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SUMMARY 
 
The objective of this paper is to describe the modelling of earthquake response spectra for strike slip 
earthquakes in the near and far field and assess the statistical significance of its fitting to strong motion 
data. The present data set consists of strong motion records from two magnitude 6½ events that occurred 
in the South-Iceland seismic zone in June 2000. This provides us with a data set consisting of roughly 47 
records obtained in the two earthquakes, with epicentral distances between 5 and 150 km and hypocentral 
depth less than 10 km. 

 
The attenuation model of the sdof response spectrum is derived in a closed form based on the Brune 
spectra for the near- and the far-field, modelling the high frequency tail in both cases by an exponential 
function. The closed form solution is found to be advantageous in studies on structural reliability and risk. 
 
The main results are that the derived models fits the data fairly well providing residuals comparable to the 
residuals of models obtained by the widely used regression analysis. Furthermore, the response spectra 
attenuate with increasing distance more rapidly than R-1 where R is the distance to causative fault. The 
model based on the Brune theory is found to be adequate from an engineering point of view for many 
applications. It is also considerably more straightforward to apply than models based on the Haskel-
Savage theory, although they may give a better fit to the response data, especially in the high frequency 
range of the response spectrum. 
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INTRODUCTION 
 
The earthquake response spectrum is a fundamental quantity in earthquake engineering and in aseismic 
design of structure and it is one of the key tools applied in design codes (see [1] for the general overview 
and [10] to explore the example used in this study). It was originally introduced for seismic applications 
by Biot [2] and Housner [3]. Although the response spectrum is defined for single degree-of-freedom 
systems, it is used in practise for multi-degree-of-freedom systems applying an appropriate superposition 
principle. The first practical superposition method was proposed by Biot [4] as early as 1943. Since then 
number of researchers [5, 6, 7, 8] have refined the response spectrum superposition process to improve the 
agreement with the true response of real structural systems.  
 
Strictly speaking the response spectrum superposition methods are only applicable to linear elastic 
structures. However, it has been extended to non-linear structures by suitably modifying the input 
response spectra for different non-linear effects, for instance by introducing the ductility factor as an 
additional parameter to describe the system behaviour [9]. Such methods are commonly applied in 
codified design procedures where the dynamic action, especially for regular structures, is transformed into 
“statically equivalent loads”. In the design provisions of Eurocode 8 [10], a multi-modal dynamical 
analysis is required for all but simple regular structures, and in addition full dynamical approach based on 
time series analysis is an integral and recommended part of the provisions. In this context, a simple 
method, suitable for engineering applications, that relates time series and linear elastic response spectra 
could be a helpful tool. The method should preferably include the inherent randomness and scatter 
encountered in ground motion data. 
 
The objective of this paper is to develop an analytical simplified model that directly relates response 
spectral ordinates to the ground motion and source parameters. Hence, in the following the response 
spectrum is expressed formally as: 
 

( )variables,variables,variables,variables npropagatiowavesitesourcestructuralSS =  
 
Here, the primary structural variables are the undamped natural frequency and the critical damping ratio; 
the source variables include seismic moment, characteristic source dimensions and depth, as well as focal 
mechanism; site variables include source distance as well as local topography and geology; the wave 
propagation variables represent the mechanical properties along the path including spectral decay 
characteristics. 
 
To simplify the presentation only shallow strike slip earthquakes are included. Near-source effects are 
accounted for but site effects are ignored, assuming rock or firm soil conditions. To enhance the 
applicability of the presented models a closed form formulas for the near- and the far-field are presented 
and compared to data. 
 
The present study is based on the so-called Brune model. It was derived for seismic shear waves by 
considering the effective stress needed to accelerate the sides of a circular causative fault on which a 
stress pulse is applied instantaneously [11, 12]. This model is commonly used to obtain fault dimensions 
from spectra of shear waves for small to moderate sized earthquakes [13]. The model describes both near- 
and far-field displacement-time functions as well as spectral shapes and includes the effect of fractional 
stress drop. The Brune model has been applied successfully to analyse Icelandic earthquake and strong-
motion data [14, 15]. 



REVIEW OF BASIC PRINCIPLES 
 
The earthquake response spectrum is defined as the maximum response of an array of single-degree-of-
freedom (sdof) damped systems subjected to the same base excitation and expressed as a function of 
undamped natural frequency, critical damping ratio of the system as well as other parameters required to 
describe the system. The earthquake response (displacement) spectrum of a linear elastic sdof system can 
hence be defined formally as (see for instance [16]): 
 

( ) ( )( )pathsitesourcetxpathsitesourceS oTtoD ,,,,max,,, ζω=ζω ∈      (1) 

 
where x(⋅) denotes the response of the system and t is the time, furthermore oω refers to the undamped 

natural frequency of the system and ζ is the critical damping ratio, finally T refers to the duration of 
excitation. For linear elastic sdof system the response can be expressed as follows (see, for instance, [1] 
for further details): 
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∞
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Here, h(⋅) is the impulse response function of the system and α(⋅) is a (uni-directional) ground 
acceleration. It is assumed that the systems considered are lightly damped. Hence, the spectral relations 
connecting the pseudo-acceleration and pseudo-velocity to the displacement spectrum are applicable. 

Then we can write [1]: ( ) ( ) ( )ζωω=ζωω=ζω ,,, 2
oDooVooA SSS . Here SA and SV are, respectively, the 

pseudo-acceleration and pseudo-velocity spectra, which approximate the real acceleration and velocity 
spectra fairly well for the lightly damped cases. 
 
As a first step towards a closed form solution of Eq.(1) we apply Parseval’s theorem to obtain the root 
mean square response: 
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Here X(⋅) is the Fourier transform of x(⋅) expressed as a function of the circular frequency, denoted by ω, 
and T is the duration of strong shaking. The Fourier spectrum of the response is readily obtained by taking 
the Fourier transform of Eq.(1), which gives: ( ) ( ) ( )ωω=ω AHX . Here H(⋅) is the frequency response 

function, ( ) ( )[ ] 122 2
−

ωζω+ω−ω=ω oo iH , and A(⋅) is the Fourier spectrum of the earthquake excitation. 
Substituting this expression into Eq.(3) gives: 
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The integration gives the following approximate expression for the rms response, which holds for lightly 
damped systems:  
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where U(⋅) is the Heavyside step function equal to 1 if pω≥ω and zero elsewhere, ωp is a parameter 

selected to minimise the total integration error. The solution of the integral under the square root sign is 
given in the following, respectively, for the near-field and the far-field. 
 
The peak response can be obtained applying the random vibration theory as outlined in [16]. Hence, 
introducing the peak factor, p, the response spectrum for a linear elastic sdof system can be expressed as 
follows: 
 

( ) ( )( ) ( )txptxS rmsTtoD ⋅==ζω ∈max,         (6) 
 
It should be noted that the peak factor will generally be a function of the duration and effective frequency 
and bandwidth of the system, in other words, it depends on the effective number of peaks within the time 
window considered. Furthermore, the peak factor depends on the probability of exceedance referred to the 
time window under consideration. However, in the following a median value is used for the peak factor, 
which is close to the most probable value, corresponding to positive zero crossings: 
 

( )2ln 2.8 2op T f≅ π            (7) 

 
where fo is the natural frequency of the system. A thorough treatment of the peak factor is given in [16].  
 

STRONG-MOTION RESPONSE MODELLING 
 
Far-field approximation 
The acceleration spectrum in the far-field, based on the modified Brune source spectrum, can be 
expressed as follows, accounting for the free-surface effects and partitioning of the wave energy 
into two horizontal components, as well as modifying the high frequency part by exponential 
term [15,17]: 
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Here, CP is the partitioning factor, Rθφ denotes the radiation pattern, Mo is the seismic moment, β 
is the shear wave velocity, ρ is the material density of the crust, ωc is the corner frequency and κ 
is the so-called spectral decay. The following expression is suggested for the geometrical 
spreading function [15]: 
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where 1 < n ≤ 2 and D is a distance defined as: 
 

22 hdD +=            (10) 
 



Here, d is the epicentral distance and h is a depth parameter. The parameters D1, D2 and D3 are 
used to set the limits for the different sectors of the spreading function. The first sector can be 
thought of as a crude approximation for the near-field. Hence, the quantity D1 can be 
approximated by h; D2 quantifies the size of the sector representing the intermediate field, which 
is related to the magnitude of the earthquake (as represented by the seismic moment), source 
dimensions and focal depth and the thickness of the seismogenic zone; while D3 can be thought 
of as the distance where cylindrical waves begin to dominate the wave field. This modification 
of the spreading function is of value especially in the case where the distance to the fault is not 
known. On the other hand if a reliable measure of the shortest distance to fault trace is known 
this modification of the spreading function can be omitted. 
 
The corner frequency is given as [11]: 
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where r is the radius of the source.  
 
The spectral decay parameter is related to the quality factor Q through the following equation: 
 

Q

R

β
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The quality factor, Q, is in this context assumed to represent the average scattering and anelastic 
attenuation over the whole path. Studies of Icelandic strong-motion data indicate that the spectral decay, 
κ, can be taken as constant [15, 17], at least for moderate epicentral distances, where the seismic wave 
field is dominated by shear waves and the Brune model is assumed to hold as an engineering 
approximation. Hence, the quality factor Q varies approximately linearly with increasing distance from the 
source. This seems consistent with the fact that sites at great distance from the source are receiving shear 
waves that have penetrated through lower crustal layers with less attenuation than the upper layers. 
 
Substitution of above equation, Eq.(8), into Eq.(5) leads to the following expression after the integration 
has been carried out: 
 

( ) ( ) 2

2

1 1
1

4
o

rms F F o
o

x t I A
T

 πω
≈ + ω − π ζω  

       (13) 

 
where 
 

22 /3 2 / 3
2 / 31 7

16
P

F o

C R
I M

R T
θφ ∆σ Ψ =     π βρ κ   

       (14) 

 
Here ∆σ is stress drop (see below) and Ψ denotes a dispersion function given as: 
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Here, ci(·) and si(·) represent the cosine and sine integrals, and: 
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where cω  is the corner frequency. The sine and cosine integrals applied in Eq.(14) are given, respectively, 
as follows: 
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where γ is the Euler constant (γ ≈ 0.5772). 
 
In the above-mentioned studies of Icelandic earthquakes, it is assumed that the effective stress equals the 
stress drop, i.e. σ = ∆σ, where ∆σ denotes the stress drop. For a double couple source it can be shown that 
the stress drop is related to the seismic moment, Mo, through (see, for instance, [13]): 
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Here, r is the radius of the fault plane, representing a characteristic dimension of the source. 
 
Near-field approximation 
The model described in the previous section is not valid in the near-field and can, therefore, not be 
expected to describe the response accurately close to the fault. To obtain an approximation which is valid 
for shear waves in the near-fault area the Brune near-field model [11] can be used. Hence, the near-field 
acceleration spectrum is approximated as follows, after modifying the high frequency part with an 
exponential term and accounting for the free surface and partitioning of the energy into two horizontal 
components: 
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Here, κo is the spectral decay of the near-field spectra and τ is the rise time. Otherwise the same notation is 
used as above. 
 
Substitution of above equation, Eq.(19), into Eq.(5) leads to the following expression after the integration 
has been carried out: 
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Here, the duration is denoted by To and Ψo is a dispersion function given as: 
 

( ) ( ) ( ) ( )( )oooooo sici λλ−λλλ−=Ψ cossin1        (22) 
 
where τκ=λ /oo .  
 
Intermediate-field approximation 
The model described in the two previous sections gives a response approximation that is valid in the far- 
and near-field respectively. For shallow earthquakes an intermediate-field approximation is required to 
represent data from stations that do not fall within the far- or near-field conditions. The geometric 
spreading function given in Eq.(9) can be used for this purpose, by introducing a functional form 
proportional to R-2 which is supported by the analytical solution of the wave equation [21]. Hence the 
exponent in Eq.(9) is taken as n = 2.  
 
The transition between these three fields, i.e. the near-, intermediate- and the far-field, depends on number 
of parameters. The most important ones being the magnitude of the earthquake as reflected by the seismic 
moment, the focal depth, the thickness of the seismogenic zone and the size of the causative fault. For 
shallow strike-slip earthquakes, with a causative fault rupturing to the surface it seems that the size of the 
near-field stretches out on the surface from the surface trace of the fault equal to about the half of the focal 
depth, while the transition between the intermediate- and far-field appears to be at a distance about tree 
times the fault radius. This is, for instance, seen to be a characteristic feature of moderate sized Icelandic 
earthquakes (see the strong motion modelling data in the following section). This type of grading is of 
course dependent on the seismic area and must be considered for each case.  
 

NUMERICAL RESULTS 
 
The models described above have been applied to data obtained in the two magnitude 6½ earthquakes that 
occurred in South Iceland in June 2000 [18]. Please note that the applied data can be obtained from the 
ISESD Website [19]. The data used for the strong motion modelling is listed in Table 1. 
 
Figure 1 exemplifies how the presented models fit the data. The models given in Figure 1 are indicated by 
blue and black solid lines, respectively, for the far-field (see Eq.(13)) and the near-field (see Eq.(20)). The 
data is represented by circles and triangles. The circles indicate earthquake-induced response on 17 June 
2000, 15:41, while the triangles refer to the 21 June 2000 event. The colour code, red and green, refers to 
two horizontal components. In both cases Figure 1(a) and (b) show a reasonable fit of the model to the 
data. The fit to the data is, however, somewhat better for the flexible system than for the stiff one. This 
seems especially to be the case in the near-field (see Figure 1(a)). The reason for the relatively high 
response values in the near-field for the stiff system may be due to site effects. Furthermore, the response 
recorded at few of the far-field stations on June 17 is augmented due to seismic waves originating from 
more than one event originating almost simultaneously at epicentres about 60 km apart [20]. In spite of 
these shortcomings the over-all behaviour of the models seems reasonable and the estimated results 
appear to be of the right order of magnitude.  
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(a) Results for undamped natural period of 1/3 s. 
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(b) Results for undamped natural period of 1 s. 

 
Figure 1: Pseudo-acceleration response. Solid lines represent the far- and intermediate field (blue) 
and the near-field (black) approximation. The circles represent data from 17 June 2000 (15:41), 
while the triangles refer to the 21 June 2000 event. The colour code, red and green, refers to the two 
horizontal components. 



Table 1: The data used for the response spectrum given in Figure 1. 

Parameter Symbol Quantity Units 

moment magnitude Mw 6.5  
shear wave velocity β 3.5 km/s 
density of rock ρ 2.8 g/cm3 
average radiation pattern Rθφ, 0.63  
partitioning parameter CP 1/√2  
spectral decay in the far-field κ 0.04 s 
characteristic dimension of the intermediate-field R2 25 km 
exponent describing attenuation in the intermediate-field n 2  
depth parameter h 9 km 
spectral decay in the near-field κo 0.02 s 
characteristic fault dimension (radius)  r 8.0 km 
duration used in near-field model  To 1.5⋅r/β s 
 
Only critical damping ratio equal to 5% is included to facilitate comparison to [10]. Two different 
undamped natural frequencies are included, i.e.: 3.33 Hz exemplifying stiff structures and 1 Hz indicating 
the behaviour of flexible structural systems. 

 
DISCUSSION 

 
An analytical simplified model, that directly relates linear response spectral ordinates to the ground 
motion time series and source parameters, has been developed. The model is found to give a reasonable fit 
to recorded data from shallow strike slip earthquakes in South Iceland. Furthermore, it is believed to be a 
useful tool for reliability and risk studies. 
 
The dynamic magnification of the structural system can be obtained by dividing the pseudo-acceleration 
response by the corresponding peak ground acceleration, i.e. ( ) PGAS oA /,ζω , which then ought to be 
comparable with the codified value commonly given as 2.5 for structures with short natural period. It is, 
however, noted that the presented response model in the near-field and for short distances from source, for 
instance less than 10 km, produces lower magnification values, for commonly observed natural periods, 
than obtained using the values recommended by Eurocode 8 for type 1 elastic response spectrum [10]. On 
the other hand the difference in seismic action as represented by SA might not necessarily be very big 
unless the same PGA values are used. Therefore, a correction of the codified magnification factor could be 
necessary if the peak ground acceleration is augmented to account for near field effects. 
 
The model needs further development and refinement. A step in that direction is to enlarge the database 
by including additional data selected from moderate sized shallow strike slip earthquakes world wide, 
which are found to be statistically comparable to the Icelandic data. This work is underway and will be 
presented elsewhere. 
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