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SUMMARY 
 
Earthquake induced energy for steel frames with weak beams is absorbed mainly in the plastic zone of 
beams which gradually expands from the beam ends toward the middle of the beams. The expansion of 
the plastic region causes an increase in the moment of the beam ends. Therefore, the beam end 
connections must have the strength necessary to expand the plastic zone of the beams. Through carrying 
out response analyses with the variation in the natural period, the vertical load on the beam and the kind of 
seismic wave and its intensity, a method for determining the strength required for the beam ends of the 
steel moment resisting frames with weak beams was proposed. 
 
 

INTRODUCTION 
 
The plastic energy of beams is absorbed by their plastic zone, which gradually expands toward the middle 
of the beams. The expansion of the plastic region causes an increase in the moment of the beam ends. 
Therefore, the beam end connections must have the strength necessary to expand the plastic zone of the 
beams.  
 
In this paper, the relationship between the amount of plastic energy dissipation and the strength of the 
joint connection of beam ends is clarified for the case in which the plastic energy dissipation ability of 
beams for steel frames with weak beams is limited by the fracture of the beam ends. Then, a design 
method for the beam end connections is studied. 
 
RELATIONSHIP BETWEEN BEAM END MAXIMUM MOMENT AND ABSORBED ENERGY 
 
Method 
The maximum moment of the beam end and the amount of plastic energy absorption are indicated using 
the maximum strength coefficient of α  and the cumulative plastic ductility ratio of η, both of which can 
be obtained from the following equations. 
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 α = Mmax

Mp

······················································································································· (1) 

 η =
Wp

2We

························································································································· (2) 

Where Mmax  : Maximum moment of a beam end 
 M p  : Full plastic moment of a beam 

 Wp  : Plastic strain energy that a beam absorbs 

 We  : Elastic strain energy that a beam absorb in the case of full plasticity caused by monotonic 
loading 

 
If the shape of the beam and the stress-strain relation of steel are provided, the relationship between α  
and η during monotonic loading can theoretically be obtained. Usually, the input energy by an earthquake 
is absorbed on both positive and negative sides due to cyclic loading. Therefore, when the value of η is 
the same in both cases of an earthquake response and monotonic loading, the value of α  in the former 
case is smaller than that in the value in the latter case. The relationship between α  and η  during 
earthquake responses differs due to the structural characteristics and input ground motion characteristics. 
 
In this study, through carrying out inelastic earthquake response analyses for a number of models all with 
different natural periods, pattern of the vertical load on the beams and input ground motions, a method for 
easily estimating the relationship between α  and η is derived from the analysis results 
 
Frame Model for Analyses 
In the inelastic earthquake responses, P-∆ effects cause the concentration of the plastic deformation in one 
direction. The degree of this deviation can be estimated using the method shown in Ref. [1]. There is a 
possibility that the plastic deformation for frames which are greatly influenced by the P-∆ effects occurs 
almost in one direction. In this case, the relationship between α  and η is the same as that in the case of 
monotonic loading. The frame for which the influence of the P-∆ effects can be ignored is subject to the 
analyses in this study.  
 
With regard to middle or low storied steel frames with weak beams for which the influence of the P-∆ 
effects can be ignored, the relationship between α  and η for the beams of each story of the frame is not 
greatly different from the relationship between α  and η  for the beams of the one degree of freedom 
system. Therefore, the relationship between α  and η is obtained using a one degree of freedom system 
model in this study. 
 
Fig. 1 shows the frame models used for the analyses. Since the vertical load on the beam has influences 
upon the relationship between α  and η, three kinds of frames (frame 1 ~ frame 3) with different load 
patterns are used. No vertical load acts on the beam of frame 1. All frames have weak beams. The beam 
and column sections of the frames are shown in the figure.  
 
The amount of the vertical load can be expressed using the following parameter of γ .  

 γ = M0

Mp

·························································································································· (3) 

Where M0 : Maximum moment caused by the vertical load for a simple beam 



 
Analyses are carried out in the case of the value of γ  being 0.5 and 0.8 for frames 2 and 3. In the case of 
γ =0.8 for frame 3, plastic hinges occur at one end and the middle part of the beam when the frame attains 
to yield mechanism. In other cases, plastic hinges occur at both ends of the beam. 
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Steel Characteristics 
The stress-strain relation of the steel used in this study is determined based on Ref. [2] as a standard 
model for steel of 490N/mm2 class. Fig.2 shows the model of the stress-strain relation. The nominal stress-
nominal strain relation for compression, that for tension and the true stress-true strain relation are shown 
using a solid line, broken line and dash-and-dotted line respectively. 
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 Fig.2 Stress-strain relation   Fig.3 Hysteresis model   

 
Response Analyses 
Inelastic response analyses are carried out using the member model shown in Ref. [3]. The member is 
divided into minute elements. The cyclic hysteresis characteristics of the spring of each minute element is 
evaluated by using the Takanashi-Ohi model [4] made with consideration to the Bauschinger's effect of 
steel (See Fig.3). The analytical conditions are summarized as follows: 
 

1) Frame model: Frame 1, Frame 2, Frame 3 (See Fig.1) 
2) Amount of vertical load: γ =0, 0.5, 0.8 
3) Natural period: 0.5, 1.0, 2.0, 3.0(sec) 
4) Damping factor: 0.02 
5) Input wave: JMA-Kobe 1995 (NS), El Centro 1940 (NS), Hachinohe 1968 (NS), Yokohama (artificial 

seismic wave) 
The time-history of ground motion and velocity response spectra (damping factor 2%) for each input 
wave are shown in Figs.4 and 5. 



6) The intensity of input ground motion 
The intensity of ground motion is determined so that the following conditions can be satisfied. 

   Qp Qemax
= 1/4, 1/8, 1/12 

  Where Qp : Full plastic story shear force without vertical loading  

    Qemax
: Response maximum shear force in the case of the model being elastic 
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Fig.4 Time history of input waves 
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Fig.5 Velocity response spectra (damping factor 2%) 
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Fig.6 α -η relation 



 
Analysis Results 
Fig.6 plots the relationship between α  and η when the intensity of the ground motion is changed.  
 
The following can be clarified from the analysis results.  
 
1) Effects of seismic wave and natural period 
 
Among the four kinds of input waves used for the analyses, the duration time of the main motion for JMA-
Kobe is short and that for Yokohama is longer. It is thought that with the increase in the repeating number 
for plasticity the value of α  becomes smaller for η with the same value. In the case of η being the same, 
the value of α  in the case of Yokohama being input is smaller than that in the case of Kobe being input as 
a whole. This tendency is conspicuous when the period is 0.5 and 1.0sec. 
 
The results obtained in the case of El Centro being input tend to be similar to those in the case of 
Hachinohe. There is a tendency in which under the same frame condition, the longer the period, the larger 
the value of α  for η  with the same value. It is thought that this is also caused by the effects of the 
repeating number of plastic increments. When the natural vibration period is 3sec, almost no difference 
caused by the seismic wave can be seen. 
 
2) Effects of vertical load on the beam 
 
Compared with the response results in the case of same natural period, the value of α  for η with the same 
value for frames 2 and 3 is larger than the value of α  for frame 1. The value of α  in the case of γ =0.8 is 
larger than in the case of γ =0.5. This means, the amount of the vertical load on the beam exerts influences 
upon the relationship between α  and η. The greater the vertical load, the larger the value of α  for η 
with the same value.  
 
Estimation Equation 
With regard to the relationship between α  and η  which is the result of the response, the following 
equation was obtained as a simple relation which nearly corresponds to the upper limit on the conservative 
side. 

 η = 250 ⋅ α −1( )2 ⋅ q ········································································································ (4) 

q is a coefficient indicating the influence of the vertical load on the beam and can be given by the 
following equation. 

 q =
2Mp

Q1 l
 

Where Q1: End shear force of the beam when the beam attains to yield mechanism (one value larger than 
the other), l: Beam-length 
 
The relationship between q and γ  is shown in Table 1. 
 
The dotted line in Fig.6 shows equation (4). It is clear that equation (4) is an appropriate estimation 
equation for the upper limit of the response. 
 



Fig.7 compares the relationship between α  and η obtained from the shaking table test results [5] with 
equation (4). Equation (4) is an approximate expression corresponding well to the test results. 
 
Equation (4) is formulated based on the analytical results obtained using the stress-strain relation of 
standard 490N/mm2 class steel. Due to the fact that as for the 400N/mm2 class steel and 490N/mm2 class 
steel, there is no great difference in the strain at the beginning of strain hardening and in the strain 
hardening stiffness, the difference between these two kinds of steel has little effect upon the inelastic 
behavior of the beam with non-dimensional form. Therefore, equation (4) can also be applied to beams 
with 400N/mm2 class steel. 
 

 
INVESTIGATION INTO FACTORS EXERTING EFFECTS ON ENERGY ABSORPTION 

ABILITY 
 
The maximum resisting moment of the beam ends can be obtained from the following equation, where the 
mechanical properties of steel for the flange part and the web part are assumed to be equal to each other. 

 Mmax = Zpf ⋅ β ⋅σ u + γw ⋅ Zpw ⋅σ u ·················································································· (5) 

Where  Zpf : Plastic section modulus referring the flange part   

 Zpw : Plastic section modulus referring the web part 

 σ u : Tensile strength 
 
β  is the ratio of the mean normal stress to the tensile strength for the flange when the joint connection of 
beam ends attains to the maximum bending strength. According to previous studies, the value for the ratio 
in cases where the maximum bending strength is determined by the fracture of the flange is usually 
between 1 and 1.2. The mean value for β  is about 1.1. 
 
γw is the ratio of the web moment ( Mw) to Zpw ⋅σ u in the case of the joint connection of beam ends 

reaching the maximum bending strength. This ratio is called the reduction factor of the web. Mw  can be 
evaluated using Ref. [6].  
 
Based on equation (5), the maximum strength coefficient of α  can be given by the following equation. 

  α = Mmax

M p

=
Zpf ⋅ β ⋅σ u + γw ⋅ Zpw ⋅σ u

M p

·········································································· (6) 

Table 1  γ -q relation 

Frame 2 0 ≤ γ ≤1 q = 1

γ +1
 

Frame 3 
 

0 ≤ γ ≤ 2

3
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3
≤ γ ≤ 4

3
 

q = 2

3γ + 2
 

q = 2

2γ + 8
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Fig.7 Comparison between shaking table test results 

with Equation (4) 



Where Zpf = Af ⋅ h  

  Zpw = 1
4

Aw ⋅ h = 1
4

s ⋅ A ⋅ h  

  Mp = Zpf + Zpw( )⋅σ y = 1
4

Af ⋅σ u ⋅YR ⋅ 4 + s( ) 

 YR = σ y σ u : Yield  ratio 

  s = Aw Af  

  Af : Area of the flange  

  Aw : Area of the web 
  h : Distance between each center of the flange 
 
The following equation can be obtained by substituting the above equations for equation (6).  

  α = 4 ⋅ β + s ⋅ γw

4 + s
⋅ 1
YR

····································································································· (7) 

From this, it is made clear that α  is dominated by the following four parameters. 
  s, γw, YR , β  
Since the relationship between α  and η  can be indicated using equation (4), the value of η  can be 
determined for the given value of α . 
 
The effects of s, γw, YR  and β  on α  and η are investigated below. 
 
Attention must be paid to the yield ratio. The evaluation of YR  based on regulation value of σ y  and σ u  

(YR(1) in Table 2) is regarded as an under valuation (on the unsafe side). The evaluation of YR  using the 
upper limit value of 0.8 according to the regulation for structural steel is an overvaluation (on the 
conservative side). In this study, YR(2) obtained by multiplying YR(1) by the correction factor shown in 
Table 2 based on the explanation in Ref. [6] is considered to be the standard design value for the yield 
ratio. 
 

Table 2  Correction of yield ratio 

Steel 
grade 

Yield 
strength 

(kgf/mm2) 

Tensile 
strength 

(kgf/mm2) 
YR(1) 

Correction 
factor 

YR(2) 

SN400 23.5 40.2 0.585 1.25 0.73 

SN490 32.3 49.0 0.66 1.15 0.76 

 
Fig.8 shows the relationship between α  and s, γw , YR , β  and the relationship between η and s, γw , 
YR , β . It is clear that s, γw, YR  and β  have great effects upon α  and η. 
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Fig.8 Relationship between α , η and β , s, γw, YR  

 
 

DESIGN OF BEAM END CONNECTIONS 
 
Relationship between η of the Beam and η of the Story 
The relationship between η of the beam and η of the story for a frame with weak beams can be obtained 
from the following equation. 

  η f = 1
1+ k

ηb ·················································································································· (8) 

  k = b K cK   

Where η f : η of the frame, ηb : η of the beam 

 b K : Rigidity of the beam, cK : Rigidity of the column. 
 
η in Fig.8 shows ηb . η f  can be evaluated using ηb  and equation (8). 

 



Design Method for the Beam End Connections based on Plastic Energy Absorption Ability 
Once the value of η f  required for the frame is provided in a seismic design, ηb  is determined using 

equation (8). α , which can be obtained by substituting this ηb  for η  in equation (4), is the required 
ultimate strength. This required ultimate strength of α  is set as αn . At the same time, α , which can be 
obtained from equation (7) based on the details of the joint connection, is set as α r. A value in accordance 
with an actual condition is substituted for YR  in equation (7). (For example, YR (2) in Table 2.) The 
design criteria for beam end connections can be expressed as follows. 

  α r ≥ αn ··························································································································· (9) 

When the assumed joint connection details do not satisfy equation (9), either (1) or (2) mentioned below is 
applied.  
(1) The details of the connections should be changed to increase α r. 
(2) Required η f  should be lowered by increasing the yield strength of the frame to reduce αn . 

 
CONCLUSION 

 
A simple estimation equation with regard to the relationship between the strength of the beam end 
connection and the amount of plastic energy absorption was proposed. Furthermore, a design method for 
the beam end connection of a frame with weak beams, in which the energy dissipation amount can be 
limited by the strength of the beam end connection, was studied.   
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