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RANDOM OPTIMUM DESIGN FOR FPS-ISOLATED RIGID STRUCTURES  
 

         Huo Da                              Li Dawang,  Zhuang Peng  

  (Beijing Polytechnic University, Beijing 100022)       (Zhengzhou University, Zhengzhou 450002,) 

 

Abstract: The random optimum problem of the FPS-isolated rigid structure, under Gaussian white noise ground motions, is studied. 

Based on the analytical solution of the joint probability density function of the steady-state responses of the system, the random 

optimum mathematical model of the system is configured; the optimization design parameters are calculated.  
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1 Introduction 

Friction Pendulum System (FPS) is an innovative sliding isolation system consisting of an articulated slider on a 

concave spherical surface, seeing References [1]~[12] for its configuration and related research progresses in detail. 

Based on its dynamical equations, the authors of the paper studied non-linear and random vibration performances of the 

FPS system. The random optimization problems of FPS, under horizontal Gaussian white noise ground actions, will be 

probed in the paper. 

The stochastic differential equations of FPS-isolated rigid structures subjected to horizontal earthquake actions may 

be written as[11][12] 
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Where µ  is Coulomb sliding friction coefficient of FPS bearings; g  is the acceleration of gravity; X and X&  

represent the angle of rotation and angular velocity of slider relative to the concave spherical surface of FPS, 

respectively; r  is the radius of the slider and the concave spherical surface; gU&&  stands for a zero-mean Gaussian 

white noise process with the intensity 02 Sπ  in the horizontal direction, the constant 0S  is the power spectrum density 

of gU&& ; )sgn( X&  denotes the Signum function. 

For the cases of tiny-amplitude vibration, Equation (1) can be simplified into 
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where  
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2. Linear forecasting for probability density of steady-state responses of the system 
 
Let Equation (2) be replaced by an equivalent system given by 
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where eα  is the equivalent linear parameter. The joint probability density function of the steady-state responses of the 

system (4) can be expressed as[13] 
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where 
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  Equation (5) shows that the angle of rotation X  and angular velocity X&  in the steady state have both the 

symmetric distribution with zero-mean and they are mutually independent. This leads to 
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where ][⋅E is the operator of the expectation. 

 Multiplying Equation (3) by X&  and using Equation (7), the expected equation of Equation (3) is  
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and from the equivalent system (4) , one can obtain similarly 
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 Comparing Equation (8) with (9), the parameter eα  becomes 
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Owing to 
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and substituting Equations (11) and (12) into Equation (10), one has 
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where  
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 In Reference [12], the same results as above-mentioned were obtained in the light of the condition that the 

mean-square value of the difference between Equations (2) and (4) is minimized, and further verified as effective 

according to Monte-Carlo simulations. 

 

3.  Sliding reliability function of the system 
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The threshold value of angle of rotation X  may be defined as 
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where 0>b  represents the threshold value of the horizontal displacement of the FPS slider. In accordance with the 

bi-barrier problem of Poisson model of the first-passage failure, the sliding reliability function of the slider is given as 

follows 

                     



























−−=−=−=− + 2

0

2

2
expexp)2exp(),(),( b

S

T
T

r

b

r

b
PP e

bsbbs π
ωα

π
ωνϕϕ           (16) 

where  
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is the expected ratio of the steady-state angle of rotation )(tX  sloping the positive barrier r
b

b =ϕ ; T  is the 

stationary duration of earthquake. 

 

4.  Random optimization model and numerical solutions of the system 

 

The sliding friction coefficient µ  and the radius of the slider r  are chosen as the design variables so as to minimize 

the root-mean-square (RMS) of horizontal absolute acceleration of the slider, according to 
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Equation (4) leads to 
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Substituting Equations (7), (12) and 
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into Equation (18), gives 
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The constrains in the optimization can be represented as 

① sbbs PP ≥− ),( ϕϕ .  Substituting Equation (16) into this equation, gets 
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where sP  is the inferior limit of ),( bbsP ϕϕ− . 

② bXE ϕ3.0][ 2 ≤ . On the basis of Equations (15) and (19), yields 
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③ ul µµµ ≤≤<0 . lµ and uµ are the inferior and superior limit of the friction coefficient µ , respectively. 

④  ul rrr ≤≤<0 . lr and ur are the inferior and superior limit of the radius of the slide r , respectively. 

   Some calculated results are represented in Table 1 in line with  

              s25=T ； 99.0=sP ； 4.0,01.0 == ul µµ ； cm600cm,50 == ul rr  

Table 1  Optimum values of RMS and design variables 

               )/s(cm 32
0S  

  100 200 300 400 

 )RMS(cm/s 2      46.6681           74.4553           98.7367         124.4887  

cm10=b  *µ       0.0978           0.1556            0.2186           0.2915 

 (cm)*r      92.9074           57.3389           50.0000          50.0000 

   

 )RMS(cm/s 2      40.5201           64.6592           84.9807          103.1616 

cm15=b  *µ       0.0849           0.1353            0.1774            0.2148 

 (cm)*r      163.5485         100.8542           76.0369           62.2367 

   

 )RMS(cm/s 2      36.6504          58.4928           76.8826           93.3361 

cm20=b  *µ       0.0768           0.1224            0.1607            0.1947 

 (cm)*r      244.4349         150.6432          113.5346          92.9073 

   

 )RMS(cm/s 2      33.9022          54.1132           71.1308           86.3573 

cm25=b  *µ       0.0711           0.1133            0.1487            0.1803 

 (cm)*r     333.9578         205.7124          154.9959          126.8113 

   

 )RMS(cm/s2      31.8085          50.7766           66.7486            81.0402 

cm30=b  *µ       0.0667           0.1064            0.1396             0.1693 

 (cm)*r     431.0586         265.4104          199.9274           163.5495 

 
  Table 1 shows that the optimum value of the absolute horizontal acceleration of the slider decreases with the 

additional width b of the base increasing and increases with the power spectrum intensity 0S  increasing; for smaller 

additional width b , larger friction coefficient and smaller radius of a FPS bearing should be selected to synthetically 

control the sliding displacement of the system, especially under strong earthquake actions. 
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5.  Concluding Remarks 

The random optimum problem of FPS-isolated rigid structures, under Gaussian white noise ground motions, is studied 

in the paper. Based on the analytical solutions of the joint probability density function of the steady-state responses and 

the sliding reliability function of the system, the random optimum mathematical model of the system is configured by 

selecting the root-mean-square of the horizontal absolute acceleration of FPS slider as the objective function and the 

optimization design parameters are calculated. The numerical simulation results can provide useful suggestions for the 

practical design of FPS systems. 
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