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SUMMARY 
 

This paper presents a review of non-stationary representation of earthquakes, paying special attention to 
the so-called uniformly modulated process, in which a time-domain amplitude modulation function is 
used to model the evolution of energy content over time. A new duration parameter, called the equivalent 
stationary duration, is defined on the basis that two stochastic processes can be assumed to be equivalent 
if they have the same expected value of the Arias intensity. The calculation of this parameter requires only 
the specification of the amplitude modulation function of the recorded accelerogram. The new duration 
parameter can be used to fit almost any analytical –theoretical or code-based– amplitude modulation 
function to a given analytical or empirical function in conjunction with some additional mathematical 
constraints. This feature facilitates the alternative use of different intensity functions for the generation of 
the artificial accelerograms needed for numerical investigations or time-history analysis of actual 
structures. Furthermore, the equivalent stationary duration appears as a very robust parameter that 
provides an exact expression of the power spectrum of the underlying stationary process without the need 
for any additional scaling parameter to adjust the total variance. 
 

INTRODUCTION 
 

Up to now, the peak ground acceleration has been used as the main design parameter in Earthquake 
Engineering. However, some other parameters, such as the frequency and energy content or the duration 
of strong ground shaking during earthquakes, can play an important role in the response of structures, 
particularly when the seismic action is modelled as a non-stationary stochastic process. The frequency 
content, which can significantly alter the response of a particular structure due to the possibility of 
exciting different natural frequencies over time, can be represented using a semiempirical or seismological 
model. This aspect has aroused great interest in recent decades, giving rise to a considerable number of 
stationary and non-stationary stochastic models of the seismic action in the form of amplitude or power 
spectra. 
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The evolution of energy content over time and the duration of strong motion at a specific site are also 
important factors in assessing the damage potential of a given earthquake. In fact, seismic hazards like 
liquefaction of saturated cohesionless soils due to pore pressure build-up during earthquakes, or energy 
input in structures and low-cycle fatigue due to strength degradation, are mostly related to the earthquake 
duration and to the form of the accelerogram envelope. Many definitions have been proposed to quantify 
strong-motion duration. Some of them are based on structural characteristics, while many others try to 
give an absolute or relative measure of the duration of the strong-motion part of the accelerogram. Despite 
this, there is still no general agreement about which duration definition should be used in every 
application. Specifically, a suitable definition is needed for the selection of real accelerograms or the 
simulation of artificial ones, a definition that would then be used in response analyses and vulnerability 
studies. Moreover, methods used to calculate stochastic response spectra from non-stationary 
seismological models also need a duration definition more closely related to the shape of the accelerogram 
envelope. 
 
The most common method for representing a non-stationary stochastic model is to consider an underlying 
stationary model that is windowed by a time-domain amplitude modulation or intensity function. Classical 
definitions of duration lead to some incoherence when using that kind of stochastic model. This paper 
presents an equivalent stationary duration as an alternative to other definitions commonly used in past 
research, such as bracketed or effective duration. The new robust definition of the earthquake duration, 
which is directly obtained from the earthquake intensity function, is completely coherent with the 
aforementioned non-stationary model, and allows the formulation of an equivalence criterion between 
intensity functions. 
 

UNIFORMLY MODULATED SPECTRAL REPRESENTATION 
 

Let {ag(t)} be a non-stationary stochastic process representing the ground acceleration produced by an 
earthquake at a specific location. A zero-mean ground acceleration process will be assumed hereafter 
without loss of generality, so that the variance and standard deviation of the acceleration process coincide 
with the mean-square and root-mean-square values, respectively. Several definitions of the non-stationary 
variance spectrum of such a process have been proposed in the literature, amongst which the following 
can be quoted: the instantaneous spectrum [1], the evolutionary spectrum [2], and the physical spectrum 
[3]. Without doubt, the one most commonly used in practice is the evolutionary variance spectrum, due to 
its physical interpretation as the instantaneous variance distribution over frequency. This interpretation 
allows the evolutionary spectrum to be understood as a generalization of the usual definition of the 
spectrum for stationary processes. 
 
According to Priestley [2], the evolutionary spectral representation of any realization of the stochastic 
process {ag(t)} can be expressed as: 
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where the superscript (*) means complex conjugate, E[·] is an operator that gives the mathematical 
expectation of the argument, and Gag,s(f) is the two-sided variance spectral density function –two-sided 
variance spectrum– of an underlying stationary process {ag,s(t)} which has a spectral representation of the 
form: 
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The intensity function )t,f(I
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ag  can be expressed in a module-argument form as: 
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where Iag(f,t) and ϕI(f,t) are, respectively, the module and phase functions of )t,f(I
~

ag . By substituting Eq. 

(4) into Eq. (1), we obtain: 
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Eq. (5) facilitates the interpretation of {ag(t)} as a non-uniformly modulated process over time and 

frequency. A common assumption in engineering practice is to take )t,f(I
~

ag  as a frequency-independent 

real function, i.e., with ϕI(f,t)=0 and Iag(f,t)=Iag(t), so that: 
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and considering Eq. (3), it follows that: 
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A stochastic process of the form given in Eq. (7) is called a uniformly modulated process to stress the fact 
that the same modulation over time is involved for all the spectral components of the underlying stationary 
process. Taking into account the fact that Iag(t) acts as a time window over ag,s(t), the function Iag(t) is also 
called envelope or amplitude modulation function. Eq. (7) is the most commonly used non-stationary 
model for simulating accelerograms and, as has been shown, is a separable non-stationary model [4] 
where Iag(t) gives the frequency-independent variation over time (amplitude modulation), and ag,s(t) 
introduces the time-independent variation over frequency (frequency modulation). 
 

The differential increment of any realization of the stationary process { })f(Z
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 can be expressed in a 
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where dZ(f) and ϕZ(f) are, respectively, the module and phase functions of )f(Z
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d . The module function 
dZ(f) in Eq. (8) can also be expressed as: 
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where Aag,s(f) is the two-sided amplitude spectrum of the underlying stationary process {ag,s(t)}. Eq. (9) 
means that dZ(f) and ϕZ(f) can also be interpreted, respectively, as the two-sided amplitude coefficient 
spectrum and the two-sided phase spectrum of the process {ag,s(t)}. Based on the central limit theorem, 
ground acceleration can be assumed to be a Gaussian process. In such a case, the ensemble of all possible 
phase functions, {ϕZ(f)}, constitutes an uncorrelated stationary random process with uniform probability 
distribution in the interval [-π,π[. By substituting Eqs. (8) and (9) into Eq. (6): 
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Now, in view of the fact that, for a real process like {ag,s(t)}, the amplitude spectrum Aag,s(f) is a symmetric 
function and the phase spectrum ϕZ(f) is an antisymmetric function, we obtain: 
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which can be further reduced to: 
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where {ag,s(t)} has already been considered to be a zero-mean process. 
 
The discretization of Eq. (12) over frequency using a constant frequency interval ∆f, gives 
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where fm=m∆f, and ϕm=ϕZ(m∆f). The discretization in the frequency-domain implies the periodicity in the 
time-domain of the process {ag,s(t)} with period T=1/∆f. This means that ∆f must be chosen so that T≥Tgt, 
where Tgt is the total duration of the non-stationary time series ag(t). 
 
From Eqs. (2) and (9), the variance spectrum Gag,s(f) and the amplitude spectrum Aag,s(f) are related by: 
 

 [ ]df)f(AE)f(G 2
s,ags,ag =  (14) 

 
If the underlying stationary stochastic process is assumed to be ergodic, the mathematical expectation can 
be dropped from Eq. (14), so that: 
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Then, if the summation in Eq. (13) is truncated up to a number of M frequencies, the following expression 
is obtained, commonly used to simulate artificial accelerograms on the basis of a uniformly modulated 
process with zero mean and deterministic spectral amplitudes: 
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TIME-DOMAIN INTENSITY FUNCTION 

 
The functional form of the time-domain intensity function Iag(t) in Eq. (7) depends on the particular 
accelerogram under consideration. This form has traditionally been associated with different 
characteristics such as the location and directivity of the fault, type of rupture mechanism, crustal 
structure, topography, site amplification effects, etc.. All these factors have a critical influence on the 
propagation of seismic waves and, therefore, on the arrival at the prediction site of the earthquake energy 
that the intensity function tries to represent. Since these factors are not completely known for a specific 
site, the intensity function is preferably obtained from accelerograms recorded in the seismic region by 
using numerical procedures [e.g., 5-7]. However, for design purposes analytical –theoretical or code-
based– functions are commonly used. 
 
Some of the existing analytical intensity functions try to represent the variation over time of the variance 
of the process {ag,s(t)}, )t(2

agσ , while most of them are concerned with the variation of the standard 

deviation σag(t). In this paper the latter type of intensity functions is considered because of its consistency 
with the definition given in Eq. (7) as shown below. 
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where 2

s,agσ  is the variance of the underlying stationary process {ag,s(t)}. Therefore, the intensity function 

is: 
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According to Eq. (18), Iag(t) can be interpreted as the normalized variation of the standard deviation of 
{ag(t)}. Furthermore, all the proposed analytical intensity functions can be expressed with their maximum 
value equal to one, just making σag,s=max{σag(t)}. If so, the stationary variance spectrum Gag,s(f) can be 
interpreted as the value of the evolutionary variance spectrum Gag(f,t) in the instant of maximum energy 
content of the earthquake. In this paper, normalized intensity functions with a peak unit value are 
considered. 
 



Researchers have proposed different analytical intensity functions. Generally speaking, two groups can be 
distinguished. The first group is made up by functions that have three parts: an increasing stretch from 
zero to the maximum value; a flat segment where the function is constant and equal to its maximum value; 
and then a decreasing portion until the end of the event (ICD intensity functions, which stands for 
Increasing-Constant-Decreasing). The second group comprises functions with an increasing stretch from 
zero to a maximum or peak value for t=tr, where tr is the so-called rise time, and, finally, a decrease of the 
function as in the previous group (IPD intensity functions, which stands for Increasing-Peak-Decreasing). 
Accelerograms with more than one peak can be represented by an ICD function enveloping all the peaks 
or, alternatively, by the superposition of several IPD functions. In the present section, current use 
analytical intensity functions are reviewed. 
 
ICD intensity functions 
Amongst the ICD intensity functions, the most commonly used have three segments, like the trapezoidal 
function [e.g., 8]: 
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or the potential-constant-exponential function [9,10 with m=2]: 
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where a and m are parameters of the second function, t1 and t2 are the initial and final instants, 
respectively, of the flat segment, and Tgt is the total duration of the accelerogram. The Spanish version of 
Eurocode 8 Part 2 [11] prescribes a function of the ICD type made up by six straight segments: 
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where Tgn is a nominal duration corresponding to a normalized value of 0.25 at the end of the earthquake. 
Specifically, Tgn=Tgt is adopted in Eurocode 8 Part 2 [11]. This intensity function can be easily extended 



by considering that the last segment does not reach 0.25 but a smaller value α for t=Tgt>Tgn; the range of 
usual values in other intensity functions is α∈[0.01,0.10]. In this case, the last segment in Eq. (21) should 
be replaced by: 
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with Tgn=Tgt/(1.5-2α). 
 
IPD intensity functions 
Usual IPD functions coincide in having an exponentially decreasing part. The increasing stretch can be 
obtained by subtracting another exponential function [12]: 
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or with a potential function [4,13 with m=1; 14 with a generic m]: 
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where a, b, and m are parameters of the corresponding functions, and KSS and KSH are normalization 
factors. 
 
A different proposal has been to model the intensity function with a powered sinusoidal function of a 
phase defined through a non-linear transformation of the time axis [15]: 
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where m and n are parameters of the function, Tgn is a nominal duration given by Tgn=t2-t1. Specifically, 
Tung et al. [15] use Tgn=Tgf, where Tgf is the effective duration of Trifunac and Brady to be defined in the 
following section, so that t1=t0.05 and t2=t0.95, where t0.05 and t0.95 are the instants corresponding to 5% and 
95%, respectively, of the Arias intensity. 
 
Note that in Eqs. (20), (23) and (24), all of them with an exponential decreasing part, the intensity 
function is not equal to zero at the end of the earthquake, so that a criterion must be used to fit the 
function to a real record. It is common practice to specify a small value α for t=Tgt; the range of usual 
values is α∈[0.01,0.10]. 
 



CHARACTERISTIC EARTHQUAKE DURATION 
 

A large number of duration definitions have been proposed to identify the strong-motion phase of an 
earthquake accelerogram. Some complete reviews on the subject can be found in [16] and [17]. Basically, 
existing definitions of earthquake duration can be classified into four different types depending on the 
magnitude used to characterize the earthquake, namely: ground acceleration (threshold duration), Arias 
intensity (energy duration; equivalent duration) or structural response (structural duration). All these 
durations can be defined with respect to an absolute or relative value of the corresponding magnitude. 
Furthermore, sometimes the duration is defined using the original record, while on other occasions only 
some particular frequencies are considered in the analysis by applying narrow band-pass filters to the 
accelerogram [18]. Hereafter, only the definitions related to ground acceleration and Arias intensity are 
considered, since they permit a direct definition of duration, independently of structural characteristics. 
 
Threshold duration 
Earlier attempts to determine the duration of the strong-motion part of an accelerogram were based on a 
very simple criterion: the duration is the time interval between the first and the last excursion of the 
accelerogram with respect to a predetermined threshold level η. A slight variation in the definition has 
also been introduced, using the first and last peaks of acceleration that are greater or equal than η. This 
type of definition is commonly referred to as bracketed duration, although it could also be named as total 
threshold duration, Tght. Different authors have used this definition with different absolute threshold 
levels, e.g.: η/g=0.03 [19], η/g=0.05 [18,20], or η/g=0.10-0.15-0.20 [21]. There are some significant 
disadvantages in using this criterion: it is only useful for earthquakes that reach the specified threshold 
level; the resulting duration is very sensitive to small changes in the predetermined level; and the 
definition does not consider the behaviour of the accelerogram in the strong-motion part, so that energy 
content is not adequately considered. In order to overcome the first of these disadvantages, a relative 
threshold level, depending on the peak ground acceleration ag;max, has also been used by some authors, 
e.g.: η/ag;max=0.50-0.67-0.75 [21], or η/ag;max=0.10∼0.90 [22]; in this context, it has been referred to as 
fractional duration or normalized duration. 
 
In order to avoid the sensitivity to small changes in the threshold level and to include the energy content in 
the definition, at least in an indirect way, it has been proposed that the duration should be obtained as the 
sum of time intervals during which the acceleration remains above a certain threshold level. This has been 
quoted as normalized or uniform duration, although a more precise name might be that of runs threshold 
duration, Tghr, bearing in mind that what it actually measures is the duration of the acceleration runs over 
the specified level. Bolt [18] proposed the use of absolute threshold levels of η/g=0.05-0.10. The 
correlation between runs threshold duration and threshold level is higher than in the case of total threshold 
duration, and it is exponentially related to the chosen level [23]. 
 
Energy duration 
Many definitions of strong-motion duration are based on the energy content of the accelerogram that is 
capable of producing damage in a structure. They are usually included under the common name of 
significant or effective duration. Two important concepts are essential to set up this group of durations: 
the Arias intensity and the Husid plot. 
 
The Arias intensity [24] is a measure of the amount of energy that is involved in the production of 
structural damage. It is defined from the total area under the squared acceleration function, as follows: 
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where g is the acceleration due to gravity. As the factor apart from the integral acts simply as a constant, 
some authors remove it, thereby obtaining a modified Arias intensity given by: 
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The Husid plot [25] is the commonly used name for the graphic representation of a function that gives the 
growth of the Arias intensity over time. Using the modified definition of Eq. (27): 
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and, therefore, IA=IH(Tgt). The function IH(t), which will be referred to as the modified Husid intensity 
function, has three parts: an initial low gradient stretch corresponding to the arrival of the P-waves, with a 
normally short duration; a very steep segment corresponding to the arrival of the most damaging S-waves 
and, possibly, some surface waves; and, finally, another low gradient portion due to the superposition of 
surface waves, P- and S-waves that have travelled along longer paths due to reflection, refraction or 
diffraction phenomena, and other coda waves that have also undergone a significant attenuation. The 
strong-motion duration is then defined as the interval of time between two characteristic instants in which 
the original or modified Husid intensity function reaches certain specified values. Most definitions in the 
literature on this subject are based on a relative value of the function, e.g.: IH(t)/IA=0∼0.95 [25], 
IH(t)/IA=0∼0.90 [26], or IH(t)/IA=0.05∼0.95 [27]. Bommer and Martínez-Pereira [17] have proposed an 
absolute definition in which the duration is given by the difference between two characteristic instants t1 
and t2, which are obtained as follows: t1=t0-∆t, where IH(t0)=0.05 m/s and ∆t=1 s; and IH(t2+∆t/2)/IH(t2-
∆t/2)-1=0.01, where ∆t=1 s. A suitable and descriptive name for all of these definitions could be that of 
total energy duration, Tget. 
 
As with threshold duration, some authors have proposed that a sum of intervals rather than a single 
interval should be considered in the Husid intensity function; these intervals, over which a certain 
proportion of the Arias intensity is accumulated, would be those with the steepest slopes. This is the case 
of the duration introduced by Trifunac and Westermo [28] and Novikova and Trifunac [29], which 
includes only the portions of record with the highest values of the derivative of IH(t), containing 90% of 
the total seismic energy as measured by the Arias intensity. In keeping with previously given names, this 
type of duration should rather be called runs energy duration, Tger. 
 
Some alternative definitions based on the evolution over time of the variance or standard deviation of the 
acceleration time series, can also be included in this group of energy duration due to the close relationship 
they bear to the energy content expressed in Eq. (28). McCann and Shah [30] proposed a definition of 
duration based on the cumulative time-dependent standard deviation of the accelerogram, given by: 
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The end of the strong-motion phase is identified as the time after which the function sag(t) is always 
decreasing, while the beginning is obtained by applying the same criterion to the record with reversed 
time. Sabetta [31] introduced a different duration definition using a local time-dependent standard 
deviation given by: 
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where ∆t is a specified time interval. The duration is then defined as the sum of all ∆t intervals in which 
sag;∆t≥0.025g, using ∆t=1 s. 
 
Equivalent duration 
The last group of definitions consists of determining the duration of the realizations of a duration-limited 
stationary process {ag,sT(t)}, which can be considered as equivalent in some way to the actual non-
stationary process {ag(t)}. The realizations of the duration-limited stationary process {ag,sT(t)} of duration 
T, obtained from the underlying stationary process {ag,s(t)}, are such that: 
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where Iag,sT(t) is a normalized intensity function that is equal to one in the interval [0,T] and zero outside. 
 
Vanmarcke and Lai [32] assumed that both processes are equivalent if they have the same variance. If the 
duration-limited stationary process is supposed to have the same peak ground acceleration as the non-
stationary process, ag;max, the following expression for the earthquake duration can then be obtained: 
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where ψP,s is the peak factor corresponding to a realization of the equivalent duration-limited stationary 
process of duration Tgs, with a probability of non-exceedance P. Taking an arbitrary value of P=1/e for the 
non-exceedance probability –where e is the base of the natural logarithms–, and enforcing a minimum 

value of 2s,P =ψ  –corresponding to the ratio between the maximum and the rms value for a single 

sinusoid–, the peak factor has the following expression: 
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where Tz is the mean zero-up-crossing period of the ground motion. Given ag;max, IA and Tz for a particular 
accelerogram, Eqs. (32) and (33) can be solved iteratively for Tgs. An approximate value of the strong-
motion duration can be obtained taking a peak factor of ψP,s≈2.74. The main drawbacks of this definition 
are that an arbitrary value of p is taken and that the expression of the peak factor in Eq. (33) is 
asymptotically valid only for very high thresholds. 
 
Carli [33] presented another equivalent duration definition based on the amplitude modulation function of 
the accelerogram. Using a normalized intensity function with a unit peak value, the equivalent duration is 
defined as: 
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Nevertheless, instead of considering Tgs as the duration of the equivalent duration-limited stationary 
accelerogram, the author uses it as a simple approximation to the duration of the strong-motion part of the 
original accelerogram, so that it becomes evident that no physical interpretation can be given to this 
parameter. 
 
In the next section, a new definition of equivalent duration is introduced, which proves to have significant 
advantages over the aforementioned parameters. 
 

EQUIVALENT STATIONARY DURATION 
 

In view of the physical meaning of the Arias Intensity, it is stated that two stochastic processes can be 
assumed to be equivalent if they have the same expected value of the Arias intensity. Therefore, the 
original non-stationary process {ag(t)} and the duration-limited stationary process {ag,sT(t)} are equivalent 
if: 
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The first member of Eq. (35) is: 
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where the last equality has been obtained by using Eq. (17). The second member of Eq. (35) can be 
worked out as: 
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where Tgs is the duration of the realizations of the duration-limited stationary process {ag,sT(t)} that allows 
the aforementioned equivalence to be fulfilled. By substituting Eqs. (36) and (37) into Eq. (35): 
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The duration Tgs will be called equivalent stationary duration, in view of the way it has been derived. 
From Eq. (37), it is clear that the expected value of the Arias intensity is equal to the product of variance 
of the underlying stationary process and the equivalent stationary duration. As can be seen in Eq. (38), the 
new duration parameter is defined only from the time-domain intensity function. It can therefore be 
postulated that two different intensity functions are equivalent if they have the same area under their 
squared expression. This interesting property allows us to fit almost any analytical amplitude modulation 
function to a given one. Obviously, it must be done in conjunction with some additional mathematical 
constraints, such as the position of the strong-motion part and the rms level at the end of the accelerogram. 
Furthermore, the equivalent stationary duration is a robust definition of duration from the point of view of 
the stochastic process theory, as it provides a coherent calculation of the variance spectrum of the 
underlying stationary process on the basis of the corresponding amplitude spectrum. 
 



APPLICATION EXAMPLE 
 

This section gives an application example to show how the equivalent stationary duration can be applied 
in the fitting of different amplitude modulation functions to a prescribed one. The intensity function 
specified in the Spanish version of Eurocode 8 Part 2 [11], as expressed in Eqs. (21) and (22), will be used 
as the reference function with α=0.05. The duration of the accelerograms must be consistent with the 
magnitude and other relevant features of the seismic event. According to the Spanish version of Eurocode 
8 Part 1-1 [34], the duration of the stationary part of the accelerogram is correlated with the design ground 
acceleration (DGA), agd, in epicentral zones. Eurocode 8 gives the values of the minimum stationary 
duration for different values of agd, in the absence of site specific data. No indication is given in the 
abovementioned code of the exact definition of the “duration of the stationary part”. In principle, it could 
be considered to be the part of the accelerogram corresponding to the flat segment in the intensity 
function. If so, for a DGA of, for instance, agd=0.20g, which corresponds to a stationary duration of 15 s, 
the nominal duration of the earthquake would be Tgn=75 s and the total duration Tgt=105 s for α=0.05; 
these do not seem reasonable values for actual earthquakes. That is why the stationary duration mentioned 
in the Eurocode has been interpreted here as the equivalent stationary duration previously defined. In this 
way, the nominal and total durations of the reference intensity function would be shortened to Tgn=37.1 s 
and Tgt=58.0 s, respectively, for agd=0.20g. 
 
Four analytical intensity functions, amongst the ones previously reviewed, have been fitted to the 
reference Eurocode function for a moderate seismicity region with a DGA of agd=0.10g, which 
corresponds to a stationary duration of 10 s, i.e., Tgs=10 s. This function has a nominal duration of 
Tgn=24.7 s and a total duration of Tgt=34.6 s for α=0.05. The fitted functions are: the potential-constant-
exponential ICD function of Eq. (20) with m=2 (a=0.1103, Tgt=34.6 s); the exponential-exponential IPD 
function of Eq. (23) (a=0.1160, b=0.3216, Tgt=34.6 s); the potential-exponential IPD function of Eq. (24) 
with a generic m (a=0.1712, m=0.8492, Tgt=31.6 s); and the sinusoidal IPD function of Eq. (25) 
(m=2.4521, n=0.3565, Tgt=34.6 s). In the case of the ICD intensity function, the initial and final instants 
of the flat segment have been given equal values to those of the reference function, while the decreasing 
part has been fitted to give a value α=0.05 at the end of the earthquake (t=Tgt). In the case of the IPD 
intensity functions, the rise time tr has been taken to coincide with the middle time of the flat segment of 
the reference function, and the exponentially decreasing part has also been fitted with α=0.05. In the case 
of the sinusoidal function the nominal duration in which the function is defined, has been taken as 
Tgn=Tgt, with t1=0 and t2=Tgt. 
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Figure 1. Eurocode 8 intensity function and fitted potential-constant-exponential ICD function. 



The results are shown in Figs. 1 to 4, where it can be observed the good fitting obtained when imposing 
the equality of the equivalent stationary duration to different amplitude modulation functions. The best 
fitting corresponds to the potential-constant-exponential and exponential-exponential functions, which are 
some of the most commonly used theoretical intensity functions. Worthy of mention is the fact that an 
identical or similar value of the total earthquake duration has been obtained in all the fitted intensity 
functions. This can be considered to be a proof of the coherency of the used mathematical constraints, as 
well as of the robustness of the new equivalent duration parameter. 
 

CONCLUSIONS 
 

The equivalent stationary duration defined in this paper as the integral of the squared time-domain 
intensity function, has been shown to possess remarkable advantages over some other popular duration 
definitions such as bracketed or effective duration. One of the main advantages of the new earthquake 
duration definition is that it enables us to establish an equivalence criterion between different intensity 
functions. In this manner, once an equivalent duration is specified for a particular earthquake, almost any 
similar analytical or empirical amplitude modulation function can be used to simulate accelerograms that 
adequately represent the energy content of the original process. It is also a robust parameter that 
establishes a direct relation between the amplitude spectrum and the variance spectrum of the underlying 
stationary process, avoiding the necessity of using additional scaling factors to adjust the total variance of 
the process. 
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Figure 3. Eurocode 8 intensity function and fitted potential-exponential IPD function. 
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Figure 2. Eurocode 8 intensity function and fitted exponential-exponential IPD function. 
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