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ABSTRACT 
 
Cast-in-drilled-hole (CIDH) bridge shaft/columns provide an economical option for highway construction. 
The inelastic deformations for a CIDH shaft/column occur below grade; therefore, the overall lateral load 
behavior of the system is influenced by the interaction between the shaft and the surrounding soil, 
commonly modeled using p-y curves. The principal focus of this paper is on the development and 
verification of a robust single-degree-of-freedom model for composite p-y behavior. The model 
incorporates frictional forces (drag) and formation of gaps at the pile-soil interface, as well as inelastic 
soil behavior. The robustness of the model is assessed with parametric studies on various shaft/column 
systems and soil types.  
 

INTRODUCTION 
 
Cast-in-drilled-hole (CIDH) shafts (piles) typically consist of a continuous column with a prismatic cross-
section. CIDH systems are common in urban regions because they do not require significant space and 
eliminate the complexities of a column-to-footing connection. Dynamic response of a shaft/column and 
the surrounding soil involves a variety of complex phenomena, including the relative motion between the 
shaft and the free-field soil, radiation damping, and frictional contact and gap formation at the shaft-soil 
interface. Although finite element models may be used to model the shaft and soil (e.g., Brown and Shie 
[1], Trochanis et al. [2], Brown et al. [3], Yang and Jeremic [4]), the degree of uncertainty associated 
with the specification of model parameters and the difficulties encountered in mesh generation and 
interpretation of results, often makes the application of FEM impractical. As a result, nonlinear pile-soil 
interaction is typically analyzed using a Winkler (beam on inelastic foundation) model, commonly 
referred as the “p-y method,” where p denotes the soil reaction per unit length and y denotes the lateral 
shaft deflection. 
 
The basic p-y method does not explicitly take into account specific aspects of the pile-soil interaction 
problem mentioned previously, such as gapping and drag or elastic re-loading and unloading cycles. 
However, it is possible to incorporate these by creating a composite single degree-of-freedom (SDOF) 
element, where sub-elements are used to model a particular process of the interaction, and assembled into 
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a macro SDOF element. The assembled interaction element can then be attached to structural (beam, plate, 
shell) finite element models of the shaft to study the soil-structure interaction problem. Examples of this 
approach include interaction elements by Nogami et al. [5], who combined springs and dashpots to 
incorporate damping into the basic elastoplastic soil response represented by a p-y model. A more 
sophisticated model by Boulanger et al. [6] is capable of simulating the drag forces as well as the 
formation of gaps. Although these models are promising, details of the implementation and the ability of 
the model to converge for a broad range of soil and shaft properties have not been addressed. In this study, 
we focus precisely on these issues. The proposed interaction element is composed of a robust gap element, 
which provides a smooth transition between contact and no-contact phases, and elastoplastic elements, 
which incorporate classical rate-independent plasticity models and return-mapping algorithms. The 
modular and intuitive structure of the proposed element enables consideration of soil-types possessing 
different plastic envelope curves without altering the other aspects of the interaction. We demonstrate the 
robustness of the element through parametric studies involving a variety of soil response parameters and 
shaft boundary conditions. For brevity, the presented results are limited to response of elastic piles 
subjected to cyclic, quasi-static loadings; however, extensions incorporating inertial effects, inelastic pile 
response and radiation damping are straightforward. These are deferred to a subsequent study.  
 

A SINGLE D.O.F. ELEMENT FOR PILE-SOIL INTERACTION 
 
The proposed interaction element is an assembly of three distinct elements: (1) a drag element to account 
for friction between the shaft and the soil, (2) a gap element to account for gapping between the shaft and 
the soil, and (3) an elastoplastic p-y element to account for the hysteretic response of soil. Specific 
attributes of the model, as well as its unique features and implementation details are discussed in the 
following paragraphs. The governing equations for the drag and the p-y elements are based on classical 
rate-independent elastoplasticity [7] and the backbone curve of the p-y element is chosen to be identical to 
the p-y curve for (soft) clay in API [8] for the present discussion. The gap element is formulated as a 
projection operator that provides a smooth transition between contact and no-contact phases of 
deformation. It should also be noted that the three individual components (i.e., gap, drag and p-y elements) 
are assembled in a different (and arguably, more physically realistic) configuration from the earlier 
studies (e.g., Nogami et al. [5], Boulanger et al. [6]).  
 
The basic elements 
A schematic of the interaction element is shown in Figure 6 (right). Each component of the element is 
assembled in parallel to model the reaction of surrounding soil. The following sections provide the 
formulation of the individual components and their combined behavior.  
 
The drag element 
The drag element models the frictional forces along the pile–soil interface. Displayed in Figure 1, it 
possesses a single parameter (σd) which corresponds to the drag stress the element would generate when it 
is in motion. The governing equations for this element are identical to those of one-dimensional classical, 
rate-independent, perfect plasticity, that is:  
 ( ) signdσ σ ε= &            (1) 

where ε&  is the strain rate and the “signum” function is given by, 
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The yield function df , the consistency and persistency conditions (see, for example, Simo and Hughes 

[7]) for the drag element, are given by: 



 0,      0,     and  0       0.d d d d df f f fσ σ ε ε= − ≤ = = ⇒ =&& &         (3) 

As such, the drag element cannot function as a load-controlled agent but is a slave element, which 
generates the appropriate drag forces as it deforms. For numerical robustness, a very stiff spring can be 
attached to the drag element in series to allow for a smoother transition between “stick” and “slip” 
behaviors. If properly chosen, such a spring generates only negligible amounts of elastic strain. An 
alternative approach is to replace the signum function of Eq. 2 by a smooth switch function. The former 
approach is adopted in this study as either approach yields very similar results without a significant 
change in robustness. 
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Figure 1. The drag element. 
 

The gap element 
Under cyclic loading, the pile and the soil frequently comes in and out of contact, and as a result of the 
inelastic deformations, gaps accrue at their interface. A robust element that enables the modeling of such 
contact and gapping behavior is essential for achieving convergence in numerical analyses. Strict 
enforcement of contact/no-contact conditions usually result into oscillatory behavior in iterative solution 
methods such as Newton-Raphson, and thus, a smoother transition between closed-gap and open-gap 
phases is generally needed to avoid convergence problems. Furthermore, due to uneven contact surfaces, 
a transition region may actually capture the real behavior more closely. Gap opening and closing can be 
achieved via a projection operator, p(σ), which maps a perfectly transmitted stress (σ) into a stress that is 
transmitted through a gap. Therefore, through a perfect gap element, no stress is transmitted, i.e., p(σ) = 0, 
when the gap is open; and stress is perfectly transmitted, i.e., p(σ) = σ, when the gap is closed. The gap 
element proposed here possesses a single parameter (σL), which corresponds, conceptually, to the limit 
stress the element would generate in a deviation from the exact behavior. Thus, the projected stress, p(σ), 
is given by, 
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log ,     =

2 2 2 L

e
p

βσ
σ σ β

β σ
+

= −
 
 
 

        (4) 

It follows that the rate of change of the projected stress with respect to strain, i.e., the element tangent 
stiffness, is:  
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Furthermore, we have the limiting cases, 
 ( ) ( )       lim limL Lp p
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→+∞ →−∞
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Figure 2 displays how the gap element would project the stress of a generic device (the X-box in Figure 2) 
connected to it. The sign of the parameter σL determines the gap direction. Without any modification to 
Eq. 4, σL > 0 or σL < 0 produces a limit-tension or a limit-compression response in the element, 
respectively. It should also be noted that the projection operator, via Eq.6, provides the tangent stiffness 
of any macro element (e.g., that in Figure 2) possessing a serially connected gap element in a simple 
fashion. 
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Figure 2. The gap element. 

 
The elastoplastic p-y element for clay 
The elastoplastic p-y element consists of a linear spring and a frictional device connected in series as 
displayed in Figure 3. As a consequence, the total strain admits the additive decomposition, thus: 

 ( )          =e p e pE Eσ ε ε ε ε ε ε= = − ⇐ +         (7) 

where E is the stiffness of the linear spring and ε, εe, εp are the total, elastic and plastic strains, 
respectively. The yield function for the frictional device is given by, 
 ( ) ( )sign 0py L Yf σ σ σ α= − − + ≤         (8) 

where σY ≥  0 is the yield stress, α>0 is the hardening variable, and σL is an external parameter which 
provides the sign (or the direction) for plastic behavior. For example, if σL < 0 as in Figure 3, then the 
frictional device only yields under tensile stresses and is perfectly rigid under compression. For σL > 0, the 
opposite would be true. Thus, the elastoplastic p-y element never yields on the gap-side if it is connected 
to a gap element in series (which then provides the parameter σL). The evolution equations for the stress 
and the hardening variable (σ, α) are given by, 
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Consequently, the elastoplastic (continuum) material tangent stiffness is, 
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where E and C(ε) are the elastic, and the plastic tangent stiffness. The envelope curves obtained from field 
tests (or from analytical models) may be used for the governing equation of elastoplastic p-y element. 
Here, we use the p-y curve for soft clay by Matlock [9] as the backbone curve of the loading-unloading 
cycles, which is stated in a generic form as follows: 

 ( ) sign
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σ η ε
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This gives the plastic tangent stiffness as, 

 ( )  1n

n

n
C

ηε ε
β

−≡       (12) 

where the material parameters η, β, n are readily available for soft clay for various depths (Matlock [9], 
API [8]). The yield stress σY for the elastic portion is not an independent parameter and is related to the 
rest of the material parameters via the relation as, 

( )( )  1 Y

nnE Eσ η β−=              (13) 

Note that, the p-y curve of Matlock [9] implicitly contains the drag forces. Thus, Eq. 11 needs to be 
modified by an offset with the value defined in Eq. 1, in order to include the drag force without modifying 
the p-y envelope curve. Governing equations for the p-y elastoplastic element can be discretized and 
integrated via the standard “return-mapping” algorithm (Simo and Hughes [7]). 
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Figure 3. The p-y element. 

 
Assembled intermediate elements 
The basic elements are assembled to produce intermediate (sub-) elements. For example, normal and 
reversed gap elements are assembled with elastoplastic p-y elements to produce no-tension or no-
compression elements that represent the soil response on either side of the pile. 
 
 The no-compression element 
The no-compression element is obtained by assembling a reversed gap element and the elastoplastic p-y 
element as illustrated in Figure 4 (right). In the no-compression element, the p-y element behaves 
elastoplastically under tensile forces but behaves perfectly rigid under compressive forces.  
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Figure 4. The no-compression element. 



The reverse gap element connected in series to the elastoplastic p-y element coerces the compression 
forces below the limit stress, σL, which may be chosen to have a negligible value. The behavior of the no-
compression element is displayed in Figure 4 (left). 

 
The no-tension element 
The no-tension element is assembled in similar manner to no-compression element. The only difference 
between these two is the direction of the resisting forces. The behavior of the no-tension element is 
displayed in Figure 5. 
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Figure 5. The no-tension element. 
 
The combined interaction elements 
The interaction element is assembled with the no-compression subelement, no-tension subelement, and 
the drag element in parallel. These combined interaction elements are connected to the embedded 
structure such as a pile, a drilled shaft, or columns on one side, as shown in Figure 7. The no-tension 
subelement models the compressive resistance of the leading face of the embedded structure while the no-
compression element models the tensile resistance in rear face of the structure. Once the loading is 
reversed under cyclic loading, the no-tension element first elastically unloads and then disengages as the 
gap opens. Subsequently, the no-compression element starts being loaded. 
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Figure 6. The interaction element (left: without drag, middle: with drag). 
 

The drag element provides the frictional force that acts at the surface of the embedded structure. The 
rationale for connecting the drag element in parallel is due to the assumption that the frictional forces are 



always in effect while the pile is in motion. This is an additional resistance over the no-tension or no-
compression element. The behavior of the combined interaction element is displayed in Figure 6 with and 
without consideration of drag resistance.  

 
THE NUMERICAL EXAMPLES 

 
Two numerical examples with extensions from an earlier study (Taciroglu et al. [10]) are provided to 
verify the robust interaction model subjected to the cyclic loads. In the first example, a 12m long 
pile/shaft is embedded in clay and a cyclic lateral load is applied at the top node as illustrated in Figure 7. 
The pile/shaft head is fixed for rotation to mimic the behavior of a pile with a cap. The second example is 
the so-called flagpole shaft that is commonly used in highway bridge construction. The flagpole shaft is 
15m long with 12m embedded into the clay as illustrated in Figure 7(a). Unlike the fix-headed pile, the 
flagpole shaft is a conditionally stable structure, i.e., the pile becomes unstable as the lateral loading 
reaches the limit point of lateral resistance of the surrounding soil. This happens when the stiffness of all 
of the interaction elements becomes zero concurrently, due to large inelastic soil deformation and/or 
gapping along the entire length of the shaft. Here we have used an additional spring element at the top of 
the pile/shaft as displayed in Figure 7(b) to avoid unstable structural response. A displacement-controlled 
analysis method (such as the arc-length continuation method) can be used to obtain the post-peak 
response without difficulty. The “net applied load” is obtained by evaluating the difference between the 
external force and the reaction force in the spring element at the top of the pile.  
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 Figure 7. The example models. 

 
The diameter of shafts in the provided examples is chosen as 1.5m. The pole is divided into 5 beam 
elements and these are connected to 4 interaction elements with 3.0m spacing. The bottom node is hinged 
(z = -12m) and the top node (z = 0m for fix-headed and z = 3m for flagpole) is subjected to a cyclic 
external load P(t) given by the expression, 



 ( ) ( ) ( ) [ ]0 1 2 sin sin ,        0,P t P t t tω ω π= ∈  (14) 

where ω1 = 0.25, and ω2 = 4.0. The parameter P0 is chosen to be proportional to the total resistance of the 

interaction element as ( )2
0

1

noi

u i
i

P C P
=

= ∑  where C is the load ratio over the resistance, Pu is the ultimate 

resistance of each interaction element, and noi denotes the number of interaction elements. 
 
The soil is assumed to be clay; therefore, the p-y envelope is Matlock’s curve for clay [9], which is 
parameterized with the undrained shear strength c, unit weight of the soil γ, pile/shaft diameter D, 
empirical constant J, and depth.  
 
The pile/shaft is assumed to be elastic with a Young’s modulus of E = 20,000 MPa (2,900 ksi). To verify 
the robustness of the interaction element, a wide range of clay properties are considered. In the examples 
provided here, only the undrained shear strength c is varied while other soil parameters such as unit 
weight, and the empirical constant J are held constant. The unit soil weight γ is assumed to be 19 kN/m3 
(0.07 lb/in3), the empirical factor J is taken as 0.5. The shear strength c is categorized into three groups: 
soft clay (c < 25 kPa), medium clay (c = 25~50 kPa), and stiff clay (c = 50~100 kPa) as described in 
Coduto [11]. The values of shear strength for each category are chosen as 10 kPa, 50 kPa, and 100 kPa, 
respectively. These properties are summarized in Table 1.  
 

Table 1. Material parameters for the interaction elements 

( )kPac   ( )z m  ( )kN m up † ( ) kNη  ( ) mβ ‡ ( ) kN mE  ( )kN dσ  

-1.5 95.25 142.9 .0375 3,810 57.2 

-4.5 195.75 293.6 .0375 7,830 117.4 

-7.5 296.25 444.4 .0375 11,850 177.8 
10 

-10.5 396.75 595.1 .0375 15,870 238.0 

-1.5 305.25 457.9 .0375 12,210 183.2 

-4.5 465.75 698.6 .0375 18,630 279.4 

-7.5 626.25 939.4 .0375 25,050 375.8 
50 

-10.5 786.75 1,180.1 .0375 31,470 472.0 

-1.5 567.75 851.6 .0375 22,710 340.6 

-4.5 803.25 1,204.9 .0375 32,130 482.0 

-7.5 1,038.75 1,558.1 .0375 41,550 623.2 
100 

-10.5 1,274.25 1,911.4 .0375 50,970 764.6 

† 3u

z Jz
p cD

c D

γ
= + + 
 
 

         ‡  = 2.5c cy Dβ ε=  

 

The material constants in Table 1 are obtained through Matlock’s [9] description of the p-y curves. 
Consequently, the equivalencies η = 0.5×pu×Ltr, β = yc hold between Matlock’s parameters and the 
parameters used here. The parameter n in Eq. 11 through Eq. 13 is taken as 1/3. The strain εc, which 
occurs at one-half of the maximum stress on the laboratory stress-strain curve, is assumed to be 0.01 for 
the evaluation yc. The elastic loading/unloading modulus is chosen to be E = η/β, similar to the initial 



modulus used by Matlock [9]. The tributary length for each of the pile-soil interaction elements is Ltr = 
3.0m. The parameter µ is the ratio of the drag force to the ultimate resistance, thus drag stress becomes σd 
= 2.0 η µ. As the drag force is implicitly included in the original p-y curves in Matlock’s [9] and API [8], 
it is inserted here such that the elastoplastic p-y envelope of the API formulation remains unaltered.  
 
The numerical analysis of two examples with all of the chosen parameters yielded convergent results 
uniformly, verifying the numerically robustness of the soil-structure interaction element and its 
amenability for routine structural analysis. In all the computations performed, convergence was achieved 
without the use of any safeguarding algorithm such as line searches or sub-incrementation techniques. 
Table 2 displays the summarized response quantities for the two examples. 
 

Table 2. Various response quantities for the numerical examples 

Pile/shaft 
Type 

Response Quantities 
Soft 

(c =10 kPa) 
Medium 

(c = 50 kPa) 
Stiff 

(c = 100 kPa) 

Max. Peak Load (kN) † 5,161 10,968 18,280 

Max. Top Disp. (mm)  417.7 825.9 1,342.5 Fix-headed 

Max. Gap (mm) ‡ 569.6 1,203.6 2,015.7 

Max. Peak Load (kN) † 948 2,089 3,527 

Max. Top Disp. (mm) 372.6 466.8 572.6 Flag-pole 

Max. Gap (mm) ‡ 296.2 348.3 408.5 
† Applied net load (e.g., applied load minus the reaction force in spring for the flagpole). The load 

ratio C is chosen as 5.0 for the fix-headed shaft and 1.0 for the flagpole, respectively. 
‡ Measured at the depth of the 1st interaction element, i.e. at z = -1.5m. 
 

A variety of response quantities for the fix-headed pile/shaft are provided in Figures 8 through 10. Those 
for the flagpole are provided in Figures 11 through 13. For the sample responses provided in plots in 
Figures 8 through 13, the shear strength of soil was c=50 kPa and the drag ratio was 20%. Figures 8 and 
11 display the top displacement of the pile/shaft and the lateral deflection versus lateral pressure, i.e. p-y 
curves at the depth of each interaction element. Figures 9 and 12 display the magnitude of the gaps at the 
same depths. Figures 10 and 13 display the moment and displacement distributions along the shaft at each 
peak load. As expected, the magnitude of inelastic deformations and the gaps reduce as the depth 
increases. 
 

CONCLUSIONS 
 
The objective of this study has been the development of a reliable and computationally efficient model for 
the embedded piles/shafts under lateral loads. The newly formulated interaction element is numerically 
robust and amenable to routine structural analysis as convergence in nonlinear equilibrium iterations is 
achieved for a wide range of soil properties. In subsequent studies, this interaction element will be used in 
simulating the response observed in field tests (Wallace et al. [12]) that were performed on a CIDH 
bridge shaft (as well as in additional tests that are planed). In contrast to the API experiments, these field 
tests were performed on large diameter, reinforced concrete shafts under cyclic loading with sustained 
damage to the shafts at various locations. All these additional attributes have been observed to have a 
significant impact on the observed behavior. In subsequent studies, we will undertake the development of 
novel p-y curves suitable for large diameter shafts through comparisons of response observed in field tests, 
and those predicted in simulations using the interaction elements developed in this study.  
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Figure 8. Response quantities for the fix-headed pile: (a) applied load, (b) displacement at the 
shaft top, (c, d, e, f) p-y curve at depths, -1.5m, -4.5m, -7.5m, -10.5m, respectively. 
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Figure 9.  Response quantities for the fix-headed pile: (a, b, c, d) gap opening at 

depths, -1.5m, -4.5m, -7.5m, -10.5m, respectively. 
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Figure 10.  Response quantities for the fix-headed pile: (a) moments, and (b) 

displacements along the pile at peak loads. 
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Figure 11.  Response quantities for the flagpole: (a) applied (net) load, (b) displacement at the 
shaft top, (c, d, e, f) p-y curve at depths, -1.5m, -4.5m, -7.5m, -10.5m, respectively. 
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Figure 12.  Response quantities for the flagpole: (a, b, c, d) gap opening at depths, -

1.5m, -4.5m, -7.5m, -10.5m, respectively. 
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Figure 13.  Response quantities for the flagpole: (a) moments, and (b) displacements 

along the pile at peak loads. 
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