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SUMMARY 
 
Large-scale tests on reinforced concrete walls and bridge piers performed at the Swiss Federal Institute of 
Technology (ETH), Zurich and at the University of California, San Diego (UCSD) confirmed that using 
capacity design principles the inelastic deformation capacity of reinforced concrete structure can be 
greatly improved. However, the tests clearly indicated residual permanent deformations as possibly the 
major drawback of ductile structures. Structural elements with a high value of the new design parameter 

nα , defined as the ratio between the bending strength of the element due to axial load only and its total 
bending strength, showed much lower permanent deformations upon unloading. The hysteretic behavior 
of such elements substantially differed from the commonly used elasto-plastic or Takeda-type hysteretic 
models, i.e. showing a reduced energy dissipation capacity and different stiffness degradation. These 
differences raised questions on the applicability of commonly used design tools like the equivalent force 
method, the capacity spectrum method or the direct-displacement design to the design of such structures. 
To answer these questions a fiber-element, able to carefully predict the behavior of structural elements 
with different values of nα  was developed and checked against experimental evidence. Subsequently, an 
extensive parametric study using nonlinear time-history analyses was performed, showing that elements 
with a high value of nα  had a larger ductility demand only at very high ductilities, making the use of such 
element extremely appealing in performance based design. The paper presents the conducted large-scale 
tests, the developed fiber-element, and the results of the performed time-history analyses. In conclusion 
recommendations on the optimum value of nα  are given and strategies to reduce permanent deformation 
are outlined both for buildings and bridge piers. In the latter case presenting as an example the West 
Anchor Pier of the New San Francisco-Oakland Bay Bridge. 
 

INTRODUCTION 
 
Reinforced concrete (RC) structural wall buildings are popular in Switzerland and Central Europe. Such 
buildings, as shown in Figure 1a, are often conceived as structural wall systems consisting of flat slabs, 
columns designed for gravity loads only and RC structural walls. Flat slabs are beamless concrete slabs 
typically with spans of 6 to 9m and thickness of 20 to 30cm, which are often strengthened around columns 
to prevent punching shear failure. Columns are in most cases monolithic with the slabs and have a small 
cross section with typical dimensions ranging from 20 to 40cm designed to carry axial forces. Structural 
walls are relatively slender reinforced concrete walls fixed in a very stiff RC foundation box structure with 
one or more basement stories. The structural walls have to resist horizontal wind and earthquake forces 
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and, by means of capacity design principles, they can be designed to behave in a ductile manner. A lot of 
research on the behavior of ductile reinforced walls has been conducted all over the world. However, in 
Switzerland and in other regions of Central Europe the conceptual design and the construction 
methodologies, the ratio between seismic inertia forces and gravity loads and especially the mechanical 
properties of the reinforcing steel are quite different as in countries like New Zealand, USA and Japan. 
For this reason research results gained in these countries with high seismicity cannot be simply applied to 
Central Europe; they have to be adapted. To reach this goal and to give the practising structural designer 
recommendations to design better structural wall systems, several reinforced concrete walls were tested by 
Dazio, Lestuzzi and Thiele at the Swiss Federal Institute of Technology [1-3].  
 
In the following sections some of the test results are briefly presented and selected basic aspects of the 
behavior of reinforced concrete structural walls are discussed. 
 

 
Figure 1: Reinforced concrete structural walls building (a) and relevant floor plan (b). 

 
STATIC CYCLIC TESTS ON REINFORCED CONCRETE STRUCTURAL WALLS 

 
The six units tested by Dazio and presented in [1] represent the lower part of the reinforced concrete 
structural walls of the six story reference building shown in Figure 1 at 50% scale. The test setup pictured 
in Figure 2a reproduced the same sectional forces in the plastic region of the test unit as in the structural 
walls of the reference building under seismic action. 
 

  
Figure 2: Setup for static cyclic tests of RC structural walls (a). Reinforcement of test units WSH3 (b) and WSH5 

(c). 
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Figure 3: Hysteretic behavior of test units WSH3 (a) and WSH5 (b) [1].  

The test matrix included variation of the ductility of the reinforcing steel, the longitudinal reinforcement 
ratio, the axial load ratio and the design method among the test units. A detailed discussion of all the test 
results is beyond the scope of this paper and only a comparison between the hysteretic behavior of the test 
units WSH3 and WSH5 is given here. Both walls had the same length wl , hence almost the same yield 
displacement y∆ . Figure 3 shows that also the bending strength of both walls was almost the same. In the 
case of wall WSH3 the bending strength was ensured by a total longitudinal reinforcement content 

%82.0=tρ and an axial load ratio 05.0)/( ' == cg fANn . The same bending strength of wall WSH5 was 
ensured mainly by a high axial load ( 11.0=n ), because only the minimum reinforcement content was 
provided ( %39.0=tρ ). The reinforcement plan of both walls is pictured in Figures 2b and 2c.  
 
Despite the similar monotonic behavior (same yield displacement and same bending strength) the two 
walls showed a fairly different hysteretic behavior: 
 
1) The maximum residual displacement of wall WSH3 upon unloading was significantly larger. Even 

considering shake down effects, it is expected wall WSH3 to experience larger residual displacements 
after an earthquake, leading to a poorer performance. 

2) The initial stiffness of both walls was similar. However, after plastic deformations occurred, the 
reloading stiffness of wall WSH5 was significantly larger because the high axial load was able to 
almost fully close flexural cracks during load reversal. Such a characteristic means that after an 
earthquake cracks are closed and do not need any repair. Furthermore, almost the entire initial stiffness 
of the wall is available, ensuring for example full serviceability for wind action. 

3) Energy dissipation occurs mainly due to yielding of the reinforcement. Wall WSH3 had a larger 
reinforcement content and was able to dissipate 67% of the input energy while wall WSH5 could only 
dissipate 45% of the input energy. Therefore, the hysteresis curve of Wall WSH5 is characterized by a 
lower equivalent viscous damping, what according to modern design methodologies leads to larger 
displacement demands. 

4) Because of the higher reinforcement content, wall WSH3 showed a higher post-yield stiffness that 
yielded to a larger plastic hinge length, hence a larger displacement capacity. However, in this 
particular case, wall WSH5 experienced a significantly lower displacement capacity mainly because of 
the poor material properties of the D6 web longitudinal reinforcement (see Figure 2). 

 
Wall with bending strength due mostly to high axial load have significant advantages in terms of residual 
displacements and residual stiffness after an earthquake; two key parameters in the performance 
assessment of structures. However, the reduced energy dissipation capacity could lead to an increased 
displacement ductility demand. This issue is investigated in the following sections by means of finite 
element analyses. 



SOFTWARE 
 
To perform all numerical simulations presented in the next sections two different programs were 
implemented. In the followings they will be briefly presented. 
 
The Takeda single degree of freedom (SDOF) system 
 
The Takeda rules implemented to describe the hysteretic behavior of reinforced concrete structures are 
pictured in Figure 4 and correspond to the ones proposed in [4]. While the rules for cycles with large 
amplitude, Figure 4a, were derived from observations made during tests, the rules for small amplitude 
cycles are based mainly on engineering judgment and are set up to avoid clearly unrealistic behaviors 
during small cycles, i.e. to avoid very large or even negative reloading stiffnesses. Recognizing that the 
hysteretic rules assumed for the small amplitude cycles play an important role in the computation of the 
residual displacement it is important to always specify which rules are assumed for the analyses. 
 

 
Figure 4: Hysteretic rules of the Takeda SDOF system: large amplitude cycles (a) and small amplitude cycles (b). 

 
The fiber element program “Rechenbrett 2D” 
 
“Rechenbrett-2D” is a simple program developed by Dazio [5] that allows the modeling of reinforced 
concrete structures with two-nodes Bernoulli beam fibre elements. This kind of elements are equivalent to 
a sectional analysis program performing moment curvature analysis, integrating curvatures along the 
element length and automatically accounting for the interaction between moment and axial load.  
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Figure 5: Simplified constitutive laws for concrete (a) and reinforcing steel (b).  



The simplified uniaxial cyclic constitutive laws for reinforcing steel and concrete used by the elements are 
pictured in Figure 5 to allow a better interpretation of the results of the numerical simulations. The 
concrete constitutive law is a simplified version of the well known Mander’s model, in which no tensile 
strength of the concrete is considered and where small unloading and reloading cycles occur with no 
energy dissipation as shown in Figure 5a. The also well known Menegotto-Pinto’s steel constitutive law is 
pictured in Figure 5b. It allows a fairly accurate description of the Baushinger’s effect, while no buckling 
of the longitudinal reinforcement is considered. 
 
To ensure a good degree of robustness and to allow the computation of time history analyses, the 
constitutive laws for the materials were kept as simply as possible. Despite these simplifications, 
“Rechenbrett 2D” was able to predict fairly accurately the dynamic behavior of a 3-story reinforced 
concrete wall tested by Lestuzzi [2] on the ETH shake-table. The time history of the relative displacement 
of the wall is pictured in Figure 6a. The location of the amplitude maxima and their magnitude is well 
predicted. Discrepancies between test and simulation occurs in the free vibration phase at the end of the 
earthquake ( st 10> ) mainly because in the test a friction damping occurred while in the simulation a 
viscous damping of the same magnitude was considered. The residual displacement predicted by the 
model is smaller than the measured one. Figures 6a and 6b show the measured and the computed cyclic 
moment-curvature relationship at the base of the wall. While the magnitude of moments and the 
curvatures is in good agreement, the shape of the reloading branches is different. Due to the presence of 
rough cracks the reloading stiffness of the test unit is smoother compared to the numerical simulation 
where a sharp bent can be observed when the “smooth cracks” of the model suddenly close shortly past 
the zero-curvature line and the stiffness rapidly increases.  
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Figure 6: Simulation of the dynamic behavior of the wall WDH4 [2]. Time history of the top displacement (a) and 

cyclic moment-curvature relationships at the base of the wall (b, c).  



ANALYSES 
 
Chosen walls 
 
To characterize reinforced concrete wall with different axial loads and different longitudinal 
reinforcement contents a new parameter nα  is introduced. nα  quantifies what part of the total bending 
strength of a wall is ensured by the axial load: 

n

w
n M

Nl ⋅⋅= 45.0α  (1) 

The numerator of Equation (1), where N is the axial load of the wall and wl  its length, is a good 
approximation for the contribution of the axial load to the nominal bending strength of the wall nM . nα  is 
zero when there is no axial load and about one when there is no longitudinal reinforcement. 
 
To investigate the influence of nα  on the behavior of reinforced concrete walls, a parametric study using 
eleven walls listed in Table 1 was carried out. The walls were all 4.0m long and 0.3m wide. The cylinder 
strength of the concrete was MPafc 40' =  and the yield strength of steel MPaf y 500=  with hardening 

008.0=b  typical of European Tempcore steels. All the walls had the same bending strength MNmM n 15= . 
Walls N2 to N8 showed axial load ratios and reinforcement contents that can be found in real building, 
while walls N0, N1, N9 and N10 represented too extreme combinations of these parameters. Therefore, 
they were not further considered in parametric study. 
 

Wall Mn 
[kNm] 

αn 
[-] 

N 
[kN] 

n 
[-] 

αx 
[-] 

ρt 
[-] 

ρw 
[-] 

ρe 
[-] 

Ase 
[mm2] 

Asw 
[mm2/m] 

N0 15000 0.00 0 0.000 0.037 0.0137 0.025 0.0585 7023 750 
N1 15000 0.10 833 0.017 0.060 0.0123 0.025 0.0515 6183 750 
N2 15000 0.20 1667 0.035 0.083 0.0110 0.025 0.0448 5379 750 
N3 15000 0.30 2500 0.052 0.106 0.0097 0.025 0.0384 4611 750 
N4 15000 0.40 3333 0.069 0.129 0.0085 0.025 0.0323 3879 750 
N5 15000 0.50 4167 0.087 0.152 0.0073 0.025 0.0265 3183 750 
N6 15000 0.60 5000 0.104 0.176 0.0062 0.025 0.0210 2524 750 
N7 15000 0.70 5833 0.122 0.199 0.0052 0.025 0.0158 1900 750 
N8 15000 0.80 6667 0.139 0.222 0.0042 0.025 0.0109 1313 750 
N9 15000 0.90 7500 0.156 0.245 0.0033 0.025 0.0063 761 750 
N10 15000 1.00 8333 0.174 0.268 0.0024 0.025 0.0021 246 750 

Table 1: Eleven walls with the same bending strength given by different combinations of axial load and 
longitudinal reinforcement. (αx = relative depth of the neutral axis, ρt, ρw, ρe = longitudinal reinforcement content 
of the wall, of the web region and of the end region, Ase, Asw = steel area of the end and web regions of the wall). 

 
Moment curvature analyses 
 
Moment curvature diagrams for walls N2 to N8 are pictured in Figure 7 showing the dependence of the 
post-yield hardening on longitudinal reinforcement content. The nominal yield curvature was almost the 
same for all walls and corresponded to 13101 −−⋅= myφ . Figure 7b shows that up to nominal yield the secant 
stiffness of the walls is influenced by the axial load and that the tangent stiffness is highly nonlinear 
already in elastic region of the moment curvature diagram. 
 
The assumed steel properties leaded to a post-yield stiffness of the walls ranging between 0.3 and 1.0% of 
the elastic stiffness, i.e. very low. Assuming a hardening 013.0=b  of the reinforcement - corresponding to 
typical US Grade 60 steel - the post-yield stiffness ranges between 0.5 and 1.5% of the elastic stiffness. 
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Figure 7: Moment-curvature relationship of the seven walls N2 to N8 (a). Magnified view of the elastic region (b). 

 
Static cyclic analyses 
 
The energy dissipation capacity of the different walls and its influence on the dynamic behavior of the 
latter was first analyzed by means of static cyclic numerical analyses. Single degree of freedom (SDOF) 
systems equivalent to the 4-DOF system shown in Figure 10b were implemented in “Rechenbrett 2D” and 
static cyclic analyses were performed using a conventional loading history with symmetric cycles of 
increasing amplitude. The hysteretic behavior of the walls N2, N5 and N7 is pictured in Figures 8a to 8c. 
The influence of the parameter nα  on the hysteretic behavior is evident and confirms the experimental 
observations presented in the previous sections. “Rechenbrett 2D” does not take into account shear 
deformations. Therefore, the pinching in the hysteresis loops is due to the axial load alone. Pinching 
means reduced energy dissipation capacity and while in correspondence of displacement ductility 6=∆µ  
wall N2 was able to dissipate 80% of the input energy, wall N7 dissipated just 45% of it.  
 
The equivalent viscous damping eqζ is also an indicator of energy dissipation capacity and is plotted for 
all walls in Figure 8d. The dotted line is a proposal by Priestley [6] to estimate the equivalent viscous 
damping of reinforced concrete walls. The proposal corresponds basically to the average value of all 
computed cases. However, it does not consider the dependency between eqζ  and nα . According to 
modern design methodologies, a lower value of eqζ  leads to larger displacement demands. This increase 
in displacement demand can be estimated by means of Equation (2) where 1dS is the spectral displacement 
of a SDOF system of period nT and damping 1ζ . 
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Let be wall N2 designed using direct displacement design principles for a target displacement ductility 
2=∆µ , then wall N7 - designed to have the same monotonic behavior as N2 (neglecting the fact that by 

identical target displacement the secant stiff of wall N7 would be slightly smaller that wall N2) - would 
reach a displacement ductility 4.2=∆µ . In the same way it can be shown that when wall N2 is designed 
for a target displacement ductility 5=∆µ , wall N7 would reach 6.6=∆µ . The equivalent viscous damping 

eqζ plotted in Figure 8d considers hysteretic damping only. However, to compute the target displacements 
of walls N2 and N7 an additional 5% damping to account for system damping was used. Considering that 
the design ductility of a structure seldom exceeds 4 because of serviceability and performance 
considerations, the assumption of an average equivalent viscous damping value independent from nα  for 
all wall types seems reasonable. Such an assumption leads theoretically to differences in the estimated 
displacement demand of the order of 10%, what is small compared to the uncertainties related to the 
seismic action. However, in the following sections, this issue will be investigated by means of transient 
analyses. 
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Figure 8: Force-displacement relationship of walls N2, N5, N7 (a-c) and relevant equivalent viscous damping (d).  

 
Ground Motions 
 
In the following section time history analyses are performed using 5 different ground motions. The 
response spectra of these ground motions are pictured in Figure 9 for a viscous damping %5=ζ . The 
different ground motions were scaled using different factors ranging from 0.20 to 4.63 depending on the 
target displacement ductility assumed for each computation. 
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Figure 9: Acceleration (a) and displacement (b) response spectra of the ground motions considered in the time 

history analyses. 



Dynamic analyses on multi degrees of freedom systems 
 
The dynamic behavior of multistory walls is investigated by means of time-history analysis. Totally 480 
cases given by permutation of 2 dynamic systems (4-DOF and 7-DOF), 3 effective natural periods (0.61, 
0.91 and 1.82 seconds), 2 reinforcing steel hardening ratios b  (0.008 and 0.013), 2 target displacement 
ductilities ∆µ  (2.5 and 4.5) and 5 ground motions were analyzed. 
 
The elevation of the considered dynamic systems is pictured in Figures 10a and 10b; each story has the 
same mass and its magnitude is calculated in function of the target period of the system. The axial load 
generated by each story is the same and the total axial load in the plastic hinge region of each wall is given 
in Table 1. The discretization of the section and the relevant material properties are given in Figure 10c. 
The ground motions pictured in Figure 9 were scaled by means of the equal displacement principle so that 
the wall would reach the targeted displacement ductility. 
 

 
Figure 10: Dynamic systems (a, b) and typical cross-section with relevant material properties (c).  

Among all the results produced by the analyses, here only the ones relevant to maximum ductility demand 
and residual displacement are displayed in Figure 11. The computations performed on the 7-DOF system 
produced basically the same results as for the 4-DOF system. Therefore, only the latter will be further 
discussed. In the case of target ductility 5.2=∆µ , wall N2 reached an average ductility of 2.20 while the 
average value for wall N8 was 2.43, i.e. an increase of 10%. For a target ductility of 5.4=∆µ  the same 
values were 4.33, 4.96 and 15%, respectively. The scatter is similar to the one predicted using the 
equivalent viscous damping approach presented before. These results confirm previous investigation 
performed by Dazio [5] and is in excellent agreement with the results obtained by Christopoulos and co-
workers while analyzing the displacement demand of flag-shaped hysteretic models [7, 8, 9]. Furthermore, 
in [5] it is shown that significantly higher ductility demands - in the order of about 30 to 40% - for walls 
with higher axial load occur only when a target ductility of 5.6=∆µ  or higher is assumed. However, it is 
very unlikely that a real structure would be designed for such a large target ductility, therefore the 
meaning of this last finding is of relative importance. 
 
Figure 11c displays the ratio between the residual displacement of the wall at the end of the time history to 
the maximum displacement reached by the wall during the same time history. The target displacement 
ductility, i.e. the maximum displacement reached by the wall, had little influence on the ratio. The same 
finding was reported in [7]. On the other hand and as expected, the ratio is inversely proportional to the 
parameter nα . It has to be noted that the magnitude of the ratio resulting from these computation is, 
especially for wall with low axial load, somewhat smaller compared to the results obtained by other 
researchers. This effect is probably due to the shape of the reloading branches produced by the fiber 



model. The sudden closure of the smooth cracks and the relatively high reloading stiffness of the concrete 
material model (see Figure 5a) generates reloading branches starting with low stiffness that suddenly 
increases just past zero horizontal displacement. This creates a kind of artificial self-centering mechanism 
that in real reinforced concrete elements is also present, however, it is not so pronounced. This example 
shows the importance of the definition of the hysteretic rules for small amplitude cycles.  
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Figure 11: Average maximum displacement ductility (a, b) and average relative residual displacement (c, d) in 

function of the parameter nα . 

 
Dynamic analyses on single degree of freedom systems 
 
The dynamic behavior of ductile reinforced concrete walls was further investigated by means of nonlinear 
SDOF systems. Due to the significantly smaller computational burden it was possible to run a higher 
number of cases as in the previous section. Totally 14400 cases given by permutation of 4 natural periods 
(0.61, 0.91, 1.82 and 3.64 seconds), 3 hardening ratios r  (0, 5 and 10%), 5 Takeda α -parameters (0.0, 
0.2, 0.4, 0.6 and 0.8), 6 Takeda β -parameters (0.0, 0.2, 0.4, 0.6 and 0.8), 2 target ductilities ∆µ  (2.5 and 
4.5) and 20 ground motions were analyzed. 
 
Before the results on the analyses are presented, a brief comment on the shape of small amplitude cycles 
of SDOF systems is due. Figure 12 shows on the top the time history of 3 Takeda-type SDOF systems with 
the same monotonic backbone curve, the same unloading stiffness factor α  but different reloading 
stiffness factors β . Each one of these time histories is compared with the time history of a SDOF system 
with the same monotonic backbone curve but modeled with “Rechenbrett 2D” (dotted line). On the 
bottom of Figure 12, the hysteresis loops of the same SDOF systems are pictured. 
 
For the computation plotted in Figure 12a, a Takeda 0.0=β  and the hysteresis rules on Figure 4 were 
used. While the comparison of the large amplitude cycles between the two SDOF systems is excellent (up 
to the fourth large peak), the reloading stiffness of the Takeda model is significantly lower leading to quite 



different small amplitude cycles and residual displacements. For the computation plotted in Figure 12b, a 
Takeda 9.0=β  and the hysteresis rules on Figure 4 were used. While the magnitude of the large 
amplitude cycles between the two SDOF systems is very similar up to the third large peak, the comparison 
of the reloading branches of the large amplitude cycles are not very good. On the other hand the small 
cycle behavior of the two SDOF systems is very similar and the residual displacements correspond. For 
the computation plotted in Figure 12c, a Takeda model with 9.0=β  for large amplitude cycles and 

0.0=β  for small amplitude cycles was used. This shows the importance of the definition of small 
amplitudes cycles on residual displacements. While the large cycle response of the Takeda SDOF systems 
in Figures 12b and 12c are coincident, the small cycles are completely different leading also to completely 
different residual displacements. 
 
Figure 13 is similar to Figure 11. In both cases the residual displacement ratio and the maximum 
displacement ductility are plotted against a parameter that strongly affects the unloading stiffness of the 
hysteresis loops and the results show the same trends. A typical reinforced concrete structure can be 
modeled using the Takeda parameter 2.0=α  and 4.0=β . According to Figure 13a, the average residual 
displacement ratio for such SDOF systems is about 0.085. Changing β  from 0.4 to -0.2 would increase 
the average residual displacement ratio by a factor 1.8 and changing α from 0.2 to 0.6 would decrease the 
average residual displacement ratio by a factor 2.8. The influence of both Takeda parameters on residual 
displacements is therefore significant. On the other hand, Figure 13b shows that both parameters have a 
limited influence on the maximum displacement ductility like it was the case in Figure 11. It has to be 
noted that in Figure 13 for sake of completeness all the combinations of the Takeda parameters α  and 
β are plotted. However, when both parameters are large and specially when the hardening parameter 

%10=r  is used, odd hysteresis loops can results and the interpretation of the results has to be carried out 
with caution. In a similar study presented in [7] the same conclusions regarding the influence of the 
parameter Takeda β  on residual deformations were drawn. However, in that study the parameter Takeda 
α  had a smaller influence on residual deformations has it has here. 
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Figure 12: Influence of the Takeda small-cycles hysteretic rules on the residual displacement of single degree of 

freedom systems.  
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Figure 13: Influence of the Takeda parameters α and β on the relative residual displacements (a) and on the 
ductility demand (b) of single degree of freedom systems.  

 
RECCOMENDATIONS 

 
It was shown that walls with bending strength due mostly to high axial load have significant advantages in 
terms of residual displacements and residual stiffness after an earthquake; while the reduced energy 
dissipation capacity has in most practical cases negligible effects. Therefore, a structure should be 
designed targeting walls with nα  as large as possible. To reach this goal, the tributary area of the walls can 
be increased by increasing the span of the slabs or by choosing an appropriate location of the wall within 
the floor plan (see Figure 1). However, even if not specifically investigated in this paper, it has to be noted 
that walls with a high value of nα  develop a reduced plastic hinge length leading to a lower maximum 
displacement capacity. Therefore the value of nα  should be limited to: 

70.0≤nα  (3) 

or to: 

⎟
⎠
⎞⎜

⎝
⎛+

≤
'/75.0

35.1
c

n

fn

nα  (4) 

whichever is smaller. In Equation (4) )/( '
cg fANn =  is the axial load ratio of the wall and '

cf  is the cylinder 
strength of the concrete. The limit given by Equation (4) ensures that the nominal bending strength of the 
wall is at least twice the cracking moment of the wall as recommended by Priestley in [9]. 
 

PERMANENT DISPLACEMENT OF A BRIDGE PIER: AN EXAMPLE 
 
In the framework of the proof testing in support to the design of the new East Spans of the San Francisco-
Oakland Bay Bridge performed in the laboratories of the University of California, San Diego; a quarter 
scale model of the West Anchor Pier (Pier W2) of the Main Span Self-anchored Suspension Bridge was 
tested by Seible and Dazio [10, 11]. Two of the eight column forming Pier W2 were modeled in the 
laboratory and tested using the setup pictured in Figure 14a. The test unit showed an excellent hysteretic 
behavior (Figure 14b) and could easily outperform all the performance criteria required by the design 
specification. A computation by means of “Rechenbrett 2D” was able to predict the global behavior of the 
test unit fairly accurately, while being able to exactly predict the permanent deformations. 
 
During the so-called Safety Evaluation Earthquake (SEE), Pier W2 is expected to undergo plastic 
deformations up to a displacement ductility of about two. Upon unloading after such a displacement, the 
maximum possible residual displacement of the stand-alone Pier W2 measured during the test was 



100mm, corresponding to 400mm in the prototype structure. This value does not conform with the 
performance requirement limiting permanent deformations to 300mm. Time history analyses of the bridge 
under the SEE Event showed that taking into account shake-down effects, the expected residual 
displacement is well below the permitted limit. However, considering that the maximum displacement 
capacity of the Pier was not an issue being more than three times larger than the seismic demand, this 
example shows that residual displacements are important design parameters for ductile bridge piers. 
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Figure 14: Setup for Pier W2 Test (a). Measured and predicted hysteretic behavior of the test unit (b).  

In the previous sections it was shown that increasing the axial load will reduce the maximum possible 
residual displacement of reinforced concrete elements. In the followings, the influence of the shape of 
bridge piers on permanent deformations is investigated. Figure 15a shows the cross-section of the unit 
tested in the laboratories. The two circular columns had a diameter of 0.88m and a clear height of 10.5m. 
The columns were fixed at the base, separated by a 127mm gap along the height and connected at the top 
by a rigid cap beam. To ensure visual consistency with the rest of the prototype bridge, the columns were 
provided with a pentagonal shaped architectural concrete. Figures 15b and 15c show design alternatives of 
the test unit. The circular section and the hollow section were designed in such a way that the 
corresponding Pier would have an almost identical monotonic behavior as the Test Unit, assuming that the 
acting axial load was the same on the three piers (See Figure 16a). 
 

 
Figure 15: Design alternatives of the Pier W2 Test Unit. 



The three piers were modeled with “Rechenbrett 2D” and subjected to the same loading as the Pier W2 
Test Unit during the laboratory testing. Figure 16b shows the computed hysteretic behavior and while the 
reloading stiffness of the three piers is similar, the unloading stiffness of the piers with circular and 
hollow sections is larger leading to larger maximum possible residual deformations. Upon unloading from 
a displacement ductility of two, the residual deformation of the latter piers was 140mm, i.e. 40% larger 
than the one of the test unit.  
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Figure 16: Predicted monotonic (a) and cyclic (b) behavior of the three design alternatives of Pier W2 Test Unit. 

 
CONCLUSIONS 

 
Walls with bending strength due mostly to high axial load are characterized by a large value of the newly 
defined moment ratio nα . Hysteresis loops generated using large values of nα  are almost flag-shaped 
ensuring self-centering properties of such walls. The dynamic behavior of flag-shaped hysteretic models 
has already been investigated and researchers report that despite the limited energy dissipation capacity of 
this type of inelastic oscillators, their maximum displacement ductility demand is only slightly larger 
compared to systems with larger equivalent viscous damping. These findings were confirmed by the 
analyses presented in this paper. 
 
Post-tensioned precast walls have a value of nα  close to unity and perform extremely well under seismic 
action. In capacity designed walls the value of nα  has to be limited to prevent a premature failure of the 
longitudinal reinforcement. Suggested limits for nα  are given in the relevant section of the paper. 
 
Time history analyses showed that maximum displacements of RC structures subjected to earthquake are 
rather insensitive to the shape of the hysteresis loops, provided the monotonic backbone curve is the same. 
On the other hand, residual displacements are very sensitive to the shape of the hysteresis loops. 
Therefore, hysteresis rules for small amplitude cycles have to be carefully chosen. Fiber models are very 
suitable to predict the behavior of structures, however, to correctly deal with residual deformations the 
constitutive laws of the concrete should properly take into account cracking. The constitutive laws of the 
steel should properly take into account the Bauschinger’s effect. 
 
In cases where it is not appropriate to increase the axial load, a reduction of the permanent displacement 
potential can be achieved by optimizing the shape of the element’s cross section. Twin column or twin 
wall sections seem to provide a reduction of permanent displacement, this because of the additional axial 
load due to frame action between the columns or the walls. 
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