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SUMMARY 
 

A simplified procedure similar to the response spectrum method has been developed to 
estimate the energy absorbed in each mode from energy spectra, and the distribution of energy 
along frame height is evaluated based on energy shapes established by non-linear modal 
pushover analysis.  The statistics of the estimate of energy are presented for a variety of 
building frames subjected to ground motion ensembles.  The study shows that (1) the proposed 
procedure which includes the higher mode effects can reasonably predict the total energy and 
the energy distribution in a structure, (2) the majority of the seismic energy is contributed by 
the first mode response, and (3) the second-mode energy needs to be considered to predict the 
damage in the upper stories. 

 
INTRODUCTION 

 
Study on energy demand in single-degree-of-freedom (SDOF) systems is abundant, yet such study on 
multistory frames is limited.  Fajfar and cispersGa

(((

 [1] showed that the hysteretic energy demand in a 
multi-degree-of-freedom (MDOF) system cannot be evaluated reliably from an equivalent SDOF system; 
they attributed the problem to the higher mode effect.  A recent study by Chopra and Goel [2] showed that 
story drifts along building height can be estimated reliably if more than one equivalent SDOF systems are 
considered.   
 
The purpose of this study is to present a procedure [3] that can be used to predict the seismic energy 
demand along the height of a multistory frame without performing a nonlinear time-history analysis.  The 
procedure requires a static pushover analysis of the MDOF system to determine the modal yield force and 
ductility factor of an equivalent SDOF system for the first few (say, two) modes.  After the ductility is 
determined for each mode, the energy spectrum can be used to determine the contribution of each mode. 
The absorbed energy of each mode is then distributed along the frame height based on the specific energy 
shapes, established from the pushover analysis.  To verify the procedure, statistics of the SDOF system 
estimate of absorbed energy are presented for three moment frames and thirty ground motions. 
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CONSTANT-DUCTILITY RESPONSE SPECTRA 
 
For an inelastic SDOF system subjected to a ground motion, the energy equation can be derived from the 
equation of motion [4]: 
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where νg, νt, and ν are the ground displacement, total displacement, and relative displacement, 
respectively. c is the viscous damping coefficient, and f is the restoring force. Ek, Eξ, and Ei are the kinetic 
energy, viscous damping energy, and “absolute” input energy, respectively.  The absorbed energy, Ea, is 
composed of the recoverable elastic strain energy and the irrecoverable hysteretic energy. The equivalent 

velocity of Ea, mEV aa 2= , was used as a parameter for energy demand because it converges to the 

pseudo-velocity in the elastic case.  Equivalent velocity Va was evaluated as the maximum value obtained 
from a time history analysis with an elastic-perfectly plastic hysteresis model and 5% viscous damping at a 
given ductility level.  For a given ductility factor, the yield force, fy, can also be normalized by structural 
weight (mg) as follows: mgfC yy = .   

 
Total of thirty ground motions grouped in three sets (ten for each set) are listed in Table 1.  The first two 
sets of motions, representing large magnitude-small distance records, were recorded at sites C and D; the 
site was classified based on the NEHRP Provisions [5].  The third set of records were developed for the 
SAC Joint Venture [6].  Typical Cy and Va response spectra are shown in Figure 1.  

Figure 1 Constant-ductility Spectra 
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Table 1 Characteristics of Ground Motions  
 

Earthquake 
Event  

Year Mw Station or SAC Name Dist. 
(km) 

Soil 
Type 

Duration 
(sec) 

Scaling 
Factor 

Scaled PGA 
(cm/s2) 

San Fernando 1971 6.6 Lake Hughes Sta.12 17.0 C 36.7 1.0 346.2 
Whittier 1987 6.0 Las Palmas Ave, Glendale 17.8 C 31.5 1.0 299.4 
Whittier 1987 6.0 120N. Oakbank, Glendale 16.2 C 32.1 1.0 105.5 

Loma Prieta 1989 6.9 Saratoga 11.7 C 40.0 1.0 493.7 
Loma Prieta 1989 6.9 Anderson Dam 20.0 C 39.7 1.0 245.4 
Loma Prieta 1989 6.9 Santa  Cruz 12.5 C 40.0 1.0 433.1 

Landers 1992 7.3 Joshua Tree Fire Station 11.3 C 80.0 1.0 278.4 
Northridge 1994 6.7 700 N. Faring Rd., LA 14.1 C 34.7 1.0 272.6 
Northridge 1994 6.7 Castaic Old Ridge Rt. 20.8 C 60.0 1.0 504.2 
Northridge 1994 6.7 Las Palmas Ave, Glendale 17.8 C 37.8 1.0 329.8 

Imperial Valley 1979 6.5 El Centro Array #2  16.0 D 71.7 1.0 379.5 
Imperial Valley 1979 6.5 Chihuahua 17.7 D 83.6 1.0 261.1 

Whittier 1987 6.0 12500 Birchdale, Downey 11.9 D 28.6 1.0 334.0 
Whittier 1987 6.0 Castlegate St., Compton 16.5 D 31.2 1.0 312.1 

Loma Prieta 1989 6.9 Gilroy Array #4  15.8 D 40.0 1.0 407.9 
Loma Prieta 1989 6.9 Gilroy Array #7 24.3 D 40.0 1.0 314.3 

Landers 1992 7.3 Yermo 26.3 D 80.0 1.0 240.0 
Northridge 1994 6.7 Canyon County 11.4 D 31.0 1.0 446.8 
Northridge 1994 6.7 5360 Saturn St., LA 22.3 D 31.6 1.0 433.2 
Northridge 1994 6.7 Hollywood Stor. Blg. 20.0 D 46.6 1.0 244.9 

Kobe 1995 6.9 LA 22 3.4 - 60.0 1.15 902.8 
Loma Prieta 1989 6.9 LA 24 3.5 - 25.0 0.82 463.8 
Northridge 1994 6.7 LA 26 7.5 - 60.0 1.29 925.3 
Northridge 1994 6.7 LA 28 6.4 - 60.0 1.61 1304.1 

Tabas 1974 7.4 LA 30 1.2 - 50.0 1.08 972.6 
Elysian Park - 7.1 LA 32 17.5 - 30.0 1.43 1163.5 
Elysian Park - 7.1 LA 34 10.7 - 30.0 0.97 667.6 
Elysian Park - 7.1 LA 36 11.2 - 30.0 1.1 1079.3 
Palos Verdes - 7.1 LA 38 1.5 - 60.0 0.9 761.3 
Palos Verdes - 7.1 LA 40 1.5 - 60.0 0.88 613.3 

 
 

ENERGY DEMAND EVALUATION FOR MULTISTORY FRAMES 
 
Modal Response Analysis 
To estimate the energy demand of an MDOF system from the Va spectra, ductility factor of the equivalent 
SDOF system for each of the first two modes needs to be established first.  The procedure includes the 
following: (1) convert the MDOF system into an SDOF system for each of the first two modes with the 
corresponding elastic mode shape [7], (2) perform a static pushover analysis to determine the yield 
strength coefficient, Cy, for each mode, and (3) determine the modal ductility factor from the Cy spectrum.  
The equation of motion for a planar MDOF system with only lateral degrees of freedom is  

gν&&&&& M1FνCνM −=++  (3) 

where M is the diagonal mass matrix, C is the damping matrix, F is the restoring force vector in the 
horizontal direction at each floor, and 1 is an unit vector. ν  is a vector of relative displacement and can be 
expressed as 
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where φn is the elastic mode shape and xn is the generalized displacement of the n-th mode in an MDOF 

system. Multiplying both sides of Eq. (4) by MT
nφ , the generalized displacement xn is then calculated as 

Mν
T
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where φn is normalized such that 1=n
T
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where Γn ( )nn mM1Tφ=  is the participation factor. The generalized restoring force is  

fT
nnf φ=  (7)  

 
To obtain the generalized yield force, fyn, for the n-th mode, a static pushover analysis is performed with 
the following lateral load:  

ss nnn qML == φ      (8) 

where qn is the lateral load pattern, and s is the scalar factor.  At each load step, the generalized force fn is 

calculated by premultiplying Eq. (8) by T
nφ , and the generalized displacement xn is obtained from Eq. (5) 

by substituting ν  for the resulting lateral displacement vector.  Relationships between the generalized 
force and generalized displacement for the example frames (see Figure 2) are shown in Figure 3.  Each 
curve is then approximated by a bi-linear relationship to determine the generalized yield force, fyn, listed in 
Table 2.  The non-dimensional yield strength coefficient, ynC , is expressed as gmf nnyn Γ .  Based on ynC  

and period of each mode, the absorbed energy for each of the first two modes is calculated as follows  

( )2
111 2

1
1Γ= aa VmE  (9) 

( )2
2222 2

1 Γ= aa VmE  (10) 

In order to validate the proposed method, three moment frames with 5-, 7-, and 9-stories in height (see 
Figure 2) were used in this study.  The first two buildings were designed in accordance with the NEHRP 
Seismic Provisions, and 9-story office building was designed by an SAC-commissioned consulting firm 
[8].  The calculated frame weight (half of building weight), W, natural periods, Ti, and participation factors 
of the first two modes are listed in Table 2.  The total absorbed energy demands obtained from the MDOF 
time-history analyses, denoted as Eam, are compared with Ea1 and Ea2 in the following section. 
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Figure 2 Elevation and Member Sizes of Moment Frames 

 

Figure 3 Generalized Force-Generalized Displacement Relationships 

 
 

Table 2 Frame Properties 
 

Frame W (kN) T1 (sec) T2 (sec) Γ1 Γ2 fy1 (kN) fy2 (kN) 
5-story 7476 1.47 0.53 799.1 295.7 2.15 5.17 
7-story 10608 1.85 0.66 952.2 337.6 1.90 5.72 
9-story 44214 2.14 0.80 1928.9 696.3 4.81 10.18 
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Combination Rules and Comparison with Time-History Analysis  
The modal information in Table 2 together with the Va spectra allow for the absorbed energy in each of the 
first two modes be calculated.  The energy quantities then can be combined by using either the   absolute 
sum (ABS) or the square-root-of-sum-of-squares (SRSS) rule.  The accuracy of the energy quantities thus 
computed-denoted as Ea,abs and Ea,srss- is then compared with those predicted by the nonlinear time-history 
analysis (Eam).     
 
The first column in Figure 4 shows that including only the first mode effect would underestimate the total 
energy demand.  The energy ratio, defined as the estimate energy normalized by that computed by non-
linear time history analysis, in Figure 5 also shows that such underestimation can be more significant for 
longer period structures.  For yielding structures (i.e., ductility greater than one), both Figures 4 and 5 
show that the ABS combination rule provides a better estimation of the energy demand than the SRSS 
rule.    

Figure 4 Comparison of Energy Estimation versus Exact Energy Value  
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Figure 5 Relationship between Ratio of Estimation and first Mode Ductility  

 
ENERGY DISTRIBUTION EVALUATION IN STRUCTURES 

 
Performing a static pushover analysis based on the first-mode load pattern q1, Figure 6 shows the 
relationship between the cumulative rotation, η1,base, at the column base and the absorbed energy of each 
frame.  η1,base is the average value of the cumulative rotations at the base of exterior and interior columns.  
Each column base cumulative rotation is calculated as the absorbed energy normalized by the flexural 
strength, Mpc, of the column.  Three zones are characterized from three distinct slopes at load steps A and 
B, which are shown by solid marks.  The first zone (before step A) represents the system within the elastic 
range.  The second zone (between A and B) is typified by the formation of beam plastic hinges at lower 
floor levels, and the third zone (beyond B) indicates that plastic hinges have formed at the base of the 
first-story columns.  Two limits for the first story drift ratio that corresponds to the initiation of beam 
yielding (step A) and column base yielding (step B) can be established from the first-mode pushover 
analysis.  SDR1,beam is the first story drift ratio at step A, and SDR1,base is the first story drift ratio at step B.   
 
Assuming same beam size on each floor, cumulative rotation in beam η1,beam is calculated as 
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where m is the number of bays, Ea1,i is the absorbed energy in each beam end, and Mpb is the beam flexural 
strength.  Three energy shapes ( 1ψ , 2ψ , and 3ψ ) shown in Figure 7 are obtained by normalizing the beam 
cumulative rotation on each floor by the second floor’s beam rotation.   
 
For a given earthquake ground motion, first story drift ratio SDR1 produced by the first-mode response can 
be estimated as follows: 

1

111
1 H

D
SDR s φΓ

=    (12) 

where H1 is the first story height, Ds the maximum drift in an SDOF system, is obtained based on the first-
mode period and ductility factor, and φ11 is the component of the mode shape φ1 at the second floor level.  
Once SDR1 is calculated, the energy shape for distributing the first- mode energy is determined from the 
following rule: 

Shape 1 ( 1ψ ) if beam,11 SDRSDR <  (13) 

Shape 2 ( 2ψ ) if base11beam1 ,, SDRSDRSDR <≤   (14) 

Shape 3 ( 3ψ ) if base,11 SDRSDR ≥  (15) 

The first-mode energy Ea1 is then distributed to each floor level and the base of the frame with the chosen 
energy shape,ψk.  For small levels of strain hardening, the vector of cumulative rotation along the frame 
height can be determined as 

k

pk

aE
ψ

Mψ ˆT

1
1 =η  (16) 

where pM̂  is a plastic moment vector, which includes the summation of plastic moment capacities of the 

columns at the base, and the summation of beam plastic moment capacity.   
        
Performing a pushover analysis with q2 (= Mφ2) as the lateral load pattern, Figure 8 shows the relationship 
between the cumulative rotation, η2,base, at the base of the column and the absorbed energy of each frame.  
η2,base is the average value of the cumulative rotations at the base of exterior and interior columns.  Three 
zones are characterized from three slopes at load steps A and B, which are shown by solid marks.  The 
first zone (before step A) represents the system within the elastic range.  The second zone (between A and 
B) is typified by the formation of beam plastic hinges at upper floor levels, and the third zone (beyond B) 
indicates that column plastic hinges have formed in the upper floor levels.  Normalizing cumulative 
plastic rotation by its maximum value, three normalized energy shapes ( 1ψ , 2ψ , and 3ψ ) for each frame 
are obtained in Figure 9.  1ψ  is the shape for distributing seismic absorbed energy Ea2 when the frame 
responds elastically. 2ψ  is used as the only shape for distributing Ea2 for the inelastic case, because shapes 

2ψ  and 3ψ  are similar.  Energy Ea2 is then distributed to each floor level based on the following 
expression: 

k

pk

aE
ψ

Mψ

η
ˆT

2
2 =  (17) 

where index k can be 1 or 2 determined based on the ductility factor of the second mode.  Combining the 
effects from both modes, the total cumulative rotations in the beams and at the base of the columns are  
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21 ηη +η=a  (18) 

or         ( )2
2

2
1η η+η=a  (19) 

To verify the procedure, results of three frames subjected to three ground motions are presented.  The ηa 
distributions in Figure 10 show good correlation between the results of MDOF nonlinear time-history 
analysis and the proposed procedure.  The energy absorbed at lower floor levels can be predicted by 
considering only the first-mode response.  However, the second-mode effect is more significant at upper 
floor levels in the 7- and 9-story frames.      

Figure 6 η1,base and Absorbed Energy Relationships 
 

 
 

Figure 7 Energy Shape for first-mode Response  
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Figure 8 η2,base and Absorbed Energy Relationships 
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Figure 9 Energy Shape for second-mode Response 
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CONCLUSIONS 
 
A procedure, similar to the response spectrum method for elastic dynamic analysis, to compute the total 
energy demand from inelastic energy spectra and to distribute it along the height of a multistory frame is 
presented.  The energy demand can be estimated without performing an inelastic time-history analysis.  
The procedure, which takes into account the higher mode effect for energy distribution in a low- to 
medium-rise frame, is summarized below. 
 
(1) The MDOF frame is first converted into an equivalent SDOF system for each of the first two modes 

by elastic mode shapes. 
(2) For each equivalent SDOF system, the generalized modal yield force is determined from a static 

pushover analysis with a lateral load (Eq. 8).  Based on the modal yield strength coefficient and 
period, the modal ductility factor can be determined from the constant-ductility yield strength 
response spectrum [Figure 1(a)].  Based on the modal ductility factor, participation factor, and natural 
period, the absorbed energy of each mode is evaluated from the constant-ductility energy spectra 
[Figure 1(b)]. 

(3) Combination of the energy quantities in the first two modes by the absolute sum (ABS) rule provides 
a better estimation of the total energy demand than the SRSS rule.  

(4) The absorbed energy of each mode is distributed along the frame height based on the specific energy 
shape (Eqs. 16 and 17), which is established from a static pushover analysis.  The resulting energy 
distribution, expressed in the form of cumulative rotation, is the summation of contribution from each 
mode (Eqs. 18 or 19). 

 
This study shows that the proposed procedure can predict the damage distribution of low- to medium-rise 
frames when response of the first two modes are considered (Figure 10).  Although the majority of energy 
is contributed by the first mode, for some frames and earthquake ground motions used in this study the 
effect of second mode needs to be included to predict the damage in the upper stories.   
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