.2 Control force 

 
Fig.3 Displacement: controlled – uncontrolled 



 
Fig.4 Velocity: controlled – uncontrolled 

 
Fig.5 Damage during earthquake – Control force 

(t = 0-4,3 s …K, t = 4,3-36,54 s… 1/3 K) 



 
Fig.6 Damage during earthquake – Displacement: controlled – uncontrolled  

(t = 0-4,3 s …K, t = 4,3-36,54 s… 1/3 K) 

 
Fig.7 Damage during earthquake – Velocity: controlled – uncontrolled  

(t = 0-4,3 s …K, t = 4,3-36,54 s… 1/3 K) 



In following figures crack originates at the same time as in the upper case. When the structure moves to 
the position when the crack is opened, than just 1/3 of stiffness resists and by moving to the opposite 
direction the full stiffness resists. Figures 8, 9 and 10 present control force and response of the nonlinear 
model of the damaged structure. 
 

 
Fig.8  Damage during earthquake – Control force 

(t = 0-4,3 s …K, t = 4,3-36,54 s… K↔ K/3) 

 
Fig.9 Damage during earthquake – Displacement controlled 

(t = 0-4,3 s …K, t = 4,3-36,54 s… K↔ K/3) 



 
Fig.10 Damage during earthquake – Velocity controlled 

(t = 0-4,3 s …K, t = 4,3-36,54 s… K↔ K/3) 
 
2. Example  
The example illustrates MDOF system. Actuators are firstly simultaneously placed in all 
possible positions. Secondly the number of actuators is reduced. Actuators with highest amount 
of control energy are kept. 2DOF system is given: K = [2,2124e8   -1,1062e8;   -1,1062e8   
1,1062e8],  
C = [5,9475e4   -1,9683e5;   -1,9683e5   3,9650e4],  M = [1,7512e5   0; 0   1,7512e5] - SI units. 

 
Fig.11     2DOF - optimal control forces in nodes 1 and 2 



 

 
Fig.12     2DOF – Displacements in nodes 1 and 2 

 
The control energy index (calculated from control force and displacement multiplication time integral) for 
control force F1  is  en1= 8.82 and the control energy index for control force F2 is  en2= 5.94. The 
difference between both values is not very high and the number of originally placed actuators is low. The 
placement of actuators is in this case acceptable. 
 

CONCLUSION 
 
The approach of closed-loop control calculation with help of Riccati matrix is extended with stiffness 
matrix changes, when the stress limit is overflowed. Linear and nonlinear cases are analyzed. The 
nonlinear case uses GAP element model for crack. 
 
Calculation of optimal control forces in actuators placed simultaneously in all possible positions leads to 
control energy analysis. The reduced number of actuators in MDOF system on the base of highest control 
energy needs repeated calculation of optimal control force values.  
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