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SUMMARY

The current treatment of the reliability of structures under earthquake loads is at best heuristic.  A design
to a specific scenario event or a specific return period ground motion intensity does not address the
earthquake reliability of the resulting structure.  This is so simply because any one structure is potentially
exposed, throughout its design life, to all the possibilities of the occurrence of ground motion intensities
at a given site as characterized by a set of site-specific seismic hazard curves (mean, median, and several
specified exceedance percentiles).  The use of this complete hazard information is prerequisite to
estimating earthquake “failure” probabilities.  “Failure” is a generic term defining non-performance at a
preselected limit state.  In order that all pairs of ground motion intensities and associated exceedance
probabilities are considered, the site hazard curves are substituted by the median curve and an across-
variability parameter, .H .  First, the conditional (given that median load level | occurs) failure probability
curve is calculated by the convolution of the load and resistance distribution functions.  It is demonstrated
that both the load and resistance can be idealized as lognormally distributed functions with logarithmic
standard deviations .H  and .R, respectively, where .R incorporates the variabilities in response modeling,
response calculations, material variabilities and design equations.  To calculate the unconditional failure
probability, PF, each conditional failure probability is multiplied by the corresponding probability of the
occurrence of |, and then summed over all occurrences of |.  The resulting integral is transformed into an
algebraic relation by making a simple assumption on the local behavior of the median hazard curve. 
Design parameters affecting PF are explored.  Randomness and uncertainty issues are discussed.  The
across-variability parameter, .H , has a significant impact on reliability, and must be explicitly included in
design.

INTRODUCTION

Building design codes achieve a preselected reliability by the use of partial load and capacity reduction
factors.  Although the determination of these factors, say for dead and live loads, is rooted in basic
reliability concepts, the reliability of structures subjected to earthquake loads is not determined as 
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explicitly.  Designing structures to specific scenario events or return periods of earthquake ground motion
parameters, such as those proposed in Table 1 [1], does not address the earthquake reliability of the
resulting structures, except maybe heuristically.  This is so simply because any structure is potentially
exposed to all ground motion occurrences varying from very small to very large return periods.  And
therefore, to estimate the earthquake “failure” probability, where “failure” is a generic term defining 

Table 1.  Vision 2000 performance objectives ( Poland [1])
Limit State6
9Ground
Motion

Fully
Operational Functional

Life
Safety

Near
Collapse

non-performance at any preselected
limit state, all ground motion
intensities with associated
exceedance probabilities must be
considered.  Thus, the first step in
calculating the earthquake reliability
of structures is the complete
characterization of the site seismic
hazard, and not just a single point on
the mean hazard curve.

*FEMA 273 (1997) specifies a 2% in
50 yrs exceedance probability (~2500
years mean return period).

Frequent
50% in 50 yrs
~75 yrs RP S

Occasional
20% in 50 yrs
~225 yrs RP E S

Rare
10% in 50 yrs
~500 yrs RP C E S

Very Rare*
5% in 50 yrs

~1000 yrs RP N/A C E S

GENERALIZED EARTHQUAKE HAZARD

As shown in Figure 1, earthquake hazard is usually
characterized by curves relating the exceedance probability of
a ground motion parameter to the intensity level of the ground
motion variable.  Throughout this paper peak ground
acceleration (pga) is used for demonstration purposes; other
ground motion parameters, such as spectral acceleration or
displacement, could as well be used.  Given the significant
uncertainties in ground motion estimates, a proper probabilistic
seismic hazard evaluation includes the variability of the
selected ground motion parameter at all exceedance
probabilities.  This uncertainty is characterized in Figure 1 by
several hazard curves at preselected percentiles.  For the basic
elements of calculating seismic hazard curves see SSHAC [2].
A hazard curve, , is the complementary cumulative
distribution function of the selected ground motion parameter. 
The Cumulative Distribution Function (CDF) of the hazard,

Figure 1.  Example of mean, median
and four selected percentile curves for 
characterizing pga seismic hazard

H(a), is simply [1- ].  Thus, the Probability Density Function (PDF) of the hazard is given by    
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Figure 2a shows a set of idealized hazard curves.  Based on the above relation, the CDF and the PDF of
the hazard curves of Figure 2a
are calculated and shown in
Figures 2b and 2c,
respectively.  From Figure  2a
the median pga for any
exceedance probability can be
read off.  For example, the
median pga at the 2500 year
return period (exceedance
probability of 4 x 10-4 or 2% in
50 years) is 0.27g and for
10,000 year return period
(exceedance probability of 10-4

or 0.5% in 50 years) is 0.44g.
Figure 2.  Idealized seismic hazard curves for several percentiles 
     based on .H=0.6: (a) hazard curves, (b) CDFs and (c) PDFs

Across-variability
Returning to Figure 1 it is noted that the pga at any exceedance probability varies by more than a factor of
two, reflecting the uncertainties in estimating ground motion.  This uncertainty must be somehow
quantified for use in failure probability analysis.  The probability distribution of the pga at any

exceedance probability can be approximated
based on the percentile data.  Data points at four
selected exceedance probabilities are plotted in
Figure 3 (dots).  Also shown are plots of
idealized lognormal CDF curves.  Based on
physical attributes of the problem and
mathematical expedience, the use of the
lognormal distribution has become the
distribution of choice for similar seismic
probabilistic assessments [3].  Given empirical
data, the lognormal distribution parameters, .H
and 8H, can be estimated from plots of the data
points on lognormal probability paper.  For
details of this procedure see Ang and Tang [4].

Figure 3.  Idealization of the across-variability of 
  Figure 1 data points as lognormal distributions

Results and data from Figure 3 are tabulated in Table 2 for the four selected exceedance probabilities. 
Note that the idealized lognormal distributions adequately estimate the medians but underestimate the
means.  Nevertheless, the comparison shown in Figure 3 of the idealized distributions with the data points
from Figure 1, suggests that, overall, the lognormal representation of the across-variability of hazard
curves is possible.  Of significance is the possibility of characterizing the dispersion of the ground motion
with a single .H at all exceedance probability levels.  These encouraging results should not be surprising. 
Hazard curves are generated by a series of multiplications, and hence, based on the central limit theorem,
a lognormal distribution is expected regardless of the distribution of the independent parameters (Ang and
Tang [5]).  In the following derivations, it is assumed that the .H are identically the same at all exceedance
probabilities.  In effect, this across-variability parameter, .H, together with the median curve are a
substitute for the complete set of hazard curves such as in Figures 1 and 2.
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Table 2.  Across-variability parameters at four exceedance probabilities
Exceedance Probability E-2 E-3 E-4 E-5

.H (probability paper) 0.38 0.32 0.31 0.31

8H (probability paper) -3.26 -1.67 -0.76 -0.19

Estimated a50 (g) [x50=e8]
a50 from Figure 1
Estimate to actual ratio (%)

0.039
0.044

89

0.19
0.19
100

0.47
0.45
104

0.83
0.82
101

Estimated  (g)                  
 from Figure 1

Estimate to actual ratio (%)

0.041
0.045

91

0.20
0.22
91

0.49
0.56
88

0.87
1.03
84

.H  based on above estimates  0.32 0.32 0.29 0.31

CONDITIONAL FAILURE PROBABILITY – FRAGILITY

Before addressing the earthquake reliability problem, the more mundane reliability of structures under
dead and live loads only is briefly reviewed to expound on the basic relations in reliability calculations.

Basic Reliability Relations (Dead and Live Loads)
Reliability analysis starts with the statistics of loads and resistances, such as means and standard
deviations, the latter to quantify the uncertainties due to inherent variability, load modeling, structural
analysis, and capacity estimates.  These parameters are usually summarized as PDFs similar to those in
Figure 4.  Assuming that load, S, and resistance, R, are continuous statistically independent random
variables, the probability of failure is given by (see, e.g., Ang and Tang [5])

At any given S=s, the area under R below s, where r<s, is FR(s).  This is the conditional failure probability
given s.  The unconditional failure probability, PF, is given by the product of FR(s) with the probability that

s occurs, i.e.,fS(s)ds, integrated over all s.  For the case of
lognormally distributed R and S, the safety factor, , is
also a lognormal variate with the following parameters:

where .R and .S are the logarithmic standard deviations of the 
respective distributions, and

are the natural logarithms of the medians R50 and S50,
respectively.  Equation 2 can now be reformulated in terms of
the safety factor 2; and failure would occur when 2 < 1, i.e., 
R < S.  Thus,                                                                        

Figure 4.  PDFs for load and resistance
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In terms of the median values of the distributions,

and therefore, from Equation 3,

The term in the last parenthesis is referred to as the reliability or safety index, $:

And, thus, alternatively,

In Equations 4 and 5,  incorporates the inherent variabilities of the concurrently acting loads, such as
dead and live loads, as well as uncertainties in load modeling and response calculations.  On the other
hand,  incorporates variabilities in material properties and capacity estimates.  Partial load and capacity
reduction factors used in building codes are derived from Equation 5 based on a preselected $.  For a
detailed evaluation of partial load factors see Hadjian, [6] and [7].  

The AISC target reliability index for steel members is $=2.6.  And, therefore, the failure probability for
steel flexural members under dead and live loads, from Equation 6, is

The point of this calculation is that a designer using the ASCE 7 specifications assures, knowingly or
unknowingly, a failure probability of about 5x10-3 for a flexural member under dead and live loads.  It
should be emphasized that failure probability is not only a function of the median factor of safety,

, but also the uncertainty of loads and resistances, i.e.,  (see Equation 4).   The
interaction of these parameters as they affect PF can be visualized by referring to Figure 4: the relative
positions of the PDFs determine the median factor of safety, and the .i impact the extent of overlap of the
distributions, and thus the reliability. 

Conditional Failure Probability (Fragility) Under Earthquake Loads
Returning to the earthquake problem, although a designer is interested in a certain load intensity to
complete his/her design (say, ground motion parameters at 10% in 50 years exceedance probability, as for
Rare ground motion in Table 1), it should be noted that design to a specific ground motion parameter in
terms of an exceedance probability, all by itself, is not a sufficient determinant of the problem at hand. 
Any one structure, in effect, is potentially exposed throughout its design life to all the possibilities of the
occurrence of ground motion intensities at a site as characterized by a set of site specific seismic hazard
curves as in Figure 1.  
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Figure 5 is a sketch used herein to expound on
earthquake failure probability.  In addition to the
median hazard curve two sets of PDFs are shown at
four selected exceedance probabilities, one
representing the across-variability of the ground
motion parameter (solid lines), and the other (dashed
lines) the probability distribution of the resistance for
a specified limit state.  As shown, the PDF of the
resistance is independent of the hazard and is the
same for a given design.  The PDF of the ground
motion is anchored to the median, |i, at each selected
exceedance probability.  The convolution of these
load and resistance distribution functions (Equation
2), both assumed to be lognormally distributed with
logarithmic standard deviations .H  and .R
respectively, would lead to a failure probability
(Equation 4) for any selected ground motion
exceedance probability, as in Figure 4.  In this
instance, however, the failure probabilities are
conditional on the occurrence of ground motion |i.

Figure 5.  Seismic failure probability model and fragility curve  

Repeating this convolution for all exceedance probabilities results in what is usually referred to as a
fragility distribution, F(a), with  logarithmic standard deviation , shown in dashed line at the
top left of Figure 5.  When the load is small compared to the resistance (e.g., 0.2g vs 0.45g), the
conditional failure probability is small (about 2 x 10-2 for .=0.4).  However, when the load is large (0.9g
vs 0.45g), the conditional failure probability is very large (about 0.96).   Simply stated, a fragility curve is
the conditional failure probability of the system, given that median load level | occurs.   Extensive studies
[3] conclude that the fragility of structural systems and components can be assumed to be lognormally
distributed (indirectly substantiating the lognormality of the across-variability discussed earlier), and thus
characterized by their median values, F50, and logarithmic standard derivations, ..  As depicted in Figure
5, a proper fragility curve must consider the uncertainty in the ground motion parameter (across-
variability), .H.  There are circumstances when this is not done and fragility curves are based solely on the

uncertainties of the structural
resistance parameters.  This is
discussed below.

In Seismic Probabilistic Risk
Assessment (SPRA) of nuclear
power plants, the variability of the
ground motion shown in Figure 1 is
incorporated into the failure
probability computations separately
as part of the overall SPRA solution

                                               
Figure 6.  Idealized fragility curves for selected damage 
indices and .=0.5: (a) CDF and (b) PDF



scheme [3].  Consequently, even though the variability in SPRA fragility curves includes all other sources
of uncertainty, to avoid double counting, the uncertainty in the ground motion is explicitly excluded when
estimating SPRA fragility curves, i.e., .  In the present formulation, however, the
ground motion uncertainty, .H, must be accounted for at the outset.

A different F(a) or its derivative f(a) is required for each and every limit state as shown in Figure 6. 
Figure 6a shows a family of idealized fragility curves all with the same .=0.5 for four different limit
states.  Limit states are characterized by damage indices (DI).  DI=0 denotes elastic response, and DI=1.0 
denotes total collapse.  A DI=0 is usually used for the design of critical facilities such as nuclear power
plants.  A DI=0.7 would be appropriate when the design objective is only life-safety.  Although . for each
damage state is expected to be different, in Figure 6 the same .=0.5 is used to highlight the impact of only
DI on the shape of the distributions.  The derivatives of these fragility curves are plotted in Figure 6b. 
For a detailed discussion of DIs see Hadjian [9].

RANDOMNESS AND UNCERTAINTY

In SPRA analysis, fragility is characterized as a set of curves at different “confidence” limits by
separating the logarithmic standard deviation of the fragility, ., into its randomness and uncertainty
components, .r and .u, such that .  Randomness refers to inherent variabilities that are
irreducible.  It is the nature of the beast and there is not much that can be done about it.  On the other
hand, uncertainty refers to reducible variabilities that can be improved with more effort.  The notion of
separating variability into randomness and uncertainty, at least in practice, is an art more than a science.  

The mechanics of separating randomness and uncertainty though is straightforward under the assumption
of lognormal distributions.  This is illustrated by the use of a numerical example, where .r=0.3, .u=0.4,
and hence the combined .=0.5.  As shown in Figure 7a, the bold line is the fragility curve for the
combined variability, ., and an arbitrary damage state with F50=0.9.  Using the same median of the total
fragility curve, a50=0.9, the distribution of the randomness component, CDFr, can be obtained using .r in
the lognormal distribution.  This curve is in effect the distribution when the uncertainty .u=0.  To
characterize the uncertainty, it is assumed that the median of the total fragility is lognormally distributed
with logarithmic standard deviation, .u (=0.4), and a set of lognormal  are calculated for selected
“confidence” limits p, with “medians”, , and logarithmic standard deviations, .r.  The  are

calculated from .   Since sp for  is zero, , the median of the original total 

fragility.  For the 5% and 95% confidence limits, sp = ± 1.645, and hence the medians of these two 

confidence limit distributions are  and .

Using these median values together with .r, distribution functions at these confidence limits are calculated
and plotted in Figure 7a (dashed lines).  Other confidence limit distributions can be similarly calculated
by the appropriate choice of ±sp.  A set of such ten “equally-spaced” uncertainty distributions are shown
in Figure 7b.  At each pga the weighted sum of the probabilities (in this example the weights are all 0.1) is
characterized as the “mean” fragility curve.  This mean curve is also shown in Figure 7b, 

together with the combined fragility curve with .  These two curves almost coincide.  As the
number of the uncertainty confidence limit curves is increased, the weighted sum of the probabilities and
the combined fragility curves tend to become identically the same.  Also shown, for reference only
(dashed lines), is the 50th percentile median fragility curve with .r=0.3.
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What is achieved by the decomposition of . as in
Figure 7?  When risk decisions need to be made, it
may be useful to know which component of the total
variability, .r or .u, is the dominant contributor to the
failure probability.  This knowledge should lead the
designer to take appropriate corrective actions. 
Additionally, statements like 95% confidence in a 5%
probability of failure (commonly referred to in SPRA
space as High Confidence of Low Probability of
Failure, HCLPF) can be made.  For this example the
HCLPF can be calculated from

where the first term is the median value of the 95%
(high) confidence curve, and the second term, its 5%
(low) exceedance probability.  In general, therefore, 

Using the combined distribution with .=0.5, the
failure probability would, from Equation 4, be equal
to

Figure 7.  Example of confidence limits on failure probability for.=0.5, 
.r=0.3 and .u=0.4: (a) 95% and 5%, (b) 95% to 5% in  increments of 10%

When .r=.u, for any value of these parameters, 95% confidence in a 5% probability of failure becomes
identically equal to a PF=0.01.  As .r and .u tend to differ the failure probability slightly increases as
exemplified above.  Thus, for reasonably close .r and .u, HCLPF approximately equals a PF• 0.01.  From
a practical point of view, a statement that PF=0.01 is more useful and meaningful than the rather
convoluted statement, however mathematically correct, of a 95% confidence in a 5% probability of
failure.  Similarly, a 90% confidence in a 10% probability of failure is tantamount to a PF . 0.035 for
similar valued .r and .u.  Whether, for example, .u=0.24 and .r=0.55, or .u=0.55 and .r=0.24,
HCLPF=0.245, and the associated PF from the combined fragility curve is PF=0.015.  The fact that in the
second case the uncertainty is much larger (0.55) than in the first case (0.24) has no bearing on HCLPF. 
Thus HCLPF, or any other confidence level in a low probability failure designation, is simply a
mathematical manipulation without any intrinsic use.  Failure probability PF computed from the combined
fragility curve is a more direct and useful measure for making design decisions.

UNCONDITIONAL FAILURE PROBABILITY – PF

To calculate the unconditional failure probability, PF, F(a) must be multiplied by the corresponding
probability of the occurrence of |, viz., h(a)da, where h(a) is the PDF of the median hazard (e.g., Figure
2c), and then summed over all occurrences of |.  Thus (the carrot is dropped for simplicity),

Alternatively (Ang and Tang [5]), PF can be formulated with respect to f(a), giving
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where H(a) is the CDF of the hazard, and , its Complementary CDF, is the median hazard curve.

Approximate Solution of Equation 9
In general, Equation 9 must be integrated numerically.  However, making one simplifying assumption, 
Equation 9 can be integrated in closed form resulting in a simple relation.  Assuming a lognormally
distributed fragility curve with median F50 and variance , Equation 9 can be written as

Defining M=ln F50 and x=ln a, and appropriately changing the limits of the integration (a=ex and 
da=ex dx), Equation 10 can be written as 

To perform the closed-form integration of Equation 11, Kennedy and Short [10] approximate the
hazard curve by

where K1 is a constant and KH is a slope parameter defined as 

wherein AR is the ratio of ground motion intensities along the hazard curve corresponding to a ten-fold
reduction in exceedance probability.  In effect, Equation 12 linearizes the hazard curve on a log-log plot
using two points on the hazard curve separated by a decade in exceedance probability.  The
appropriateness of this approximation is explored subsequently.  

Substituting Equation 12 into Equation 11 results in

Performing the above integration (e.g., Elishakoff [11]), the failure probability is obtained as

Re-substitution of M = ln F50 or F50 = eM  into the above equation results in

Defining HD as the annual frequency of exceedance of the median Design Basis Earthquake (DBE)
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ground motion intensity (e.g., HD=4 x 10-4 as in the USGS seismic hazard maps), from Equation 12

Substituting Equation 16 into Equation 15 gives the final algebraic expression for PF:

where F50/DBE, termed herein as design factor, DF50, is the ratio of the median of the applicable in-situ
limit state fragility to the design ground motion intensity at HD, in same units.  The in-situ median 
fragility is related to the “as-built” condition of the structure and depends on several factors such as
response analysis models and methods, any safety factors used in design, implicit design conservatism,
redundancy, quality in design, materials and construction, etc..  The actual code nominal design capacity,
Rn, can be backed out from the required in-situ median fragility as described in Hadjian [12].

Evaluation of the Approximate Solution (Equation 17)
In order to evaluate the approximate solution, a set of hazard curves are represented analytically as

Figure 8.  Idealized High (1, 2, 3) and          Figure 9.  Variation of AR along     
           Low (4, 5, 6) hazard curves               hazard curves 1-6                         

where b and n are constants.  The purpose of an analytical representation of the hazard curve is to
facilitate the numerical integration of Equation 10 for several .  Figure 8 shows a family of pga
hazard curves based on Equation 18 in two sets.  The full line Curves 1, 2 and 3 are considered to be
representative of high seismicity hazard curves, and the dashed line Curves 4, 5 and 6 are considered to
be representative of low seismicity hazard curves.  The b and n values for all six hazard curves are listed
in Table 3 (together with their AR and  KH values calculated at HD=10- 4).  Figure 9 is a plot of the AR
(calculated at the midpoint of the decade for all six hazard curves of Figure 8) as a function of HD.  The 



1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

0.001 0.01 0.1 1 10

a

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

-6 -4 -2 0 2

x=ln a

Hazard
Fragility
Product

(a) (b)

wide range spanned by Curves 1 and 3, and Curves 4 and 6 qualify these sets of curves as a reasonable
basis for a generalized evaluation of Equation 17.

Table 3.   Characteristics of the six hazard curves of Figure 8
High Seismicity Low Seismicity

Curve # 1 2 3 4 5 6

b
n

-6.28
0.429

-4.96
0.406

-4.22
0.384

-6.78
0.343

-5.81
0.333

-5.06
0.321

HD=10-4

HD=10-4

AR

KH

1.80
3.93

1.86
3.72

1.92
3.52

2.08
3.15

2.13
3.05

2.19
2.94

Figure 10 shows a sample of the solution of Equation 10 by using
(a) the analytical form of the hazard curve (Equation 18), and 
(b) the linearized (ln a vs log PF) hazard curve (Equation 12).  

The parameters used in this example are: Curve 2 of Figure 8,, .=0.4, F50=0.582, and HD=10-3.  At HD=10-

3, DBE=0.291, AR=2.29, KH=2.78, and .  AR is calculated for the decade from 10-3.5

to 10-2.5 instead of from the decade below (10-4 to 10-3), as recommended in [10].  

Hazard Fragility The three curves shown in Figure 10 are the
hazard (dashed line), the fragility density
function (dotted line), and the product of the
two parameters (full line).  The area under the
product curve is therefore, from Equation 9, the
failure probability, PF.  A direct comparison of
curves as in Figures 10 a and b is not possible
because the independent variables are different
(a and x=ln a).  The basic parameters in 

a)  Equation 14

b)  Equation 10

Equations 14 and 10 have been apportioned for plotting purposes as shown above left.  The main
difference in the two solutions is the curvature of the hazard curves (dashed lines).  The hazard curve in
Figure 10a is the actual Curve 2 of Figure 8 (in log-log plot), whereas that in Figure 10b is a linear

replacement.  The resulting failure probabilities
(area under the product curve–full line) are given
below (Cases a and b).  As is to be expected
from Figure 10b, Equation 14 will result in a
larger PF because the concavity of the true
hazard curve is lost by its linearization, and
hence the product with the fragility PDF will be
larger than its counterpart in Figure 10a. 
The KH value used in these examples is
calculated at the vicinity of H(a) = 10-3, from the
AR for the decade from 10-3.5 to 10-2.5.  If the
decade from 10-4 to 10-3 (i.e., from below) were
                                                                    

 Figure 10.  Comparison of two characterizations  
       of  hazard curves, Equations 18 and 12
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DF=1.5, below
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DF=1.5, at
DF=2, at
DF=1.5, above
DF=2, above
Intersections

(a) (b)

Case .= 0.2 .= 0.4 Comments

(a) Eqs. 10 and 18 1.34 x 10-4 2.38 x 10-4

(b) Equation 14 1.70 x 10-4 2.70 x 10-4 AR at vicinity of HD (KH=2.78)

(c) Equation 14 1.30 x 10-4 2.45 x 10-4 AR from below HD (KH=3.25)

to be used, AR would equal 2.03 instead of 2.29, and KH would equal 3.25 instead of 2.78.  For . = 0.4, 

from Equation 17,  instead of 2.70 x 10-4, and for . = 0.2, PF 

would equal 1.30 x 10-4 instead of 1.70 x 10-4.  As compared in the above table, these results (Case c) are
closer to those obtained directly by use of Equations 10 and 18 (Case a).  Although the choice of AR
calculation at the vicinity of HD makes conceptual sense (in that KH is analogous to the slope of the hazard
curve at HD), it seems that the errors due to the linearization of the hazard curve and the calculation of AR
from the decade below HD counterbalance each other to produce the above encouraging results.  Based on
similar evaluations, AR is invariably calculated in current practice from the decade below HD [10]. 
However, these evaluations are based on small . (#0.4, as in the above example).  When the across-
variability of the hazard curve, .H, is considered in fragility calculations, as it should be, . approaches to
1.0, and the calculation of PF by Equation 17 and AR from below results in significant overestimates of the
failure probability as shown in Figure 11, where the ratio of PF using Equation 17 to PF based on the

integration of Equation 10 is shown as a
function of . for three different methods of
computing AR for use in Equation 17. 
These are characterized as “below”, “at”
and “above”.  “below” and “at”
characterizations of AR were just discussed. 
“above” refers to the calculation of AR
based on the decade above HD.  For HD=10-

3, AR from above would be based on the
ground motion parameter ratio from HD=10-

3 to HD=10-2.  All three characterizations are
shown in Figure 11 for HD=10-3 and
DF50=1.5 and 2.

                                                            
Figure 11.  Ratio of approximate to correct PF for three definitions 
of AR and DF50=1.5 and 2.0 (a) hazard Curve 2, (b) hazard Curve 5 

As expected from the earlier discussion, for small . the prediction of PF for AR from below  is excellent. 
However, for large . the overestimation increases exponentially.  For DF50=1.5, .=0.92 gives a ratio of
10, an order of magnitude overestimate of PF.  At .=0.85 the overestimation is three times.  Rather
surprisingly, for large ., AR from above gives the best results.  This trend can be explained with reference
to Figure 10.  As . increases the fragility curves (dotted lines) spread out and the straight line extension of
the hazard curve to the left (Figure b) gets engaged, and thus contributes a much larger portion to the total
PF than the true hazard curve would (which tends to flatten out to the left).  It should be observed that on
the right-hand side of the figures, the spreading out of the fragility curves for large . is not critical, since
the hazard curves become more than an order of magnitude smaller than HD where the AR are calculated. 



Thus, the contribution of any hazard curve to PF outside of a reasonable fragility band, say at 1% of its
mode value, is therefore minimal.  This suggests that the shape of hazard curves slightly beyond HD is not
critical to the calculation of PF.  In other words, the right-side “tail” of the hazard PDF is not critical to the
estimation of PF.  This observation is important since the uncertainty estimates of hazard curves for very
small ground motion exceedance probabilities tend to become speculative.  Recall that the fragility curve
in Figure 5 is predicated on a constant .H at all exceedance probabilities.

Returning to Figure 11, it is observed that the appropriate estimation method of AR where error would be
minimum, (i.e., the bottom envelope of the curves) depends on ..  For the example of Figure 11, the .
boundary between (from below) and  (from above) that give the least error are as follows (dots):

High Hazard Low hazard

DF50=1.5

DF50=2.0

An average . boundary at about .b=0.45 can be established.  Thus, for .b#0.45 best results would be
obtained by calculating AR from below, and for .b$0.45 best results would be obtained by evaluating AR
from above.  However, in practical applications .$0.3, if not $0.4.  Under this circumstance, the above
complexity of defining boundaries can be eliminated, and AR can be calculated for all . and all DF50 from
the decade above HD.  This is contrary to current practice, which is based on small . used in SPRA [10].

PF as a ratio of HD
It should be noted from Equation 17 that the design level exceedance probability, HD, and the failure
probability, PF, can be significantly different (numerically) depending on the slope parameter of the
hazard curve, KH, the in-situ median fragility, F50, and the logarithmic standard deviation, ..  This point,
illustrated in Figure 12, where AR are calculated from above, needs to be emphasized.  Figures 12 b-d
show plots of the PF/HD ratio as a function of the design factor, F50/DBE, based on the idealized seismic 
hazard Curve 2 (for Western US ! WUS) and Curve 5 (for Eastern US ! EUS) repeated in Figure 12a. 
The use of these specific median hazard curves is immaterial to the issues being discussed here. 
Multiplying the design factor by the DBE determines the required in-situ median fragility, F50.  

PF/HD depends, in a rather complex manner, on the variation of KH along any one of the hazard curves. 
And, for any ground motion design basis exceedance probability (each one of the curves), different 
failure probabilities are obtained than the respective exceedance probabilities of the design basis
earthquake motions, HD, as a function of both the design factor and ..  As HD decreases (or return period
increases) the impact of the design factor on the PF/HD ratio increases dramatically, and could vary by
orders of magnitude (Figure 12 ordinate is logarithmic).  A comparison of Figures 12b and 12c (same .),
shows that PF/HD is more sensitive to changes in the design factor in the WUS  relative to EUS.  And a
comparison of Figures 12c and 12d shows a significant dependence of PF/HD on  ..   

Based on the above results it should become obvious that simply designing to a specific annual
exceedance probability of the ground motion, say 10% in 50 yr, is misleading: it does not provide any
information on failure probability.  For example, if designing to a 500 yr return period ground motion is
meant to achieve a failure probability of 10% in 50 yr, the required design factors, from Figure 12 (dotted
line), should be 1.7 for EUS hazard and .=0.8 (Figure b), 1.9 for WUS hazard and .=0.8 (Figure c), and
1.4 for WUS hazard and .=0.6 (Figure d).  This and related issues have been belatedly recognized in
FEMA 350 [13], where an alternative method is used to estimate the “confidence” level that the specified
performance reliability at a specified limit state (Immediate Occupancy or Collapse Prevention) for a
given design has been attained.  Cornell et al. [14] give the probabilistic basis for this corrective action.



1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.2 0.4 0.6 0.8
pga (g)

An
nu

al
 P

ro
ba

bi
lit

y 
of

 E
xc

ee
da

nc
e

WUS-median
EUS-median

(a)
0.1

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Design factor, F50/DBE

P
F/

H
D

HD=4.0E-4, RP=2500
HD=1.0E-3, RP=1000
HD=2.0E-3, RP=500
HD=4.4E-3, RP=225
HD=1.3E-2, RP=75

(b) EUS, ζ=0.8

0.1

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Design factor, F50/DBE

P
F/

H
D

(c)

WUS, ζ=0.8

0.1

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Design factor, F50/DBE

P
F/

H
D

WUS, ζ=0.6

(d)

0

1

2

3

4

5

6

0.0 0.3 0.6 0.9

ζ

D
F 5

0

5.5
4.5
3.5
2.5
1.5 High seismicity range

Low seismicity range

Increasing design level

KH=5.5

PF=HD
On the presumption that the selection of
the specific ground motion return periods
in Table 1 is to achieve comparable failure
probabilities, the impact of . and KH on
DF50 is explored below.  Setting PF=HD,
Equation 17 reduces to 

Taking the natural logarithm of this
relation gives

DF50 are calculated for selected KH and a
broad range of ., and the trends shown in
Figure 13.  As discussed earlier, the
determination of the KH parameter of
hazard curves for use in Equation 17 is not
a simple decision.  To avoid this
controversial issue, KH is used as an
independent parameter, varying from 1.5
to 5.5.  KH, in general, increases with 

Figure 12.  Comparison of PF/HD vs F50/DBE (b, c and d)
for WUS and EUS hazard curves (a), selected . and five HD

increasing seismicity (a regional effect), and, for a given hazard curve, increases with decreasing
exceedance probability, or increasing design ground motion (a design condition): KH increases with
increasing design level of structures, from ordinary to essential and to critical facilities.

Based on Figure 13 the following observations are made: (1) When .…0, a DF50>1.0 is required to
achieve the design failure specification, PF=HD.  (2) The
dependence of DF50 on . becomes more  significant as KH
increases.  DF50 grows faster with . as KH gets larger.  For
example, a change of . from 0.6 
to 0.7 for KH=5.5 increases DF50 from 2.7 to 3.9, and for
KH=1.5, the increase in DF50 is only from 1.31 to 1.44.  Thus, in
high seismicity regions and for increasingly important
structures, the selection of . becomes a more critical design 
decision than in low seismicity regions and for less important
structures.  Thus, a design load specification, particularly in
high seismicity regions, that does not explicitly include a
consideration of . is quite useless.  (3) Assuming that . is
adequately determined and appropriately considered, DF50
becomes a function of KH.  Thus, design load criteria to 
achieve the same reliability must be different from region to
region.                                                                                            

Figure 13.  Impact of . on KH and DF50 



The use of the same load factors for the whole country, as for example used in dead and live load
combinations, would lead, in a relative sense, to underdesigns in high seismicity regions and overdesigns
in low seismicity regions.  Earthquake design load factors must therefore be regional.  This is an issue that
building code framers need to consider.

CONCLUSIONS

The current practice of designing structures to a specified return period of a ground motion parameter
does not translate into any useful estimate of failure probability.  This is so simply because any one
structure, in effect, is potentially exposed, throughout its design life, to all the possibilities of the
occurrence of ground motion intensities at a given site as characterized by a set of site-specific seismic
hazard curves.  A simple failure probability model is derived with certain constraints on the calculation of
AR.  Based on this model the following conclusions are made: PF is related to HD in a rather complex and
significant manner as a function of both DF50 and ..  The across-variability parameter, .H , has a
significant impact on reliability, and must be explicitly included in design.  For the same ., PF/HD is more
sensitive to changes in the design factor in the WUS relative to EUS.  A DF50>1.0 is required to achieve
the design failure specification, PF=HD.  In high seismicity regions and for increasingly important
structures, the selection of . becomes a more critical design decision than in low seismicity regions and
for less important structures.  The use of the same load factors for the whole country, as for example used
in dead and live load combinations, would lead, in a relative sense, to underdesigns in high seismicity
regions and overdesigns in low seismicity regions.  
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