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SUMMARY 
 
This paper focuses on understanding and assessing the effect of hysteretic behavior (i.e., bilinear, peak-
oriented and pinching) in the evaluation of peak deformation demands and their distribution over the 
height for regular frame structures over a wide range of stories (from 3 to 18) and fundamental periods 
(from 0.3 s. to 3.6 s.). The ground motions used are those with frequency content characteristic of 
ordinary ground motions (no near-fault or soft soil effects). The hysteretic models utilized in this study do 
not exhibit monotonic or cyclic deterioration; thus, the discussion is most relevant for performance levels 
related to damage and loss of functionality. Results suggest that the degree of stiffness degradation is 
important for the seismic performance evaluation of regular frames because systems with a large degree 
of stiffness degradation tend to exhibit larger peak drift demands and a less uniform distribution of peak 
drifts over the height. The type of hysteretic behavior also has a significant influence on the dynamic 
response of long, flexible frames that are prone to global dynamic instability due to P-Delta effects. This 
study also demonstrates the need to develop reliable procedures to estimate the properties of “equivalent” 
or “reference” SDOF systems when they are used to evaluate the response of complex MDOF structures 
with various hysteretic responses at the component level.  
 

INTRODUCTION 
 
Performance evaluation of moment resisting frame structures subject to severe ground shaking requires 
analytical models able to reasonably represent the cyclic nonlinear behavior of structural components.  
Numerous studies have dealt with the seismic demand evaluation of systems with various types of 
hysteretic behavior, e.g., systems with rather stable hysteresis loops and systems that include stiffness 
degradation typical of reinforced-concrete and timber components. However, most efforts have focused 
on stiffness degrading SDOF systems, e.g., Rahmana and Krawinkler [1], Oh et. al [2], Song and 
Pincheira [3], Chung and Loh [4], Miranda and Garcia [5], Farrow and Kurama [6], and there is no 
consensus regarding the effect of the type of hysteretic response at the component level on the behavior of 
MDOF systems with and without stiffness degradation.   
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The objective of this paper is to provide comprehensive information on the influence of hysteretic 
behavior on the nonlinear response of regular frame structures over a wide range of stories (from 3 to 18) 
and fundamental periods (from 0.3 sec. to 3.6 sec.). The response parameters used to quantify behavior 
are the maximum roof drift and the maximum story drift over the height. The ground motions utilized are 
those with frequency content characteristics of ordinary ground motions. The hysteretic models do not 
exhibit monotonic or cyclic deterioration; thus, results are most relevant for performance levels related to 
damage and loss of functionality. A comparison between the nonlinear response of MDOF and SDOF 
systems with various hysteretic models is presented as well as an evaluation of the effect of the hysteretic 
model in the probabilistic seismic performance assessment of regular frames. 
 

FRAME MODELS USED IN THIS STUDY 
 
General Description 
This study is based on nonlinear time history analyses using twelve two-dimensional, single-bay generic 
frame models. The generic frame models do not exhibit mass, strength or stiffness irregularities. Results 
presented by Medina and Krawinkler [7] demonstrate that generic frame models, such as the ones used in 
this study, are adequate to represent the global dynamic response of more complex regular multi-bay 
frames. Frame models with number of stories, N, equal to 3, 6, 9, 12, 15, and 18, and a fundamental 
period, T1, of 0.1N and 0.2N are utilized. These T1 values are deemed to represent lower and upper bound 
estimates of the fundamental period of regular moment-resisting frames with total heights consistent with 
the ones used in this research. Frames with a period of 0.1N are denoted as “stiff” frames, whereas frames 
with a period of 0.2N are denoted as “flexible” frames.  
 
Properties of Generic Frame Models 
The main characteristics of the generic frame models are as follows: 

1. The same mass is used at all floor levels  
2. Relative stiffnesses are tuned so that the first mode is a straight line (K1 stiffness pattern) 
3. Beam-hinge (BH) models are utilized, i.e., plastification only occurs at the end of the beams and 

the bottom of the first story columns [Fig. 1(a)] 
4. Frames are designed so that simultaneous yielding at all plastic hinge locations is attained under a 

parabolic (NEHRP, k = 2) load pattern (S1 strength pattern) 
5. The base shear strength is defined by the parameter γ = Vy/W (Vy = base shear yield strength, W = 

seismically effective weight) 
6. Concentrated plasticity is modeled by utilizing nonlinear rotational springs 
7. Gravity load moments and the effects of axial column forces on bending strength are not 

considered 
8. Global (structure) P-Delta is included (member P-delta is ignored). The gravity load causing P-

Delta effects is taken as the dead load plus a live load equal to 40% of the dead load. The 
reference value for the P-Delta effect is the elastic first story stability coefficient, θ  = P1δs1/V1h1, 
where P1 is the first story P-Delta gravity load, δs1 and V1 are the first story drift and shear force, 
respectively, and h1 is the first story height   

9. For the nonlinear time history analyses, 5% Rayleigh damping is assigned to the first mode and 
the mode at which the cumulative mass participation exceeds 95%. 

 
HYSTERETIC BEHAVIOR AT PLASTIC HINGE LOCATIONS 

 
Nonlinear behavior at the component level is modeled with a concentrated plasticity approach in which 
non-deteriorating rotational springs are used to represent the member cyclic response. In this study, three 
different hysteretic models are used: peak-oriented, bilinear and pinching (Fig. 1). The pinching model 
corresponds to a severely pinched case in which the coefficients κf and κd in Fig. 1(d) are equal to 0.25. 



The effect of these parameters on the pinching response of the system is illustrated in Fig. 2, which 
depicts the response of two pinching models with κf and κd equal to 0.25 and 0.50, respectively. All three 
models have 3% strain hardening (the post-yield stiffness is 3% of the initial stiffness) and the unloading 
stiffness is equal to the initial stiffness, i.e., unloading stiffness degradation is not considered.  
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Fig. 1: (a) Beam-hinge mechanism, (b) peak-oriented hysteretic behavior,(c) bilinear hysteretic 

behavior, (d) pinching hysteretic behavior 
 
 

RESPONSE OF PINCHING MODEL
Strain hardening = 0.03, κf = κd = 0.25
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RESPONSE OF PINCHING MODEL
Strain hardening = 0.03, κf = κd = 0.50
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Fig. 2: Various degrees of pinching in the moment-rotation relationship, κf = κd = (a) 0.25, (b) 0.50 
 



ORDINARY GROUND MOTIONS 
 

A set of 40 recorded ordinary ground motions from Californian earthquakes with moment magnitude 
between 6.5 and 6.9 and closest distance to the fault rupture between 13 km and 40 km is utilized. In this 
context, ordinary ground motions refer to those that do not exhibit (a) near-fault, forward-directivity, (b) 
soft-soil effects, and (c) long-duration effects. This set of ground motions is referred to as “LMSR-N” in 
subsequent plots. All ground motions were recorded on NEHRP site class D (FEMA [9]). A random 
horizontal component of ground motion is selected at each station to avoid bias in the selection process. A 
comprehensive description of the properties of these ground motion records is presented in Ref. [7]. 
 

ANALYSIS METHOD 
 
Engineering Demand Parameters 
The Engineering Demand Parameters (EDPs) of primary interest are roof and story drifts. As used in this 
context, the term drift refers to the ratio of relative displacement to the corresponding height, i.e., it 
defines the tangent of the drift angle, which is equal to the drift angle for the range of interest. The roof 
drift is considered a measure of the global response (and global damage) of the system while the story 
drift is assumed to be relevant for structural and non-structural damage assessment as well as global 
collapse assessment due to dynamic instability caused by P-Delta effects. 
 
Nonlinear Time History Analyses 
The basic analysis approach consists of performing nonlinear time history analysis for a given structure 
and ground motion, using the DRAIN-2DX computer program [10]. The hysteretic models under 
consideration were incorporated into DRAIN-2DX as new subroutines to carry out this study. For the 
dynamic analyses, the ground motion intensity is related to the structure strength by the relative intensity 
parameter, [Sa(T1)/g]/γ, where Sa(T1) is the 5% damped spectral acceleration at the fundamental period of 
the structure, and γ is the base shear coefficient, i.e., γ = Vy/W. The relative intensity represents the 
ductility dependent response modification factor (often denoted as Rµ), which is equivalent to the 
conventional R-factor if no overstrength is present. 
 
The use of [Sa(T1)/g]/γ  as a relative intensity measure permits an assessment of the dynamic response of 
frames based on two different approaches: (a) decreasing the base shear strength of the structure while 
keeping the ground motion intensity constant (the R-factor perspective) and (b) increasing the intensity of 
the ground motion while keeping the base shear strength constant [the Incremental Dynamic Analysis 
(IDA) perspective, Vamvatsikos and Cornell [11], see Fig. 13(a)].  
 
Graphical Representation of Results 
Two basic graphical communication schemes for a given structure and ground motion are presented.  
First, graphs of the type shown in Fig. 3 are used. In this case, the relative intensity is plotted on the 
vertical axis, and the maximum drift is plotted on the horizontal axis. The maximum drift is normalized 
by the spectral displacement at the first mode period of the system, Sd(T1), divided by structure height H. 
Second, normalized story drift profile curves are also generated for discrete values of relative intensity 
(Fig. 4). In this representation, for each structure and ground motion, the number of stories is plotted on 
the vertical axis and the normalized drift is plotted on the horizontal axis. Data of the type presented in 
Fig. 4 permits an evaluation of the distribution of story drift over the height of the frames.  
 



NORMALIZED MAXIMUM STORY DRIFT
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N
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Fig. 3: Normalized max. story drift over the           Fig. 4: Normalized max. story drift profiles 

    height N = 9, T1 = 0.9 s., peak-oriented model             N = 9, T1 = 0.9 s., peak-oriented model 
 
If absolute values are of interest, given the ground motion hazard Sa(T1)/g, an appropriate base shear 
strength can be selected and both the vertical and horizontal axis of Fig. 3 can be de-normalized to obtain 
their corresponding IDAs. This de-normalization process is illustrated with the data from Fig. 7(b) and 
Fig. 13, which present the response of a 9-story frame with T1 = 1.8 seconds in the normalized and IDA 
domain, respectively. Similarly, given the ground motion hazard and the base shear strength of the 
structure, graphs of the type presented in Fig. 4 can be used to generate absolute values of the distribution 
of story drifts over the height. 
 
The second line of the title of the graphs shown in Figs. 3 and 4 corresponds to parameters that have been 
identified in previous sections. These parameters describe the basic properties of the structural model. 
 
Statistical Representation of Results 
The statistical evaluation of results is performed using “counted” statistics, in which values are sorted 
from smallest to largest, and percentiles are counted rather than computed based on a specific distribution. 
Counted statistics is needed to evaluate those cases in which data points are lost due to dynamic 
instability caused by P-Delta effects (i.e., global collapse cases). For consistency, counted statistics is 
utilized at all relative intensity levels even if the full set of 40 data points is available.  Thus, for a set of 
40 data points, the median is the average between the 20th and 21st sorted values, the 16th percentile is the 
average between the 6th and 7th sorted values, and the 84th percentile is the average between the 33rd and 
34th sorted values. The standard deviation of the natural logarithm of the data (from here on referred to as 
dispersion) is estimated by using the counted 16th percentile value, x16. If the counted median is denoted 
as x50, the dispersion of the data is given by the natural logarithm of the ratio (x50 / x16). 

 
EFFECT OF HYSTERETIC BEHAVIOR ON THE NONLINEAR RESPONSE OF FRAMES 

 
The sensitivity of maximum roof and story drifts to the type of hysteretic model is evaluated for the 
family of twelve generic frame models exposed to the LMSR-N set of ordinary ground motions. In all 
figures, unless otherwise specified, a pinching model with κd = κf = 0.25 is utilized and is denoted as 
“pinching” (the parameters κd and κf, which control the amount of stiffness degradation in the pinching 
model, are defined in Fig. 1(d)). A value of 0.25 is chosen because it is representative of severe stiffness 
degradation in the response.  
 
Maximum Roof and Story Drift Demands 
In general, frames with severe pinching (κd = κf = 0.25) exhibit normalized maximum roof drift demands 
larger than those observed for the case of frames with peak-oriented and bilinear hysteretic behavior, as 



illustrated in Figs. 5 to 7 (which present representative results for the N = 3, 9, and 18 generic frames). 
Severe stiffness degradation causes the system to become “softer”, and hence, experience larger 
deformation demands. It is important to note that models with peak-oriented hysteretic behavior, which 
also experience stiffness degradation, exhibit maximum roof drift demands comparable to (and in some 
cases smaller than) those observed for the bilinear model (except for the frame with T1 = 0.3 s. in which 
demands for the peak-oriented model are consistently larger than those experienced by the bilinear 
model). These observations indicate that for medium to long-period structures, limited stiffness 
degradation (i.e., peak oriented case) can in some cases “improve” the seismic behavior of regular frame 
structures. However, when the amount of stiffness degradation is large, it becomes detrimental to the 
behavior of the system. This pattern is also valid for roof and maximum story drift demands, as the ratio 
of the two EDPs is essentially independent of the hysteretic model as shown in Fig. 8. This figure depicts 
the variation of the median ratio of the maximum story drift over the height to the maximum roof drift 
with the fundamental period of frames, for a relative intensity [Sa(T1)/g]/γ equal to 4.0.   
 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=3, T1=0.3, ξ=0.05, Diff. hysteretic models, θ=0.004, BH, K1, S1, LMSR-N
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Fig. 5: Median normalized max. roof drift, N = 3, various hysteretic models, T1 = (a) 0.3 s. and (b) 
0.6 s. 

 

NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=9, T1=0.9, ξ=0.05, Diff. hysteretic models, θ=0.015, BH, K1, S1, LMSR-N
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Fig. 6: Median normalized max. roof drift, N = 9, various hysteretic models, T1 = (a) 0.9 s. and (b) 
1.8 s. 

 



NORMALIZED MAXIMUM ROOF DRIFT-MEDIANS
N=18, T1=1.8, ξ=0.05, Diff. hysteretic models, θ=0.033, BH, K1, S1, LMSR-N
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Fig. 7: Median normalized max. roof drift, N = 18, various hysteretic models, T1 = (a) 1.8 s. and (b) 
3.6 s. 
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MAX. STORY DRIFT/MAX. ROOF DRIFT-T1=0.2N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, BH, K1, S1, LMSR-N
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Fig. 8: Median ratio of max. story drift  to max. roof drift , [Sa(T1)/g]/γ = 4.0 (a) stiff  and (b) flexible 
frames 

 
P-Delta Effects 
The pattern of behavior discussed in the previous paragraph is reversed in the case of flexible structures 
that are sensitive to P-Delta effects. P-Delta sensitive cases are defined as those in which the effect of 
gravity loads on the deformed configuration of the system causes large second order effects and, sooner 
or later, dynamic instability in the response. For these cases [e.g., N = 18, T1 = 3.6 s., Fig. 7(b)], it is the 
bilinear model that causes the largest EDPs because the response of the system with bilinear hysteretic 
behavior spends more time on the envelope of the moment-rotation relationship of its components, which 
leads to “ratcheting” of the response and potential dynamic instability problems if P-Delta effects produce 
a negative post-yield tangent stiffness.  
 
Figure 9(a) presents a global pushover curve for the 18-story, T1 = 3.6 s. frame, which represents the 
relationship between a global deformation parameter (e.g., roof displacement) and a global strength 
parameter (e.g., base shear) obtained by subjecting the structure to a predetermined lateral load pattern (in 
this case a parabolic, NEHRP k = 2 pattern). This pushover curve is common to all hysteretic models 
since the envelope of the moment-rotation relationship at plastic hinge locations is the same regardless of 
the type of hysteretic model. Note that for this case the post-yielding tangent stiffness has a large negative 
value. It is this negative post-yielding tangent stiffness that causes “ratcheting” of the dynamic response 
(increase in drift in subsequent cycles) and ultimately collapse in a sidesway mode. Such collapse is 



observed only if the post-yielding tangent stiffness is negative, and it occurs at a relative intensity that 
decreases rapidly with an increase in the negative slope of the post-yielding tangent stiffness.  
 

GLOBAL PUSHOVER CURVES
T1 = 3.6 s., N = 18
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(a)                                                                                (b) 

Fig. 9: Pushover analysis, N = 18, T1 = 3.6 s., (a) global pushover curve, (b) deflected shapes at 
various levels of roof displacement 

 
Historically, the elastic story stability coefficient, Pδ/(Vh), has been used to quantify the importance of 
the P-Delta effect. This study and studies performed by others (e.g., Bernal [12], Gupta and Krawinkler 
[13], and Aydinoglu [14]) have demonstrated that this elastic story stability coefficient may be a poor 
measure of the importance of P-Delta effects in structures that respond inelastically. A much better 
measure can be obtained from the global pushover curve. Studies reported in [8] and [15] have shown that 
a global inelastic stability coefficient, defined as the difference between the post-yielding tangent 
stiffnesses without and with P-Delta effects of the global pushover curve, and normalized by the elastic 
stiffness, is a good measure of the importance of P-Delta effect. For the 18-story frame with T1 = 3.6 s. 
the elastic global stability coefficient is 0.091, and the inelastic global stability coefficient is 0.376. Thus, 
the inelastic stability coefficient is more than four times as large as the elastic one. The reason is evident 
from Fig. 9(b), which shows pushover deflection profiles for this frame. The elastic deflected shape is 
close to a straight line; however, once the structure yields, there is a concentration of large story drifts in 
the bottom stories due to the presence of P-Delta effects. As the roof displacement increases, the bottom 
story drift values increase at a rapid rate until dynamic instability is approached [see curve for δr/δyr = 3.0 
in Fig. 9(b)]. 
 
Maximum Story Drift Profiles 
A more comprehensive picture of the effect of the hysteretic model on the nonlinear response of regular 
frames can be obtained by studying the distribution of maximum story drifts over the height. Regular 
frames that exhibit pinching hysteretic behavior at the component level experience a less uniform 
distribution of maximum story drifts over the height as compared to frames with bilinear and peak-
oriented behavior. Differences in the distribution of maximum story drifts over the height are more 
pronounced at the top and at the bottom of the structure. These observations are illustrated in Fig. 10, 
which presents median maximum story drift profiles of the 9-story structure with a fundamental period of 
0.9 seconds for various values of relative intensity. The general conclusion is that regular frames that have 
severe pinching in the hysteresis response not only experience the largest roof and story drifts over the 
height (as presented in previous sections) but also experience the largest amount of total damage 
(assuming that the maximum story drift is a good indicator of structural and non-structural damage).  
 
 
 



These patterns of behavior can have a significant (or at least noteworthy) influence on the seismic 
performance of existing buildings that will experience significant stiffness degradation when exposed to 
strong ground shaking, e.g., old reinforced-concrete construction. 
 

MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Peak-oriented model, θ=0.015, BH, K1, S1, LMSR-N 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Bilinear model, θ=0.015, BH, K1, S1, LMSR-N 
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MAX. STORY DRIFT PROFILES-MEDIANS
N=9, T1=0.9, ξ=0.05, Pinching model, θ=0.015, BH, K1, S1, LMSR-N 
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(c) 

Fig. 10: Median normalized max. story drift profiles, N = 9, T1 = 0.9 s., various hysteretic models (a) 
peak-oriented, (b) bilinear, and (c) pinching (κd = κf = 0.25) 

 
Sensitivity of the Response to the Degree of Stiffness Degradation 
The results presented so far suggest that the maximum roof and story drift responses are larger for 
systems with hysteretic behavior that exhibits severe stiffness degradation such as the pinching model 
with κd = κf = 0.25. Unless such severe stiffness degradation is present, the differences between the 
pinching and peak oriented models are not important as shown in Fig. 11. This figure presents maximum 
roof drifts for a relative intensity of [Sa(T1)/g]/γ = 4.0 for both stiff and flexible frames with hysteretic 
behavior represented by bilinear, peak-oriented and pinching (κd = κf = 0.25) models as well as by a 
pinching model with κd = κf = 0.50 [denoted in the graphs as “pinching (2)”]. The maximum roof drift 
demands are similar between the “pinching (2)” (represented by the filled squares in the plot) and peak-
oriented models.  



NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.1N
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NORMALIZED MAXIMUM ROOF DRIFTS-T1=0.2N
[Sa(T1)/g]/γ=4.0, Median values, ξ=0.05, BH, K1, S1, LMSR-N
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    (a)                                                                             (b) 

Fig. 11: Median normalized max. roof drift demands, [Sa(T1)/g]/γ = 4.0, (a) stiff and (b) flexible 
frames. 

 
Comparison to SDOF Systems 
Fig. 12 presents median ratios of maximum inelastic to elastic displacement for SDOF systems with a 
strength reduction factor, R = [Sa(T1)/g]/η  equal to 4.0, 3% strain hardening, and bilinear, peak-oriented 
and pinching (κd = κf = 0.25) hysteretic behavior (the parameter η represents the strength of the SDOF 
system, which is analogous the MDOF base shear strength parameter, γ). The effect of P-Delta at the 
SDOF level is represented by rotating the hysteresis diagram by an angle equal to the elastic first story 
stability coefficient of the 0.1N and 0.2N frame structures. A comparison of Figs. 11 and 12 shows that 
except for T = 0.3 s., and except for long period P-Delta sensitive systems, the difference in inelastic 
displacement demands between the pinching model and the other two models are more pronounced in the 
MDOF domain. This observation has implications in seismic design and evaluation approaches in which 
the response of an MDOF system is represented by an “equivalent” SDOF model.  
 

RATIO OF INELASTIC TO ELASTIC DISP.-0.1N
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RATIO OF INELASTIC TO ELASTIC DISP.-0.1N
R=[Sa(T1)/g]/η=4.0, Median values, ξ=0.05, LMSR-N
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    (a)                                                                             (b) 

Fig. 12: Median ratio of inelastic to elastic displacement, SDOF systems, various hysteretic models, 
R = [Sa(T1)/g]/η = 4.0 (a) P-Delta slope corresponding to 0.1N  and (b) P-Delta slope corresponding 

to 0.2N 
 
For long period SDOF systems (T  > 1.8 s.), the response of the bilinear model becomes P-Delta sensitive 
while the response of the peak-oriented and pinching models is stable. In this range, the differences 
between SDOF and MDOF system responses become very large, for reasons discussed in Ref. [15]. 
Adam et al. [15] present a comprehensive discussion on the use of reference SDOF models to predict 
global dynamic instability in the response of flexible MDOF frames. 



EFFECT OF HYSTERETIC BEHAVIOR ON PROBABILISTIC SEISMIC PERFORMANCE 
ASSESSMENT 

 
In this section, the implications of differences in the hysteretic behavior on the probabilistic seismic 
performance assessment of regular frames are illustrated. In this context, performance assessment implies 
that the structure is given (i.e., γ = Vy/W, T1, and other properties are known), and decision variables, such 
as losses, have to be evaluated (Krawinkler and Miranda [16]). Part of this process is probabilistic seismic 
demand analysis that includes quantification of engineering demand parameters (EDPs) and their 
associated uncertainties. This quantification can be carried out by computing the mean annual frequency 
of exceedance of an EDP, given by 

 

                      [ ] |)(||)( xdxIMyEDPPy IMEDP λλ ∫ =≥=                                            (1) 
 
where λEDP(y)    =  mean annual frequency of EDP exceeding the value y 
             P[EDP ≥ y | IM = x] =  probability of EDP exceeding y given that IM equals x 
 λIM(x)    =  mean annual frequency of IM exceeding x (ground motion hazard) 
 
A prerequisite to the implementation of Eq. (1) is hazard analysis for a ground motion intensity measure. 
In this study, the spectral acceleration at the first mode period of the structure, Sa(T1), is used as the 
intensity measure. Similar to the IM hazard, the mean annual frequency of the EDP exceeding a certain 
value also can be represented in a hazard curve. Two EDPs are evaluated: the maximum roof drift and the 
maximum story drift over the height.  
 
Maximum Drift Hazard Curves 
Evaluation of Eq. (1) to compute the the maximum drift hazard (mean annual frequency of drift 
exceeding y, given that Sa(T1) equals Sa) requires hazard analysis information on Sa(T1), which represents 
the term λIM(x) in Eq. (1), as well as probabilistic data on maximum drift demands. Since this evaluation 
is performed for structures of a given strength (γ), it is convenient to represent the maximum drift data in 
the conventional IDA form of Sa(T1) versus maximum drift, given the strength γ. Representative IDA 
curves (medians and dispersions) using the maximum roof drift angle, θr,max, and the maximum story drift 
angle over the height, θs,max, for a frame with N = 9, T1 = 1.8 seconds and γ = 0.1, and various hysteretic 
models are shown in Fig. 13.  
 

MEDIAN IDA CURVES
N=9, T1=1.8, γ=0.10, ξ=0.05, Peak-oriented model, BH, K1, S1, LMSR-N
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STD. DEV. OF LN(θmax) GIVEN Sa(T1)/g
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                                          (a)                                                                             (b) 

Fig. 13: Incremental dynamic analyses,  N = 9, T1 = 1.8 s., γ = 0.10, various hysteretic models, (a) 
medians and (b) dispersions                                                                      



A rigorous evaluation of Eq. (1) can be done by carrying out numerical integration assuming a lognormal 
distribution of the EDP based on the median and dispersion presented in Fig. 13. However, information 
on the Sa(T1) hazard is required to carry out such an evaluation. Based on the work of Cornell et al. [17] 
the Sa(T1) hazard can be represented by a curve of the type:  
 

             [ ] k
aoaaaTS SkSTSPS

a

−=≥= )()( 1)( 1
λ                                                         (2) 

 
where the exponent –k approximates the local slope of the hazard curve (in the log domain) around the 
return period of primary interest.  
 
For illustration of drift hazard curves, an Sa(T1) hazard curve is utilized that is estimated from the equal-
hazard response spectra values calculated for a Van Nuys, CA, site (site class NEHRP D) as part of the 
PEER research effort to develop Performance-Based Earthquake Engineering Methodologies (Somerville 
and Collins [18]). At the period of 1.8 sec., and around the hazard level of primary interest (the 10/50 
hazard), the following expression for the Sa(T1) hazard is derived: 
                                              

                                          [ ] 4.2
)8.1( 000373.0)8.1()( −=≥= aaaaS SSSPS

a
λ                                           (3) 

 
Maximum roof and story drift hazard curves computed from numerical integration of Eq. (1) are shown in 
Fig. 14. The drift hazard curves permit a probabilistic assessment of maximum roof and story drifts, in 
which the record-to-record variability is considered. For a given mean annual frequency of exceedance of 
a maximum drift value, the pinching model clearly exhibits the largest maximum roof and story drifts, 
which is consistent with the general pattern of behavior evaluated in previous sections of this paper.   
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       Fig. 14: Maximum drift hazard curves, N = 9, T1 = 1.8 s., γ = 0.10, various hysteretic models                  
 
The conclusion is that a large degree of stiffness degradation does have a noticeable effect on the 
behavior and the probabilistic seismic performance assessment of regular frames. Thus, an appropriate 
modeling of the hysteretic behavior at the component level is important in order to carry out reliable 
seismic performance assessment of existing buildings. 
  

 
 

 



CONCLUSIONS 
 

This paper evaluates the sensitivity of important drift parameters (roof and maximum story drifts) of 
regular frames to the hysteretic characteristics of the components that control the inelastic response. Three 
types of hysteretic characteristics at the component level are considered: peak-oriented, bilinear and 
pinching. Monotonic and cyclic deterioration are not considered; therefore, results are representative of 
levels of inelastic behavior at with monotonic and cyclic deterioration are not expected to be critical. 
Moreover, only ordinary ground motions are utilized. Conclusions are to be interpreted within the 
conditions previously specified. 
 
Results demonstrate that, except for long, flexible frames that are sensitive to P-Delta effects, both the 
bilinear and the peak-oriented models exhibit similar peak roof and story drift demands regardless of the 
level of inelastic behavior. In some cases, the peak-oriented model experiences peak drift demands 
smaller than those experienced by systems with bilinear hysteretic characteristics. However, once 
significant stiffness degradation is present, e.g., hysteretic behavior represented by the pinching model 
with small values of κd and κf, peak roof and story drift demands are clearly larger than those exhibited by 
the peak-oriented and bilinear models. Moreover, these patterns are more pronounced for MDOF 
structures than for SDOF systems. For inelastic systems, story drift demands of frames with pinched 
hysteretic characteristics are particularly larger at the top and at the bottom stories. These patterns of 
behavior are reflected in the probabilistic seismic demand evaluation of frames as illustrated in the last 
section of this paper.   
 
The aforementioned patterns are reversed in the case of flexible structures that are sensitive to P-Delta 
effects. P-Delta sensitive cases are defined as those in which the effect of gravity loads on the deformed 
configuration of the system causes large displacement amplification in the dynamic response and, sooner 
or later, dynamic instability. For these cases (e.g., N = 18, T1 = 3.6 s.), the bilinear model predicts the 
largest EDPs because the response of the system with bilinear hysteretic behavior spends more time on 
the envelope of the moment-rotation relationship of its components, which leads to “ratcheting” of the 
response and potential dynamic instability problems if P-Delta effects produce a negative post-yield 
tangent stiffness. 
 
The conclusions obtained in this study highlight the importance of: 
• A reasonable representation of the hysteretic response of structural elements in MDOF models that 

are used for seismic response analyses and probabilistic seismic performance assessment.   
• The degree of stiffness degradation in the seismic response of regular frames, which is particularly 

important for the evaluation and rehabilitation of old reinforced-concrete construction. 
• The effect of the hysteretic behavior when global collapse due to dynamic instability is of concern. 
• Reliable procedures for the identification of “equivalent” or “reference” SDOF systems when they 

are used to represent the behavior of MDOF structures. 
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