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SUMMARY 
 

The assessment of the performance of earth structures in geotechnical earthquake engineering is of great 
importance, because the failure of an earth dam, solid-waste landfill, natural slope or constructed 
embankment, can result in significant human and financial losses and severe environmental impact.  
Although it is important to quantify the risk of failure of these systems, most of the research in seismic 
slope stability has been performed deterministically.  The objective of the current research is to offer a 
probabilistic methodology for the assessment of seismically induced permanent displacements.  The 
proposed approach utilizes a generalized 1-D equivalent-linear fully coupled stick-slip sliding block 
model to characterize a slope’s dynamic response, making use of an earthquake database comprising over 
680 recorded ground motions to compute the simulated seismic displacements.  A predictive model for 
seismic displacements is developed, using as predictive variables the yield coefficient of the slope (ky), the 
initial one-dimensional fundamental period (Ts), and the spectral acceleration at a degraded period equal 
to 1.5Ts.  The predictive equation has two branches separately computing the probability of “zero” 
displacement occurring from the distribution of “nonzero” displacement.  Displacements smaller or equal 
to 0.1 cm are defined as “zero” for practical purposes.  Following its validation with 16 case histories of 
earth dam and solid-waste landfill performance, the proposed model is implemented in a probabilistic 
framework for the evaluation of the seismic displacement hazard. 

 
INTRODUCTION 

 
General 
Evaluating the deformation potential of earth slopes in seismic engineering design involves accounting for 
the variability in the properties of the earth slope, the strong ground motion, and the aleatory variability in 
the seismic permanent displacements given the slope properties and the strong ground motion.  Hence, the 
evolution towards probabilistic approaches is necessary to properly account for the aforementioned 
sources of uncertainty and to explicitly describe the level of hazard adopted in design.  In general, research 
in probabilistic approaches in seismic slope stability has been limited.  In recent years, however, several 
researchers have recognized the importance of advancing the state of practice towards such methods and 
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have proposed methodologies to account for risk in engineering design of earth slopes.  These 
methodologies usually involve three steps: (1) establishing a model for prediction of seismic slope 
displacements, where seismic displacements are conditioned on a number of variables characterizing the 
properties of the slope and important characteristics of the strong ground motion, (2) computing the joint 
hazard of the conditioning ground motion variables, and (3) integrating the above two steps to compute 
the seismic displacement hazard.  As a result, the differences in the proposed models are primarily in these 
areas: (1) the type of “idealized” slope model used for the simulation of seismic displacements, (2) the 
selection of the conditioning variables, (3) the number of records used as seismic excitations, (4) whether 
these records constitute real recordings or simulated ground motions, and (5) the type of mathematical 
model used to generate the relationship for seismic slope displacement estimation. 
 
Previous Studies 
Although a number of researchers have explored the problem of seismic slope displacements from a 
probabilistic perspective, a comprehensive review of their work surpasses the scope limitations of this 
paper.  For the sake of clarity and conciseness, the findings of the research that influenced the current 
study are summarized herein. 
 
Lin and Whitman [1] first studied the probability of failure of sliding blocks using a rigid block 
assumption and modeling the strong ground motion as a Gaussian stationary process.  Based on an 
analytical study with ground motion pulses they used the peak ground acceleration, the root mean square 
acceleration, and the central frequency of the ground motion as the parameters characterizing the ground 
motion, and the yield acceleration as the parameter characterizing the slope strength to condition 
displacements upon.  In their final methodology, displacements are only conditioned on the peak ground 
acceleration and the yield acceleration, and the computation of the annual probability of exceeding 
specified displacement thresholds involves computing the seismic hazard for one scalar parameter, the 
peak ground acceleration.   
 
Yegian et al. [2], [3] addressed the problem of seismic slope deformations using a rigid block assumption 
and different conditioning variables.  They normalized seismic displacements to the value of the peak 
ground acceleration (PGA), the number of equivalent cycles (Neq), and the predominant period of the 
ground motion (T).  They proposed a relationship between the normalized displacements and the ratio of 
the yield to the peak ground acceleration based on simulated displacement data computed from 86 
earthquake records.  The fact that the seismic displacement is conditioned on more than one parameter 
that characterizes the strong ground motion (i.e. PGA and Neq) requires the computation of the joint 
hazard for these parameters, which may increase computational effort.  In a subsequent study, Ghahraman 
and Yegian [4] propose a methodology for seismic displacement computation where a relationship is 
developed for seismic displacement as a function of magnitude and distance.  This relationship can then 
directly be programmed in a software for seismic hazard analysis to produce annual probabilities of 
displacements being exceeded.  The relationship has been developed by making all primary variables, 
such as the yield acceleration, the peak ground acceleration, the predominant period of the motion within 
the dam, and the equivalent number of cycles, functions of magnitude.  Consequently, the standard 
deviation of the random error in this relationship is significant, i.e. on the order of 5 in ln-units, which 
results in the computation of a rather wide displacement range.   
 
Kim and Sitar [5] addressed the problem of seismic deformations using simulated rather than recorded 
acceleration-time histories.  Their study sheds light into the parameters influencing the observed 
variability in seismic displacement, postulating that the variability in the strong ground motion rather than 
that in the slope properties primarily controls the variability in the computed displacement.  The authors 
do not provide with a methodology for seismic slope displacement evaluation.   
 



Recent research at the Pacific Earthquake Engineering Research (PEER) Center developed a probabilistic 
framework for the computation of probabilities of exceedance of specified thresholds for variables that 
relate to the performance of engineering structures.  The PEER framework, which is described in Deirlein 
et al. [6], is based on deconvolving the performance of an engineering system in intermediate independent 
steps by introducing intermediate random variables.  The framework is generic to encompass all 
categories of engineering structures.  Its application to seismic slope stability with the goal to compute 
probabilities of exceeding specified displacement thresholds would read as Equation (1):   
 

∫ λ⋅=λ
IM

IMdIMDGD )()|()(                 (1) 

where: λ is the annual rate of exceedance, D the seismic displacement, IM an intensity measure that 
characterizes one or more important aspects of the strong ground motion, G a conditional probability of 
the seismic displacement exceeding D given the intensity measure, and |dλ(IM)| the absolute value of the 
derivative of the hazard curve for the intensity measure in question.   
 
Scope of This Study 
All previously mentioned approaches provide insight to the problem of seismic slope displacements when 
cast in a probabilistic framework.  However, there are a number of issues remaining to be addressed and 
improved upon.  Most of these methods are based on a rigid block assumption for the earth slope, which is 
not an “accurate” model for a deformable body oscillating during earthquake loading.  Two of the 
methods recognize the deformability of the earth slope ([4], [5]) but in a decoupled fashion, which has 
been shown to be overly conservative or unconservative depending on the slope properties (e.g. Rathje 
and Bray [7]).  Recent research (e.g. Rathje and Bray [7]) has shown that more sophisticated coupled 
models can be used to describe stick-slip sliding and deformable shaking response of an earth mass during 
an earthquake.  In addition, all previous methods are developed based on ground motion simulations or 
they make use of a limited ground motion database of less than 150 records.  Following the well recorded 
earthquakes of the last decade, the world database of earthquake data has significantly increased, 
providing an opportunity to better explore the effects of the strong ground motion on the probability of 
failure on an earth structure.  Finally, all existing approaches only address the case of nonzero 
displacements occurring due to seismic loading.  However, situations can arise where a combination of 
earthquake loading and soil properties will not induce any deformation of an earth slope.  There is 
consequently a need to also model this finite probability as a function of the independent random 
variables.  Considering these issues, this paper has a dual purpose: (1) to propose a predictive equation for 
the computation of seismically induced permanent displacements, and (2) to outline a methodology for 
implementing the proposed model in a computation of the seismic displacement hazard.  This 
methodology is developed along the lines of the probabilistic framework adopted by the PEER Center 
mentioned in the previous paragraph and it excludes cases where the slope materials lose significant 
strength such as lateral spreading due to liquefaction. 
 

PREDICTIVE MODEL FOR SEISMIC SLOPE DISPLACEMENTS 
 
Mathematical Formulation 
In an earthquake event, an earth slope may experience zero or finite permanent displacements depending 
on the characteristics of the strong ground motion and the slope’s mechanical and dynamic properties.  As 
outlined in Travasarou and Bray [8] and Travasarou [9], permanent displacements can be modeled as a 
mixed random variable, which has a certain probability mass at zero displacement and a probability 
density for finite displacement values.  It can be argued that displacements smaller than 0.1 cm are not of 
engineering significance and can for all practical purposes be considered as “negligible” or “zero”.  



Additionally, the regression of displacement as a function of ground motion intensity measure should not 
be dictated by data at negligible levels of seismic displacement.   
 
For the sake of clarity in the formulation of the relevant equations the values of seismic displacement that 
are smaller than 0.1 cm can be lumped to d0= 0.1 cm.  The probability density function of seismic 
displacement is then described by Equation (2) as: 
 

)(
~

)~1()(~)( 0 dfpddpdf DD −+−δ=                 (2) 

 
where: )(df D is the displacement probability density function; p~  is the probability mass at D = d0; 

)( 0dd −δ is the Dirac delta function, and )(
~

df D  is the displacement probability density function for D 

> d0.  Contrary to a continuous random variable, the mixed random variable can take on discrete outcomes 
with finite probabilities at certain points on the line as well as outcomes over one or more continuous 
intervals with specified probability densities.  Figure 1 illustrates the case of a mixed variable with finite 
probability mass at D = d0 and continuous probability density for D > d0.  Using this formulation, the 
probability of exceedance at small displacements can be smaller than 1, recognizing the possibility of a 
finite probability of non-failure (Figure 1b). 
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Figure 1: (a) Probability density function and (b) probability of exceedance for a mixed and a continuous 
random variable. 
 
Simulated Displacement Data 
The regression analysis for the development of the predictive model for seismic displacements has been 
performed on simulated displacement data.  The idealized slope model and the ground motion database 
used in the simulations have already been described by Travasarou and Bray [8] but are repeated here for 
the sake of clarity and completeness.   
 
Idealized Slope Model 
The idealized slope model used in the simulations is a 1-dimensional generalized single degree of freedom 
equivalent-linear coupled stick-slip model proposed by Rathje and Bray [10].  It represents the slope as a 
generalized single degree of freedom system with constant shear wave velocity along its depth and 
responding only at its fundamental mode during dynamic excitation.   The slope model is characterized by: 
(1) its strength as represented by its yield coefficient, ky, (2) its stiffness, as represented by its initial 
fundamental period, Ts, and (3) the shear modulus reduction and damping curves relating the reduction of 
the soil’s stiffness and increase of hysteretic material damping with increasing shear strain.  Compared to 
the rigid block model, this coupled model offers a more realistic representation of the dynamic response of 



an earth structure by accounting for the deformability of the soil mass and by considering the 
simultaneous occurrence of its dynamic response and periodic sliding episodes.  In addition, its validation 
against 1-D shaking table experiments provides confidence in its use [10].   
 
For the purpose of these simulations the soil was assigned a constant unit weight of 17.6 kN/m3, a 
constant hysteretic damping ratio of 10%, and the shear modulus reduction curves for a cohesive soil with 
a plasticity index of PI=30 as proposed by Vucetic and Dobry [11].  Preliminary sensitivity analysis 
suggests that these parameters do not have a significant effect on computed displacements.  Seismic 
displacement values were subsequently generated computing the response of the idealized slope with 
specified values of its fundamental period and yield coefficient to a series of earthquake excitations.  The 
values of the yield coefficient were fixed to 0.02, 0.05, 0.1, 0.2, and 0.3, and the values of the initial 
fundamental period were fixed to 0, 0.3, 0.5, 0.7, 1.0, and 2.0 seconds.  These are realistic values of the 
yield coefficient and the fundamental period for a wide range of earth slopes.   
 
Ground Motion Database 
The ground motion database used to generate the seismic displacement data comprises available records 
from shallow crustal earthquakes that occurred in active plate margins.  These records conform to the 
following criteria: (1) they correspond to earthquake magnitudes between 5.5 and 7.6, (2) they are 
recorded at rupture distances R ≤ 100 km, (3) they are recorded on sites B, C or D only, according to the 
SGS system (Rodriguez-Marek et al. [12]), and (4) frequencies in the range of 0.25-10 Hz have not been 
filtered out from the recordings.  The final set comprises 688 records from 41 earthquakes satisfying the 
above criteria (Travasarou [9]).  The distribution of the simulated displacement data against the 
independent variables is plotted in Figure 2 for each site class.  For the purpose of the regression, all data 
with displacements smaller or equal to 0.1 cm were later reclassified as “zero” displacement. 
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Figure 2:  Distribution of simulated displacement data with moment magnitude, rupture distance, yield 
coefficient, and initial fundamental period. 



 
Selection of Independent Variables 
The amount of seismic displacement during earthquake excitation is dependent on the characteristics of 
the strong ground motion and the properties of the slope.  In the majority of the simplified procedures for 
seismic slope displacement computation, researchers have used the peak ground acceleration as the 
primary indicator of the severity of the strong ground motion.  This has sometimes been supplemented by 
additional parameters characterizing the duration and frequency content of the ground motion.  For 
example, Yegian et al. [3] used the equivalent number of cycles and the predominant period of the motion, 
Makdisi and Seed [13] used the duration, and Bray et al [14] used the mean period and the significant 
duration.   
 
To compute the displacement hazard in a framework compatible to that outlined in Equation (1) it is 
desirable to use a single ground motion parameter, which satisfies the requirements for efficiency and 
sufficiency (Luco and Cornell [15]).  That is, it minimizes the variability in the correlation with seismic 
displacement, and it renders the relationship independent of magnitude and distance, respectively.  The 
spectral acceleration at a degraded period equal to 1.5 times the initial fundamental period of the slope 
(i.e. SA(1.5Ts)), was found to be the optimal parameter satisfying the efficiency criterion (Travasarou [9]), 
for a number of slopes with initial fundamental periods ranging from 0 – 2.0 seconds.  Hence, this 
degraded fundamental period can be considered a “generic” average degradation for slopes with Ts= 0 - 
2.0 s.  Although it does not satisfy sufficiency for all ranges of slope properties, it was found to be the 
most sufficient among the intensity measures examined. 
 
The yield coefficient and the fundamental period were selected to represent the strength and stiffness 
respectively of the earth slope in the predictive model.  The yield coefficient has traditionally been used in 
similar analysis to represent the onset of sliding.  In addition, recent research (Rathje and Bray [7]) has 
shown that seismic displacements depend on the stiffness of the slope and are larger for slopes closer to 
resonance conditions compared to very flexible or very stiff slopes.  This trend is taken into account by 
introducing the fundamental period in the predictive equation.  This parameter also provides information 
as to the “starting” point of the degradation.  The dependence of the probability of “zero” displacement on 
the three independent variables is shown in Figure 3.  The selection of the functional form was guided by 
the trends shown in this figure. 
 

0.01 0.1 1

Yield Coefficient

0.00

0.05

0.10

0.15

0.20

P
(D

=
"0

")

0 1 2 3

Fundamental Period (s)

0.00

0.05

0.10

0.15

0.20

P
(D

=
"0

")

0.001 0.01 0.1 1 10

SA(1.5Ts) (g)

0

0.2

0.4

0.6

0.8

1

P
(D

=
"0

")

(a) (b) (c)  
 

Figure 3. Dependence of the probability of “zero” displacement on the (a) yield coefficient, (b) initial 
fundamental period, and (c) spectral acceleration at 1.5 times the initial fundamental period. 
 



Functional Form 
Probability of “Zero” Displacement – Decision Equation 
Compatible with the concept of a mixed random variable, the predictive model for seismic displacements 
consists of two steps.  In the first step, the probability of occurrence of “zero” displacement (i.e. D ≤ 0.1 
cm) is computed as a function of the yield coefficient, ky, initial fundamental period, Ts, and spectral 
acceleration at 1.5Ts (i.e. SA(1.5Ts)).  In the second step, the distribution of seismic displacement is 
computed, given that “nonzero” displacement has occurred.  The estimation of the values of the model 
coefficient was performed using the principle of maximum likelihood.  A probit and a truncated regression 
model were used for the first and second steps respectively, as described in Green [16].  The proposed 
model for the probability of “zero” displacement is: 
 

( )( )))5.1(ln()ln()ln()ln(1)"0"( 654
2
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where D is the seismic displacement in cm, Φ is the standard normal cumulative distribution function, and 
c1= -1.02, c2= -4.11, c3= -0.19, c4= -0.823, c5= -2.82, and c6= 3.27 are the coefficients of the model as 
determined by the regression.  The range of the computed probability is between 0 and 1.  An example of 
the model predictions versus the simulated data is shown in Figure 4 for four cases of slopes with yield 
acceleration equal to 0.2 and four different values of the initial fundamental period. 
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Figure 4. Comparison of predicted probability of “zero” displacement (i.e. D ≤ 0.1 cm) versus the 
simulated displacement data for a slope with ky = 0.2. 
 
Nonzero Displacement – Regression Equation 
In the case where Equation (3) computes a probability of “zero” displacement (i.e. D ≤ 0.1 cm) smaller 
than 1, the amount of the nonzero displacement can be computed using Equation (4).  
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where: D is the seismic displacement in cm, c1= -1.64, c21= -3.57, c22= -0.478, c23= 0.825, c31= 3.75, c32= -
0.33, c41= 0.872, and c42= -0.082 are the coefficients determined by the regression and ε is a normally-
distributed random variable with zero mean and standard deviation σ = 0.78.  When the residuals (i.e. ddata 
- dpredicted) are plotted versus magnitude there is a magnitude dependence, because SA(1.5Ts) is not fully 
sufficient with respect to magnitude (or duration).  This dependence was addressed by incorporating a 
magnitude term in the predictive equation.  Because the values of the coefficients did not change 
significantly when the regression was performed, the equation corrected for magnitude remains the same 
with an added magnitude term, as shown in Equation (5). 
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All coefficients of Equation (5) are identical to those in Equation (4), except now the additional term      
c5= 0.30 and ε is a normally-distributed random variable with zero mean and standard deviation σ = 0.77.  
Equations (3), (4), and (5) have been developed for values of the yield coefficient between 0.02 and 0.3, 
fundamental period between 0 and 2.0 s, and SA(1.5Ts) between 0.002 and 2.7 g, and they should be used 
for cases within these ranges to provide reasonable results.  The residuals of Equation (5) are plotted in 
Figure 5 versus the predictive variables where it can be seen that there remains only a minor dependence 
on distance, which has not been taken into account in the current model. 
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Figure 5. Residuals (ddata – dpredicted) of Equation (5) plotted versus the magnitude, rupture distance, yield 
coefficient and initial fundamental period. 



 
MODEL VALIDATION 

 
The ability of the proposed model to reliably predict observed performance was examined through 
comparison with observed displacements measured at 16 earth dams and solid-waste landfills that 
underwent strong seismic shaking.  The observations from these case histories were used solely to validate 
the model and were not included in the dataset for the development of the predictive equation.  The suite 
of case histories used in the validation is shown in Table 1.  Details regarding the pertinent seismological 
characteristics of the corresponding earthquakes and best estimates of the yield coefficient and 
fundamental period and the strong ground motion can be found in Travasarou [9].  In all cases, the 
maximum observed displacement (Dmax) is the portion of the permanent displacement attributed to stick-
slip type movement and distributed deviatoric shear within the deformable mass, and ground movement 
due to volumetric compression was subtracted from the total observed permanent displacement when 
appropriate. 
 
The yield coefficient used in the predictive model for these validations was reduced by 10% compared to 
its best-estimated value.  This was decided to implicitly take into account two phenomena: (1) the 
existence of cycles during seismic shaking that are not large enough to initiate failure, but can still cause 
distributed deviatoric shear within the failure mass which translates to final permanent deformation 
(Makdisi and Seed [13]), and (2) the progressive development of the failure surface during earthquake 
excitation, which leads to a smearing of the strength, resulting in a mobilized average strength along the 
failure surface less than the peak strength of the soil.  The phenomenon of progressive failure was recently 
demonstrated by Chen [17] who conducted large scale (12x12 inch) direct shear tests and small scale (1-
inch diameter) vane shear tests on the same model clay mixture of kaolinite, bentonite and fly ash.  The 
results, confirm the concept of “strength smearing” which occurs in the large scale test compared to the 
small scale test and results in a smaller peak strength of the soil during failure. 
 
The comparison of the model predictions against the maximum observed horizontal permanent 
displacement is shown in Table 1.  For this comparison, only the best estimate of the yield coefficient, the 
fundamental period, and the spectral acceleration at 1.5 times the initial fundamental period as 
represented by their mean values for the first two and the median value for spectral acceleration are 
considered.  Hence, the computed displacement range is due to the variability in the seismic displacement 
given the value of the slope properties and the seismic load (i.e. σlnD =0.77 from Equation (5)).  In the 
same table the estimates of the proposed method are compared with the estimates of two of the prevalent 
state-of-practice methods for seismic displacement prediction, Makdisi and Seed [13], and Bray et al. [14].  
For the sake of consistency a yield coefficient reduced by 10% from the yield coefficient computed using 
the best estimate of the soil strength is used in all cases.  Details with respect to the implementation of the 
two simplified procedures are delineated in Travasarou [9].   
 
The sixth column in Table 1 tabulates the probability of exceeding the maximum observed displacement 
computed using the model proposed in this paper.  The current model offers satisfactory predictions for 
the first 12 of the 16 case histories.  The predicted probability of exceedance of the maximum observed 
displacements is on the order of 30% to 70%, suggesting that these case histories represent median model 
estimates.  The only notable exceptions are Pacheco Pass Landfill, for which the proposed model predicts 
a zero probability of exceeding the observed displacement, which is “zero”, and La Villita Dam for the S3 
event, where a very small displacement of 1 cm was observed and the probability of exceeding it is small.  
However, these predictions are in agreement with Makdisi and Seed [13] and Bray et al. [14] and 
accurately model reality.  For these 12 case histories, the estimated displacement ranges from the three 



methods are comparable, with Makdisi and Seed [13] predicting the smallest displacement values, which 
are also unconservative for some of these cases.   
 
For the remaining four cases, the proposed model predicts either significantly conservative (2 cases) or 
unconservative (2 cases) values of the seismic displacement.  Lexington Dam, and Lopez Canyon Landfill 
section C-A are the two case histories for which the estimated probability of exceeding the maximum 
observed displacement is large (i.e. above 80%), and hence the model is overly conservative.  For 
Lexington Dam, the current model predictions are in line with the Bray et al. estimates, whereas Makdisi 
and Seed is unconservative.  Although the predicted range of seismic displacement for Lopez Canyon 
Landfill section C-A is larger than the observed displacement, the displacements are sufficiently small so 
that this discrepancy would not have affected design.  Among the two case histories where the proposed 
model offers low seismic displacement estimates, Chiquita Canyon C is underpredicted by all methods.  
For this case, the liner interface was subjected to significant stain prior to the earthquake, which may have 
caused high residual stresses, which induced more displacement during the earthquake episode.  The case 
history of OII Landfill, is the only case for which the current method is both unconservative and in 
disagreement with the other two procedures.  The maximum observed displacement of 15 cm is 1.5 
standard deviations above the median of the predictive model (5 cm) indicating that even for this case the 
model may be unconservative but its predictions remain within reasonable range of reality.  Overall, the 
new method can capture observed performance slightly better compared to existing procedures without 
contradicting their results and hence, it can be used as a predictive tool in practice with confidence.  
 

Table 1. Comparison of the range of computed displacement using three different methods with the 
maximum observed displacement (Travasarou [9]). 

Structure EQ1 
Dmax 

(cm)2 
Proposed Method3 

P (D = “0”)     Est. Disp (cm)       P(D>Dmax) 

Makdisi & 
Seed  [13] 

D (cm) 

Bray et al. 
[14] 

D (cm) 
(1) (2) (3) (4) (5) (6) (7) (8) 

BuenaVista LF LP None 0.44 0.5 – 2.6 0.57 0 0 – 0.4 
Guadalupe LF LP None 0.71 0.2 – 1.0 0.29 0 0 
Pacheco Pass LF LP None 1.00 - 0.00 0 0 
Marina LF LP None 0.64 0.3 – 1.4 0.36 0 0 
Austrian Dam LP 48 0 23 – 109 0.52 0 – 11 14 – 167 
Lopez Canyon C-B LF NR None 0.56 0.3 – 1.5 0.45 0 0 – 0.2 
Chiquita Canyon D LF NR 30 0 5.6 – 26 0.12 0 – 12 1.5 – 35 
Sunshine Canyon LF NR 30 0 17 – 82 0.62 0 – 1 1 – 20 
La Villita Dam S3 1 0.74 0.2 – 1.0 0.04 0 0 
La Villita Dam S4 1.4 0.16 1.0 – 4.6 0.59 0 – 0.6 0 
La Villita Dam S5 4 0.05 2.4 – 11 0.60 0 – 1.3 0 
Chabot Dam SF Minor 0.60 0.6 – 2.6 0.41 0 - 16 0 

Lexington Dam LP 15 0 23 – 108 0.94 0 – 3 13 – 155 
Lopez Canyon C-A LF NR None 0.17 1.1 – 5.4 0.83 0 0 – 0.2 
Chiquita Canyon C LF NR 24 0.29 0.7 – 3.2 0.00 0 0 – 1.0 
OII Section HH LF NR 15 0 2.1 – 10 0.06 5 – 38 20 – 200 
1. LP: Loma Prieta (1989), NR: Northridge (1994), SF: San Francisco (1906), S3, S4 and S5 from Elgamal et al. [18] 

2. Dmax: maximum observed displacement 

3. P(D=”0”) from Equation (3).  The range in column (5) corresponds to the median-σ and median+σ predictions from Equation (5) 



 
PROBABILISTIC SEISMIC DISPLACEMENT EVALUATION 

 
Analytical Formulation 
The objective of the procedure is to compute the probability of the seismic displacement, D, of an earth 
slope with given properties in terms of stiffness and strength, exceeding a specified displacement 
threshold, d in t-years.  Conditioned on the slope properties, the probability of the maximum displacement 
exceeding a specified displacement threshold in a period of t-years is equal to: 
 

( )),|,(exp1),|( sysy tksarandomfordDPttkyearstindDP ε>⋅⋅ν−−=>           (6) 
 

where P(D>d | x,y) is the conditional probability of the seismic displacement exceeding a specified value, 
d, conditioned on the random variables x and y, ν is the mean rate of earthquakes, sa is the spectral 
acceleration at 1.5 times the initial period of the slope for a random earthquake, and ε is a normal random 
variable with zero mean and standard deviation σ = 0.77 representing the aleatory variability of the 
displacements for given ky, Ts and SA .  In all equations presented herein the symbol “sa” is used to 
represent SA(1.5Ts) for brevity. 
 
Using the total probability formula, for a slope with uncertain ky and Ts  
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Furthermore, using the total probability by conditioning displacements on SA(1.5Ts) 
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Assuming that ky and Ts are statistically independent from event to event, Equation (8) becomes: 
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The probability density function of the spectral acceleration, f(sa), is given in terms of the annual hazard, 
(H(sa)), as: 
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Substituting (10) into (9)  
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Recognizing that seismic displacements are modeled as a mixed random variable, the probability term 
inside the integral of Equation (11) can be computed as: 
 

),,|()],,|"0"(1[),,|( sysysy tksadDPtksaDPtksadDP >⋅=−=>          (12) 
 

In Equation (12), ),,|"0"( sy tksaDP = is computed directly from Equation (3) and  
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where Φ(•) is the standard normal cumulative distribution function, d̂  is the median displacement 
computed by Equation (5), and Dlnσ  is the standard deviation of the natural logarithm of the seismic 

displacement equal to Dlnσ = 0.77 (Equation (5)).   
 
Because the yield coefficient, ky, and fundamental period, Ts, always assume positive values a lognormal 
distribution is selected to model their variability.  The probability density of a lognormal distribution is: 
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where λ and ζ are the parameters of the distribution computed in terms of the mean, µ, and the standard 
deviation, σ, of the random variable as: 
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The mean and standard deviation for these variables is usually project specific and can be obtained by 
performing statistics on the data of the geotechnical investigation program or by expert opinion. 
 
Equation (11) involves computing the derivative of the hazard curve.  This can be achieved by fitting a 
curve to the hazard points and then computing the derivative analytically.  Such an analytical form 
compatible with the notion of extreme value distribution, which characterizes the hazard problem, has 
been proposed by Cordova et al. [19], as follows: 
 

ksaksaH −⋅= 0)( ;  )1(
0
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            (16) 

 

However, there can be cases where a different functional form better describes the hazard.  One such 
curve can be an exponential curve of the form shown in Equation (17).   
 

)exp()( sabasaH ⋅−⋅=  )exp(
)(

sabba
dsa

sadH ⋅−⋅⋅−=            (17) 

 

An exponential fit may be a good approximation of the hazard at large spectral acceleration values 
whereas it may underestimate it at low levels of spectral acceleration.  In any case the fitted curves should 
not be extrapolated beyond the range of the hazard data for use in the displacement calculations. 
 
Methodology 
Based on the analytical formulation described in the previous paragraph, the methodology for the 
computation of seismic displacement hazard can be outlined as follows: 
 
Seismic Hazard Evaluation 

1. Compute the seismic hazard in terms of the spectral acceleration at 1.5 the initial period of the 
slope (SA(1.5Ts)) using hazard software or using interpolated values from the USGS website 
(<http//geohazards.cr.usgs.gov>). 

2. Fit an analytical curve of the form shown in Equations (16) or (17) to the hazard points. 



3. Compute the derivative of the hazard curve analytically using Equation (16) or (17). 
 
Slope Characterization 

1. Estimate the mean value of the yield coefficient ky, and initial fundamental period Ts, and their 
respective coefficient of variation (c.o.v.).  The standard deviation, σ, is computed as the product 
of the mean, µ and the coefficient of variation, c.o.v. 

2. In the case where uncertainty in these variables is not considered, a delta function can be assumed 
for their probability density function, the integrals over ky and Ts in Equation (11) drop out, and 
the probabilities are computed at the mean values of ky and Ts.  

3. Compute the parameters ζ and λ for the two distributions using Equation (15). 
 
Seismic Displacement Hazard Evaluation 

1. The displacement hazard can be computed by Equation (11), approximating the three-fold integral 
numerically with a summation over ky and Ts and SA(1.5Ts) at discrete values of ky, Ts and 
SA(1.5Ts).   

2. The probability term inside the integral is computed from Equation (12) using Equations (3) and 
(5).  The magnitude, M, inserted in Equation (5) is the magnitude of the modal event controlling 
the hazard for the specified level of the spectral acceleration.  This may be different at each 
spectral acceleration level and is determined by disaggregating the hazard at each spectral 
acceleration level. 

 
Discussion 
Computing the seismic displacement hazard using Equation (11) involves two approximations.  The first 
is the one stated in Equation (10), which is acceptable for H(sa) ≤ ~ 0.05.  This approximation does not 
significantly affect the computed seismic displacement hazard, since hazard levels of H(sa) > 0.05 
correspond to small spectral acceleration values which are unlikely to cause large displacements.  
However, one could avoid this approximation by using the exact formula of Equation (10) when 
substituting into Equation (9).  The second is the assumption that ky and Ts are statistically independent 
from event to event, whereas in reality they are practically invariant.  This approximation may result in an 
error on the order of 5 –20% in the displacement hazard calculations, with the larger values corresponding 
to larger coefficients of variation of the slope’s properties (i.e. c.o.v.ky ~ 0.5 and c.o.v.Ts ~ 0.3) and the 
smaller numbers to lower coefficients of variations (i.e. c.o.v.ky ~ 0.2 and c.o.v.Ts ~ 0.1).  In any case, the 
exact formula for computing the displacement hazard is Equation (8), substituting f(sa) with the term in 
the right-hand side of the equal sign of Equation (10) and making use of Equation (12) to compute the 
conditional probability of displacement exceedance. 
 

CONCLUSIONS 
 
The gradual incorporation of probabilistic methods in engineering practice has been the incentive to 
revisit the problem of seismic slope stability and propose a methodology for seismic slope displacement 
estimation that can be used in a probabilistic framework.  The outcome is a relationship for seismic slope 
displacement prediction that is a function of the intensity of the earthquake load as represented by the 
spectral acceleration at a degraded period of the slope (1.5Ts), the strength of the slope as represented by 
the value of the yield coefficient, ky, and its stiffness as represented by the initial fundamental period, Ts.  
The predictive equation is derived from simulated displacement data, which are based on a simplified 
analytical model proposed by Rathje and Bray [10].  This is an equivalent-linear generalized single degree 
of freedom model, which couples the dynamic response of the earth slope with the stick-slip sliding 
episodes.  Due to the fact that the analytical model only captures the stick-slip type of deformation, the 
proposed method is only applicable to predict permanent displacements that occur as a combination of 



sliding along a failure surface and distributed deviatoric shear, and a separate analysis is recommended for 
the prediction of displacements resulting from volumetric straining.  Additionally, this method is not 
appropriate for cases where the earth materials loose significant strength, such as with liquefaction. 
 
There are several novelties introduced by the proposed method.  Firstly, it recognizes that seismic 
displacement is a mixed variable, which can acquire “zero” or finite values for given combinations of the 
earthquake load and slope properties.  Hence, separate equations are developed for the prediction of the 
probability of “zero” displacement and the displacement distribution once nonzero displacement occurs.  
Due to their engineering insignificance displacements smaller or equal to 0.1 cm have been defined as 
“zero” displacements for the purpose of this method.  Secondly, the method benefits from the large 
amount of recently available earthquake data and thus better characterizes the variability in the strong 
ground motion compared to existing methods.  Thirdly, the proposed equations are based on an analytical 
“idealized” slope model that accounts for the deformability of the earth slope rather than falsely 
considering the slope to respond dynamically as a rigid body.   
 
To validate the applicability of the proposed method as a tool to be used in design, the model estimates 
have been compared against observed displacements for 16 case histories of earth dams and municipal 
solid-waste landfills that experienced strong earthquake shaking.  The method has also been compared 
with those of Makdisi and Seed [13] and Bray et al [14].  The favorable comparison with the observed 
displacement data and the reasonable agreement with the predicted displacement ranges of these two 
established state-of-practice simplified methods validate the accuracy of the proposed model.  To account 
for the effects of progressive failure and distributed deviatoric shear, it is recommended that the proposed 
relationships be used with a yield coefficient reduced by 10% compared to the yield coefficient computed 
by a pseudostatic slope stability analysis using the best estimate of the shear strength of the soil.   
 
Recent research has pointed out the greater damage potential of near-fault forward directivity motions 
compared to “ordinary” motions.  Although such motions have been included in the development of the 
predictive equation, their enhanced damaging potential has not been separated in the proposed model.  In 
addition, the current model does not differentiate displacements in slopes located on soil sites from those 
located on rock sites.  The analysis has showed that the median model predictions are compatible with 
displacement on SGS C sites (i.e. weathered soft rock and shallow stiff soil with H < 60 m).  
Displacements on slopes located on “rock” (i.e. SGS site B, with Vs ≥ 760 m/s) are ~20% smaller on 
average than the median, and displacements on slopes located on soil sites (i.e. SGS site D, deep soil with 
H > 60 m) are ~ 5% larger than the median.  The current proposed method is straightforward in its 
implementation and can be used in a deterministic manner, much in the same way that strong ground 
motion is computed based on deterministic earthquake scenarios, or it can alternatively be implemented in 
a probabilistic framework for displacement hazard evaluation.  In the second approach, the variability in 
all key variables identified in this study is taken into account. 
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