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SUMMARY 
 

The finite element analysis of unstiffened steel plate shear walls (SPSWs) has been implemented to date 
with only limited success. Because of local instabilities and snap-through buckling of infill plates, 
commonly used solution techniques fail to converge to the equilibrium path as cyclic buckling takes place 
in the plate. Lack of convergence is a major problem in finite element analysis of these systems especially 
when geometric nonlinearities are included in the model [1, 2].  
 
A finite element model based on explicit dynamic formulation was recently developed for the analysis of 
unstiffened SPSWs. Shell elements were used to model all components of the shear wall. Material and 
geometric nonlinearities, and initial imperfections in the infill plates were included in the model. A 
kinematic hardening material model was implemented in the analysis in order to simulate the Bauschinger 
effect in the cyclic analysis of the system. A special loading procedure was developed to implement a 
displacement control analysis. Quasi-static condition was simulated by controlling the kinetic energy of 
the system. 
 
This paper presents the procedure adopted to analyze SPSWs under monotonic and cyclic loading. It 
validates the finite element model by comparing the predicted behaviour with the results of a large-scale 
three-storey SPSW test. 
 

INTRODUCTION 
 
Experimental and analytical investigations have shown that unstiffened steel plate shear walls are 
effective and economical lateral load resisting systems, especially in regions of high seismicity [1, 2, 3]. 
The system consists of infill steel plates connected to the boundary beams and columns over the full 
height of the framed bay. For a thin panel, the shear buckling strength is low and, as a result, the shear 

                                                      
1 Post Doctoral Fellow, Dept. of Civil & Environmental Engineering, U. of Alberta, Edmonton, AB, 
Canada 
2 Professor, Dept. of Civil & Environmental Engineering, U. of Alberta, Edmonton, AB, Canada 
 



resistance depends on the ability of the infill plate to develop a tension field. The boundary members must 
have sufficient flexural stiffness to anchor the tension field.  
 
Clause 27.8 of the latest edition of the Canadian standard on Limit States Design of Steel Structures [4] 
provides guidelines for the analysis and design of thin unstiffened steel plate shear walls. The analysis 
method proposed in Clause 27.8 is based on the strip model developed by Thorburn et al. [5]. Although 
the model predicts the capacity of the system reasonably well, it fails to predict the stiffness accurately in 
most of the cases [3]. Accurate prediction of stiffness is of paramount importance in drift calculations of 
high-rise buildings. To provide improved design guidelines more research is needed in areas that are still 
unknown. For example, it is necessary to quantify the effects of infill panel aspect ratio and the stiffness 
ratio of the infill plate to that of beams and columns. Because of the expense involved in an experimental 
program to investigate these parameters, an analytical tool that can accurately predict the monotonic and 
cyclic behaviour of thin unstiffened steel plate shear walls is needed for a comprehensive parametric 
study. 
 
Despite the recent research progress on this system, mainly due to small and large-scale testing programs, 
and the attention from the structural engineering community, to date, relatively few structures that use this 
system have been constructed in North America. The lack of a reliable and effective analytical tool is 
likely one of the barriers for wide application of this system. The following presents a procedure that has 
been implemented successfully to predict both the strength and behaviour of SPSWs under monotonic 
and cyclic loading. 
 
 

CONVERGENCE PROBLEM IN A STATIC IMPLICIT METHOD 
 
Most large-scale tests on steel plate shear walls have been conducted under quasi-static loading 
conditions. The response of a nonlinear system should be obtained incrementally. In a static condition, the 
equilibrium state at the end of a load increment at time tt ∆+  can be written as: 
 

0=− ∆+∆+ tttt FR  (1) 
 
where ttR ∆+  are the external forces and ttF ∆+  are the internal forces, equivalent to the element stresses. 
Since ttF ∆+  depends on the history of the nodal point displacements, it is necessary to adopt an iterative 
process to solve the above equation. 
 
The common solution technique for solving the above nonlinear equation is based on Newton-Raphson 
(or modified Newton-Raphson) iterative method [6]. In a load control analysis, the solution seeks 
equilibrium through a horizontal path at a constant load vector of ttR ∆+ . In a displacement control 
analysis, which is required for tracing the behaviour of a system after a limit point, both the load level and 
the displacements are treated as unknowns [7]. The basic algorithm remains the Newton-Raphson 
iteration, but the search for equilibrium is based on an iterative path perpendicular to the tangent at 
previously converged point. Because of the sudden out-of-plane deformation of infill plates when the 
infill plate buckles, usually convergence of the analysis cannot be achieved within the tolerance required 
for accurate results, or requires a very small time increment. An earlier attempt to analyze a three-storey 
SPSW under monotonic loading required an increment size less than 10-5  second (the static analysis 
conducted in one second virtual time scale) in order to obtain convergence [8]. Because of the poor 
performance of the implicit finite element method, the explicit dynamic method was adopted as a tool for 
the analysis of steel plate shear wall systems. 
 



 
EXPLICIT FINITE ELEMENT METHOD 

 
The explicit dynamic procedure can be used as an effective tool for solving a wide variety of nonlinear 
solids and structural mechanics problems. Originally it was developed to analyse high-speed dynamic 
events that are extremely expensive to analyse using implicit methods [9]. With proper control of the 
kinetic energy, the explicit approach can be used for quasi-static problems that experience severe 
convergence difficulties in implicit analysis methods.  
 
Formulation of the dynamic explicit finite element method 
The governing equilibrium equations of a body in a dynamic state can be obtained using the principle of 
virtual work. According to this principle, a body is in a state of static or dynamic equilibrium when the 
total internal virtual work is equal to the total external virtual work when the body is subjected to a virtual 
displacement. By neglecting the effect of viscous damping the dynamic force balance, in matrix form, can 
be obtained as:  
 

FRUM −=  (2) 
 
Where M is the consistent mass matrix, U  is the nodal acceleration vector, R and F are external and 
internal force vectors, respectively, as defined in equation 1. If a lumped mass matrix is used in lieu of a 
consistent mass matrix, equation (2) can be decoupled and the dynamic balance equation can be written 
separately for each node. This is an important step in the dynamic explicit formulation since by doing so 
the time integration procedure can be carried out quite effectively explicitly. 
 
Computational procedure in dynamic explicit method 
Using the central difference method, which is the most commonly used time integration procedure, 
equilibrium of the system is considered at time t in order to calculate the kinematic conditions at time 

tt ∆+ (the next increment). Because the explicit method uses a lumped mass matrix, the solution of the 
acceleration is trivial since no simultaneous equations need to be solved: 
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As a result, the acceleration of any node is determined completely by its nodal mass and the net force 
acting on the node, making the nodal calculation very inexpensive. Using central difference method the 
accelerations are integrated over time to obtain the change in velocity, assuming a constant acceleration. 
The change in velocity is added to the velocity from the middle of the previous increment to determine 
the velocity at the middle of the current time increment: 
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The velocities are then integrated over time and added to the displacements at the beginning of the 
increment to determine the displacements at the end of the increment as follows: 
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Therefore, by satisfying dynamic equilibrium at the beginning of the increment, the velocities and the 
displacements are obtained at the middle and the end of the increment, respectively. 
 
Stability limit of a dynamic explicit method 
Since the central difference method is a conditionally stable algorithm [6], the maximum time increment 
should be less that a stability limit in order to keep the error bounded. The stability limit is defined in 
terms of the highest frequency of the system, maxω . In the absence of damping, the stability limit is 
defined as: 
 

max

2
ω
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Since calculation of the actual highest frequency of a model can be very time consuming, especially in 
large models, a simple estimate, obtained from the individual elements in the model, that is feasible and 
conservative, is usually used [10]. The element–by–element method tends to overestimate the highest 
frequency of the system, which results in a smaller time increment. The highest frequency of an element 
is associated with the dilatational mode, and the critical time increment is given by: 
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where, eL  is the smallest characteristic length of the element and dC  is the dilatational wave speed of 
the material defined as: 
 

ρ
=

ECd  (8) 

 
where, E  is the modulus of elasticity and ρ  is the density of the material. Examination of these 
equations reveals that a conservative value for critical time increment is the time that a dilatational wave 
passes across the smallest characteristic element length. 
 
Two main parameters can change the critical time increment and, as a result, can change the required 
computational time for an explicit analysis. These are the material properties and size of the finite element 
mesh. The dilatational wave speed depends on the stiffness and the density of the material. The stiffer the 
material the higher the wave speed, resulting in a smaller stable time increment. On the other hand, a 
higher material density results in a reduction of the wave speed and an increase in the critical time 
increment. For a specific material the wave speed is constant in the linear portion of the analysis since the 
modulus of elasticity is constant and, therefore, the critical time depends only on the smallest element size 
in the finite element mesh. In the nonlinear range, however, the modulus of elasticity decreases, which 
reduces the wave speed and increases the critical time increment. Since the critical time increment is 
approximately proportional to the shortest element dimension, it is recommended that the element size be 
kept as large as possible as long as the accuracy of analysis is acceptable.  
 
Simulation of a quasi-static analysis with the dynamic explicit method 
Almost all tests on unstiffened steel plate shear walls available in the literature have been conducted 
under quasi-static loading condition. However, the explicit finite element method is based on a dynamic 



formulation in which the inertial forces resulting from the acceleration and mass of the system play an 
important role. As a result, applying the explicit dynamic procedure to a quasi-static problem requires 
some special considerations. The main goal is to simulate the analysis in the shortest period of time in 
which the inertial forces remain insignificant. The speed of an analysis often can be increased 
substantially without significantly reducing the accuracy of quasi-static solutions. However, if the speed 
of an analysis increases to a point where the inertial forces dominate, the solution tends to localize and the 
results will be quite different from the quasi-static solution. 
 
For accuracy and efficiency of a quasi-static analysis, loads should be applied as smoothly as possible 
such that the accelerations change only a small amount from one increment to the next increment. If the 
acceleration is smooth, it results in a smooth velocity and displacement. ABAQUS/Explicit [10] has a 
simple built-in type of amplitude, called SMOOTH STEP, which automatically creates the smoothest 
possible loading amplitude between two points. Using this option, each of the data pairs will be connected 
with curves whose first and second derivatives are smooth and whose slopes are zero at each data point  
 
In a quasi-static analysis the slowest mode of the structure dominates the response. As a result, by 
calculating the frequency and period of the slowest mode of the system, a lower bound time period for 
doing a quasi-static simulation can be obtained. In most structural problems a loading duration 
corresponding to 10 times the period of the slowest mode is recommended in order to make sure that a 
solution is quasi-static [10]. 
 
In a quasi-static simulation, the kinetic energy of 
the deforming material should not exceed a small 
fraction (typically 5% to 10%) of its internal 
energy during most of the simulation [10]. In 
addition, a smooth loading history should produce 
smooth response and as a result the kinetic energy 
history itself should be smooth.  
 
 
FINITE ELEMENT ANALYSIS OF LARGE-

SCALE THREE-STOREY SPSW 
 
A test on a large-scale three-storey steel plate 
shear wall was conducted at the University of 
Alberta [8]. The test specimen consisted of the 
undamaged upper three storeys of a four-storey 
SPSW tested by Driver et al. [3]. A schematic of 
the test specimen is shown in Fig.1. The columns 
consist of W310x118 sections spaced at 3050 mm, 
and the beams are W310x60 sections at levels 1 
and 2 and W530x82 at the top. The overall height 
of the specimen is 5497 mm with a typical storey 
height of 1830 mm. The specimen was tested under a combination of constant gravity load and cyclic 
lateral load under quasi-static condition. Equal lateral loads were applied at each beam level and were 
cycled according to the guideline proposed by ATC-24 [11] in order to simulate a severe earthquake 
condition. 

 

Fig. 1 : Schematic of a 3-storey steel 
plate shear wall 



Details of the specimen and the test results are presented in reference [8]. The monotonic and cyclic 
behaviour of the three-storey SPSW specimen were simulated with ABAQUS/Explicit [10] and the results 
of the analysis are compared with the test results in the following. 
 
Description of finite element model 
Element selection 
In order to capture local buckling of beam and column flanges, all components of the steel plate shear 
wall were discretized with shell elements. The “S4R” shell element was selected from the ABAQUS 
library of elements. This element is a general-purpose 4-node doubly curved shell element with reduced 
integration and is based on an updated Lagrangian formulation. The element accounts for finite (large) 
membrane strains and arbitrary large rotations and can be used to model the behaviour of both thin and 
thick shells. Each node has six degrees of freedom, namely, three translations ( ),, zyx uuu  and three 

rotations ( zyx θθθ ,, ) defined in a global coordinate system.  

 
To prevent the occurrence of hourglass modes, all the concentrated loads and boundary conditions were 
distributed on a number of nodes; typically 15 nodes for concentrated loads and 5 nodes for lateral 
bracing points. A mesh of 15 by 10 elements (15 elements over the width of the shear wall) was used to 
model the infill plates. Beam and column cross-sections were discretized using 12 shell elements and the 
length of the elements was selected to match the mesh size in the infill plates. Five integration points 
through the thickness of the shell elements were used in monotonic loading of shear wall and nine 
integration points were used in more complex cyclic loading.  
 
Geometry and initial imperfections 
Measurements of as-built dimensions were used in the finite element model. The fish plate connection 
tabs, which were used for connection of infill plates to the inside flanges of boundary members in the test 
specimen, were not considered in the finite element model since they are not expected to affect the overall 
behaviour of the SPSW. The imperfections can be categorised as camber and sweep of beams and 
columns and out–of–flatness of the plate. The camber and sweep of the beams and columns and the 
columns out–of–plumb were considered small and were neglected in the formulation of the finite element 
model.  
 
The previous test on a four-storey steel plate shear wall [3] from which this three-storey SPSW was 
obtained had introduced a pattern of residual buckles in the infill plate at the first level, which were 
consistent with the orientation of the tension field at the time of failure. The maximum value of the out–
of–plane initial imperfections was measured to be 39 mm in the first panel. Measured out–of–plane 
deformations in the first panel were mapped onto the finite element mesh in order to introduce these 
initial imperfections in model. For the second and third panels, the infill plate was taken to have an initial 
imperfection pattern corresponding to the buckling mode of the shear wall loaded in the same way as in 
the test. The peak amplitude for the second and third panels out–of–plane deformations was set at 10 mm.  
 
Boundary conditions 
All the nodes at the base of the steel plate shear wall model were fixed to simulate the rigid boundary 
condition at the base of the shear wall. In order to simulate the out-of-plane bracing provided in the 
physical test, the out-of-plane displacements at both ends of the beam at all three levels were restrained. 
In order to prevent local distortions at the brace points, five nodes were restrained at each brace point. 
 
In the physical test the horizontal loads at each floor level and also the gravity loads at the top of each 
column were applied through thick bearing plates welded to the test specimen. To simulate this effect at 



all loading points, a rigid body surface was provided by connecting the nodes under the bearing plates to 
a reference node with rigid links.  
 
Material properties 
The constitutive relationship in the analysis is based on stress versus strain responses obtained from 
tension coupon tests of different parts of the steel plate shear wall. Since it was not possible to conduct 
material tests for the three-storey specimen, the results of the tension tests on the material used in the 
fabrication of the Driver et al. [3] test specimen, from which the current specimen was obtained, were 
used. These material properties do not reflect any of the changes in material properties that took place as a 
result of the plastic deformations during the four-storey shear wall test and, therefore, it has some impact 
on the results. The steel used in all parts of the shear wall exhibited the classical stress versus strain 
behaviour of hot rolled ductile steel with a well-defined yield plateau. The engineering stress vs. strain 
curves were changed to true stress (Cauchy stress) and logarithmic strain for use in the finite element 
model. 
 
A simple rate independent constitutive behaviour that is identical in tension and compression was used. 
An isotropic hardening model was used for the pushover analysis. Although ABAQUS/Explicit is 
intended for dynamic, hence cyclic, analysis, it does not have a kinematic hardening model. However, it 
allows the user to implement a material model through a user subroutine. A kinematic material model 
suitable for analysis of a shell element was therefore prepared and used for cyclic load analysis of steel 
plate shear wall.  
 
Technique for conducting a displacement control analysis 
Because of the flat load versus displacement behaviour displayed by the test specimen at large 
deformations, a displacement control approach is preferred for the analysis so that the loading process can 
be better controlled. In addition, a load control approach will result in an unstable dynamic solution when 
the applied load exceeds the load carrying capacity of the shear wall. The need for a displacement control 
strategy is more vital in a cyclic analysis. A typical 
loading procedure for a cyclic test of a SPSW 
consists of selecting a deformation control parameter 
such as the inter-storey drift, and to control the 
magnitude of this parameter during the test.  
 
The available control option in ABAQUS/Explicit 
consists of applying displacement, velocity and/or 
acceleration histories to one or more nodes 
separately. These nodes are treated as boundary 
nodes and the required force at each node to reach a 
specific displacement (velocity and/or acceleration) is 
obtained from equilibrium. 
 
During cyclic loading of the three-storey steel plate 
shear wall, the gravity loads remained constant and 
the cyclic loads were equal horizontal loads applied 
at each level. In order to implement a displacement 
control type analysis, the distributing beam system 
shown in Fig. 2 was used as a loading frame. The 
loading frame consists of a system of rigid beam 
elements that are connected to the shear wall at beam levels in order to transfer horizontal forces only. 
The geometry and the connections are defined in such a way that any loads applied at node B7 on loading 
frame is transferred equally to each level of the shear wall. For stability, out–of–plane displacement and 

Fig. 2: Loading frame for displacement 
control of 3SPSW specimen 



rotation along the axis of the loading frame element are prevented. Since the selected system is statically 
determinate, it will not impose any constraint to the shear wall. Therefore, a system of equal horizontal 
loads can be applied to the shear wall only by controlling the displacement, velocity, or acceleration of 
node B7. However, with this system only the kinematics of node B7 on the loading frame can be 
controlled directly, so that, for a parameter other than this node, the control is indirect. For example, to 
run a cyclic simulation in which the control parameter is first storey drift of the shear wall, a pushover 
analysis is required to obtain an approximate relationship between node B7 and the first storey drift. This 
relationship allows a reasonable displacement history at node B7 to yield an approximate drift history for 
the first panel. 
 
Pushover analysis of three-storey steel plate shear wall 
A frequency analysis of the test specimen indicated that the period of the first mode is 3.51 seconds. The 
total time of the analysis was set at about 50 times the period of the first mode and the initial time 
increment of the model, which depends on mesh size and material properties (see equation 7), was 
obtained as 2.322×10-4 second. In the first step of the analysis, a gravity load of 540 kN was applied at 
the top of each column over a loading period of 30 seconds and was kept constant for the remainder of the 
analysis. The time period of 30 seconds created a quasi-static loading condition as will be shown by a 
study of the specimen energies.  
 
During the following load step, node B7 was displaced monotonically until the displacement at the first 
level (node S1 in Fig. 2) reached a value well beyond the displacement at which the specimen reached its 
ultimate capacity during the test. In order to control the amount of kinetic energy of the specimen, 
velocity, rather than displacement, was applied smoothly to node B7. Starting at 30 seconds, the velocity 
history shown in Fig. 3 was applied horizontally to node B7. The shear wall was pushed using a smooth 
amplitude function so that the velocity and acceleration at the beginning and end of the loading step are 
zero. Application of the velocity history shown in Fig. 3 resulted in a horizontal displacement of 80 mm 
at node B7, which created enough drift at the first level to pass the limit point. 
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 Fig. 3: Horizontal velocity history applied at  Fig. 4: History of different energies during  
 node B7 for pushover analysis of 3SPSW pushover analysis of 3SPSW 
 
The history of different types of energy developed in the whole system during the pushover analysis is 
shown in Fig. 4. The internal and external energies are equal and the other forms of energy are negligible 
relative to internal energy. This indicates that the analysis has been carried out in a quasi-static condition. 
The artificial energy is also very small compared to the internal energy, which indicates that the hourglass 
mode has not affected the simulation. The kinetic energy versus time curve presented in Fig. 5 shows that 
the kinetic energy varies smoothly over time except when the tension field is being developed. When the 
tension field develops the kinetic energy increases rapidly. This behaviour is characteristic of thin 
unstiffened steel plate shear walls and it has been observed during the test when the development of the 



tension field was accompanied by loud reports and rapid out–of–plane deformations in the infill plates 
[8].  
 
A plot of base shear versus horizontal displacement at the top of the test specimen is presented in Fig. 6. 
The finite element model is found to predict the stiffness of the shear wall very well but underestimates 
the strength by about 12%. Since the stiffness of the shear wall is predicted accurately with the finite 
element model, the lower predicted strength is attributed to the difference in material properties between 
the finite 
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element model and the three-storey steel plate shear wall test specimen. As explained above, the plastic 
deformations from the four-storey steel plate shear wall test by Driver et al. [3] may have changed the 
initial yield strength of the infill plate of the first storey of the three-storey specimen. This increase in 
yield strength is not uniform since the stress field in the infill plate is not uniform over a panel, which 
makes this factor very difficult to assess and incorporate into the finite element model. Fig. 6 also shows 
the response of the bare frame, which indicates that the infill plate has significantly increased the stiffness 
and shear capacity of the frame.  
 
Cyclic analysis of three-storey steel plate 
shear wall 
A pushover analysis provides an estimate of 
the stiffness and capacity of a steel plate shear 
wall as it captures closely the envelope of 
cyclic response of a system. However, to 
evaluate the energy dissipation characteristics 
and the efficiency of a steel plate shear wall 
under cyclic loading, the finite element model 
should be able to simulate accurately the 
cyclic response of the system. 
 
For simplicity, drift of the first panel was 
taken as a control parameter to cycle the finite 
element model. In the first load step the 
gravity load of 540 kN was applied at the top of each column and was kept constant during the rest of 
analysis. Based on the relationship between horizontal displacement of node B7 and drift of the first panel 

Fig.7: History of drift developed in the 
first panel of 3SPSW 

Fig. 5: History of kinematic energy during
pushover analysis of three-storey SPSW 
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(obtained from the pushover analysis of the specimen) the history of displacement at node B7 was 
developed to create the desirable drift history in the first panel. In the following load steps the shear wall 
was cycled by increasing drift of the first panel as a multiple of the yield drift. At each displacement level 
the shear wall was cycled two times in order to develop a stable hysteresis curve. The resulting drift in the 
first panel as a function of time is presented in Fig. 7. The variation with the time of the different energies 
was obtained in order to evaluate the inertial effect in the cyclic analysis. It was found that internal and 
external energies are similar and the kinetic and artificial energies are negligible during the cyclic loading, 
which indicates that the load model simulated a quasi-static condition.  
 
The hysteresis loops generated from the base shear vs. first storey drift obtained from the finite element 
analysis and the test is presented in Fig. 8. Good agreement between the test results and the predicted 
behaviour is observed. The finite element analysis predicts both the initial stiffness and the point of 
significant yielding accurately. The pinching of the hysteresis curves, which is an important feature of 
unstiffened steel plate shear wall behaviour, is captured reasonably well by the finite element model. 
During the early reloading phase, after load reversal, a significant reduction of stiffness occurs after a load 
reversal. This reduction of stiffness remains until redevelopment of the tension field in the infill plate. 
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The deformed configuration of the shear wall at three different stages of loading is shown in Fig. 9. Fig. 
9a shows the model at full development of the tension field during loading in the east to west direction. 
Fig. 9b shows the model at an early stage of the redevelopment of the tension field.Fig. 9c shows the 
deformed shape at full development of the tension field during loading of the shear wall in the opposite 
direction. The deformed shape obtained from the finite element analysis was very similar to the observed 
shape during the test. Both show the same configuration and number of buckle waves in the infill plates. 
 
Energy dissipation 
The ability of a structural system to dissipate energy is one of the key parameters for evaluating the 
performance of a system in a severe earthquake. A common approach used to account for inelastic 
seismic performance of a structural system is to employ a seismic force reduction factor. This factor 
reduces the elastic spectral demands to a design level that would be encountered if a system possesses 
significant inelastic behaviour. Structural systems that can effectively dissipate energy are permitted a 
larger reduction  

Fig. 8: Finite element hysteresis loops vs. test results (panel 1) 



East 
West

 
 

 (a) Full development of tension (b) At early stage of (c) At full re-development of  
 field during loading of the wall the redevelopment of tension field during loading 
 in the east to west direction.  the tension field. of the shear wall in the 
   opposite direction. 

Fig. 9: Deformed configuration of three-storey steel plate shear wall 
 
factor. The National Building Code of Canada (NBCC, 1995) introduces a force modification factor, R, to 
account for inelasticity in the response of a system. The energy dissipation ability of a system is a key 
parameter used to establish the value for this factor. The area enclosed by hysteresis loops generated 
during a specific load or displacement history is used as a measure of the energy dissipated by the system. 
 
In order to compare the energy dissipation ability of the finite element model with that of the test 
specimen, hysteresis loops that have reached a stable behaviour were used. Because the behaviour of the 
three-storey steel plate shear wall specimen during the test was not symmetrical [8], an unsymmetrical 
cycle of the test was assumed to be equivalent to a symmetrical cycle with the drift level taken as the 
average drift from the two excursions. 
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Fig. 10: Energy dissipation as a function of drift 
 
 



The amount of energy dissipated by the first and second panels is plotted against the drift level obtained 
from the finite element analysis and compared with the test results in Fig. 10. There is excellent 
agreement between the test and the finite element analysis. At a drift-to-storey height value of 1% the 
test-to-predicted energy dissipation in panels 1 and 2 is 0.75 and 0.85, respectively. The test-to-predicted 
energy dissipation at a drift level of 2% is 0.85 and 0.90 for panels 1 and 2, respectively. 
 

SUMMARY AND CONCLUSIONS 
 
A finite element model based on explicit dynamic formulation was developed for the analysis of steel 
plate shear walls. Material and geometric nonlinearity, and the initial imperfections of the infill plates 
were included in the model. A kinematic hardening material model subroutine was implemented in order 
to simulate the Bauschinger effect in the cyclic analysis of the shear wall.  
 
The finite element model was used to simulate the monotonic and cyclic response of a three-storey test 
specimen. Since the solution strategy in the explicit formulation is not an iterative process, the analysis 
was completed without any numerical difficulty. In general, excellent agreement was observed between 
the test results and the finite element analysis. The stiffness of the three-storey steel plate shear wall was 
predicted accurately, but the predicted capacity was 12% lower than the measured capacity during the 
test. In general, the hysteresis loops generated by the finite element model were in good agreement with 
those generated during the test. The pinching effect observed in the physical tests was also captured in the 
finite element analysis, although to a slightly lesser extent than observed in the physical tests. These 
results demonstrate the validity and the effectiveness of the developed finite element model of unstiffened 
steel plate shear walls. 
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