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SUMMARY 
A reliability analysis has been conducted on a simple non-linear spring model idealizing a one-way 
asymmetric one-storey building in order to compare the plan irregularity criteria used by two major 
seismic codes like EC8 and IBC. Limited to the numerical example carried on a sample of structures, it 
appears that the IBC criterion is more conservative and complete than the EC8 ones. 
 

INTRODUCTION 
 
Damage states resulting from past earthquakes have demonstrated that plan irregularities due to 
asymmetric distributions of mass, stiffness and/or strength of buildings are a critical issue [1]. 
Indeed, the dynamic response of plan irregular structures under horizontal earthquake excitations is 
characterized, in addition to lateral motions, by a significant torsional rotation of the floor slabs. In the 
elastic range of behaviour such a response is due to the eccentricity between the centre of the masses 
(CM), where the seismic lateral inertial forces are applied, and the centre of stiffness (CS), point in plan 
where the application of a lateral force will produce a simple translation of the floor slab (Figure 1). 
This complex interaction between floor rotation and translation, denoted by torsional coupling, can result 
in significant response amplifications. As a consequence, both forces and displacement demands on 
vertical resisting elements (frames or walls) of plan-irregular structures can be larger than those they 
would experience in the presence of structural symmetry. 
 
 

OBJECTIVES AND METHODS 
 
Advanced seismic codes of practice recognize the problem of plan asymmetry in design phase [2]. 
Generally they address the identification of potential torsional coupling through regularity criteria, but 
different approaches, based either on geometrical or mechanical parameters, are subscribed. In the 
following only the latter are considered. 
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Eurocode8 (EC8) [3] uses two criteria: a building is regular if the eccentricity is less than 30% of the 
torsional radius (square root of ratio of torsional to lateral stiffness), and torsional radius is less than the 
mass radius of the floor plan. 
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Figure 1. Simplified model of planar asymmetric one-storey building: a rigid deck with three DOF. 
 
Finally, according to the International Building Code (IBC) [4] rules, a building is plan irregular if the 
maximum storey drift exceeds 1.2 times the average of storey drifts of the two ends of the structure. 
Explicit definition of relevant parameters used by this code will be addressed in next section. 
In order to evaluate the consistency of the aforementioned measures, a reliability approach has been 
followed, in particular to compare EC8 and ICB provisions when there is uncertainty in the definition of 
basic parameters of the problem. 
 

NUMERICAL MODEL 
 
The simple structural model considered for the evaluation of the behaviour of plan irregular structures 
idealizes a generic one-story plan asymmetric building, supported by lateral force-resisting elements as 
represented in Figure 1. 
It is assumed that the floor diaphragm is rigid in its own plane and that vertical resisting elements are 
mass-less. 
Such system behaves like a two-dimensional rigid body, so it presents only three dynamic degrees of 
freedom: two translations ux and uy along the horizontal directions and a floor rotation uθ around the 
vertical axis. 



Aiming to simplify the problem the actual plan distribution of stiffness and strength is modelled with two 
translational and one rotational non-linear springs located in the system centre of stiffness, CS. 
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Figure 2. Force-displacement plot for a Bouc-Wen model with Ko=110, α=0.25, A=1, β=0.8, γ=0.34, n=1 and 
δ=0 
 
As a consequence the location of this point is supposed not to change during the earthquake shaking, 
despite of the fact that its actual position is expected to vary due to the non-linear response of the single 
resisting elements. 
The restoring forces of those springs have been modelled trough the smooth differential function 
developed by Bouc [5] and later generalized by Wen [6] and already used in reliability analysis of 
reinforced concrete framed structures as presented for example by Casciati and Faravelli, [7] or Colangelo 
et al. [8]. 
In these constitutive equations the total inelastic response is given by a parallel system of a linear elastic 
spring and a hysteretic spring controlled by the endochronic variable z: 
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The meaning of the parameters that appear in (1) is explained elsewhere [6], here is just worth to stress 
that Ai, βi, γi and ni govern the shape of the hysteretic loop, while the additional parameter δi can be used 
to define asymmetric yielding levels. 
A typical layout of the constitutive model is represented in Figure 2. 
The equation of motion of the inelastic 3-dof rigid deck, subject to a ground shaking along y, can be 
written, with respect of the centre of stiffness of the system, as follows: 
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In equation (2) M and R are respectively the mass matrix and the restoring forces vector: 
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Fundamental importance in the analysis of the deck is on ρm, the radius of gyration of the mass, which in 
the above formulation has to be evaluated with respect to CM: 
 

m

Im
m =ρ  

 
that accounts for the mass spread over the deck (having denoted with m the deck translational mass and 
with Im=Ix+Iy the polar moment of inertia of the deck around CM), and on ρk, the radius of gyration of the 
stiffness, that has to be evaluated with respect to CS: 
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that accounts for the torsional stiffness of the deck due to spread of the elastic resisting elements (being kx,i 
and ky,i the stiffness respectively along x and y of the i-th vertical element, and xi and yi its position respect 
to CS). 
The damping matrix, C, is constructed to be diagonal in the space of modal displacements, thus: 
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where Φ is the matrix of modal shapes and the generic term 2ξiωi represent the damping of the i-th mode 
(with ξ damping ratio, ω undamped natural pulse and the eigenvector normalization rule is on kinetic 
energy such to have ΦT M Φ = I). In the following the analysis have been carried assuming the typical 
value of ξ=0.05. 

Assembling (1) and (2) the dynamic problem can be rewritten as follows: 
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where the restoring forces have been split in the elastic and hysteretic component, respectively: 
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and 
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Dynamic equilibrium equation (3) can also be written in the state-space. 
Indeed, assuming as main variable: 
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it is possible to obtain the following system of 1-st order non linear dynamic equations: 
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where the matrices A, B and H can be built from the mass, damping and elastic stiffness matrix: 
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with O3x3 and I3x3 respectively the zero an unitary 3×3 matrices. 
Equation (4) can be easily solved, together with the differential equations governing the non linear 
response of the Bouc-Wen restoring forces, making use of the Runge-Kutta integration technique available 
in computer mathematical tools like MATLAB® [9]. 
 

RELIABILITY ANALISIS 
 
The basic random variables assumed in the reliability analysis are: 
• the gyration radius of mass (varying between 0.297 L and 0.408 L) and 
• the gyration radius of stiffness (varying between 0.238 L and 0.510 L), 
where L is the reference dimension of the floor as indicated in Figure 1. 
The prescribed range of variability has been selected considering upper and lower bounds for typical 
structure configurations. 



These random variables have been assumed to be uniformly distributed, since, according with the aims of 
the analysis, there is no reason to expect some values of the above specified parameters to be more 
probable then others, and strongly correlated together, in order to take in account the fact that spread of 
mass and spread of stiff-ness necessarily depend together with floor geometry. Therefore in the analysis a 
correlation coefficient equal to 0.8 has been arbitrarily chosen for the covariance matrix of these two 
variables. 
The third random variable is the eccentricity that has been constrained to be uniformly distributed in the 
range from 0.10 to 0.25 times the radius of stiffness in order to have always structures fulfilling the first of 
the two regularity checks prescribed by the EC8 document. 
In this way the selected sample has eccentricities that can be still critical from the point of view of plan 
irregularity, but that are not recognized so by the EC8. 
Assuming as a reference vibration period Tx=Ty=0.6 sec the global stiffness and the strength of the floor 
have been calculated from EC8 design spectra for soil A assuming a PGA equal to 0.31 g and as 
behaviour factor q=3. 
In order to assess the EC8 requirements, the probability of an irregular plan response, for the examined 
structure sample, depend only on the check between the mass and stiffness radius and is given by the 
probability content inside the hatched area above the ρk = ρm line in Figure 3. 
In this case, the probability computation reduces to a geometrical problem: when the two uniform random 
variables are assumed uncorrelated, the probability is simply given by the area ratio between the red 
trapeze and the containing rectangle (union of the grey and red trapezes), while the correlation between 
random variables (represented in figure by the gradient shadow) in the examined structure decreases the 
probability of an irregular response, resulting as high as 0.33 compared to 0.42 when the two variables are 
assumed uncorrelated. 
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Figure 3. Probability computations according to the second EC8 regularity check. Irregular behaviour is denoted, in 
standard reliability language, as failure. 
 
On the other hand, the assessment of IBC requirements has been conducted carrying out a series of time-
history dynamic analysis assuming as limit state function: 
 

g(x) = 1.2 – dmax/dave          (5) 

 
where x denotes generically the vector of the above-mentioned random variables, dave is the displacement 
of the mass centroid while dmax is given by the larger displacement at the two floor ends. 
The above function is intended to correspond to IBC regularity check and becomes negative (failure 
region in standard reliability language) when the structure is sought to be irregular. 



The displacement terms appearing in (5) are a result of a time-history dynamic analysis with a prescribed 
ground acceleration record. 
Since the reliability evaluation is carried out using a time-history analysis, this means to face a time-
variant random vibration problem [10]. Indeed undergoing the regularity check at any time t can be 
regarded as a “first-passage” failure, and therefore the failure domain of this event is the union of the 
elementary domains, i.e. the elementary events are arranged in series to give the first excursion, which can 
be written as: 
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The problem can be treated assuming a Poissonian approximation and solved through the computation of 
the mean crossing rate of excursion: the probability of failure for the first excursion event in time D has 
the upper bound: 
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The problem has been solved following the work by Franchin et al. [11]. 
The mean crossing rate has been calculated following the steps indicated below: 
1. Let [ ]),()( θu tgtg =  be the time-dependent limit-state function defined in the physical space of 

the random variables θ through the time-dependent response process u(t). 
2. An out-crossing at time t means that g(t)>0 and g(t+δt)<0; let consider the extra limit state 

functions defined as follows: 
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3. The mean crossing rate is, by definition: 
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4. The probability at the numerator in the above equation is associated to a parallel event. This 
computation can be carried out using standard reliability tools for systems like first order 
approximations (FORM): 
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The geometrical meaning of symbols is illustrated in Figure 4. 
 
 



Figure 4. FORM approximation for a parallel system failure. 
 

The analysis has been carried out both from an elastic dynamic analysis, i.e. setting α=1.0 in equation (1), 
and from a non-linear dynamic analysis, i.e. setting α=0.25. The remaining parameters have been 
assumed as illustrated in Figure 2. 
Elastic dynamic analysis has been conducted for the sake of consistency with the check prescribed by IBC, 
which relates torsional response with an increase of displacements at the floor edges with respect to floor 
centroid. 
However, under severe ground motion, building structures are expected to experience inelastic behaviour 
and, therefore, torsional response generally results in an in-crease of ductility demands again at the floor 
edges with respect to the floor centroid. In a very simplified manner, the parameter dmax/dave that appears 
in (5), when resulting from a non-linear dynamic analysis, may be assumed to represent a measure of plan 
variation in ductility demands due to torsional response. 
The time-history analysis has been conducted using five records generated as filtered with-noise gaussian 
processes and scaled to have all a peak acceleration of 0.31 g, thus equal to the design acceleration of our 
structural sample (see Figure 5). The results, in terms of probability to undergo the IBC regularity check, 
are summarized in the table below. 
 

Input Elastic (α=1.0) Inelastic (α=0.25) 
Earthquake 1 0.74 0.71 
Earthquake 2 0.71 0.69 
Earthquake 3 0.68 0.64 
Earthquake 4 0.65 0.59 
Earthquake 5 0.68 0.61 
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Figure 5. Records used for the dynamic analysis. 
 

CONCLUSIONS 
 
The mechanical criteria subscribed by IBC and EC8 to identify plan irregularity are substantially different. 
Indeed the former is based on straightforward assessment of building deformation demands under 
earthquake loading; the latter synthesizes the check through simple mechanical parameters whose 
evaluation appears problematic for multi-storey buildings. 
A reliability analysis has been carried out in order to compare the two approaches for a selected sample of 
one-way plan asymmetric structures. 
Although the limitations of the selected sample do not permit to carry out general conclusions on the 
discrepancies between the ways the two codes address the problem of plan irregularity and their relation 
with damage state in the buildings, it emerges that the IBC criterion is more conservative and complete 
than the EC8 ones for which inequalities produce a pass/not-pass scheme on the parameters expected to 
influence the problem rather that the problem effects. 
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