
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 2424 

 
 

STABLE DESIGN OF H∞  OUTPUT FEEDBACK CONTROL  
SYSTEMS WITH TIME DELAY 

 
 

Chi-Chang  LIN1, Chang-Ching CHANG2, Huang-Lin CHEN2 
 
 

SUMMARY 
 

In this paper, a H∞  direct output feedback control algorithm through minimizing the entropy, a 
performance index measuring the tradeoff between H∞  optimality and 2H  optimality, is developed to 
reduce the earthquake response of structures. The control forces are obtained from the multiplication of 
direct output measurements by a pre-calculated time-invariant feedback gain matrix. To achieve optimal 
control performance and assure control system stability, the strategy to select both control parameters γ  
and α  is extensively investigated considering the control force execution time delay. It is found that the 
selection of smaller γ  or larger α will result in better control performance, but larger control forces 
requirement. However, a lower bound of γ  and an upper bound of α  exist. The selection beyond these 
values will cause the control system instability. For a SDOF damped structure, analytical expressions of 
direct output feedback gains are derived. It can be proved that the conventional LQR control is a special 
case of the developed ∞H  control. Direct velocity feedback control is effective in reducing structural 
responses with much fewer sensors and controllers than the degrees of freedom of the structure. In real 
active control, control force execution time delay cannot be avoided. Small delay time not only can render 
the control ineffective, but also may cause the system instability. In this paper, explicit formulas of the 
maximum allowable delay time and critical control parameters are derived for the design of a stable 
control system. Some solutions are also proposed to lengthen the maximum allowable delay time. 
 

INTRODUCTION 
 

Since 1970s, remarkable progress has been made in the field of active control of civil engineering 
structures subjected to environmental loadings such as winds and earthquakes [1]. Among those 
researches and real applications, various control algorithms have been investigated in designing 
controllers, for instance LQ [2, 3], LQR optimal control [4, 5] and H∞  control [6, 7]. The H∞  control 
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theory considers the worst case of external disturbances to design the optimal controller to achieve the 
desired performance. The results from both numerical simulations and experimental tests indicate that 
H∞  control is quite effective [6, 7]. In addition, it had been applied to an actual building in Tokyo using a 
pair of mass dampers to reduce the bending-torsion motions of the building due to earthquakes [8]. 
 
However, there are still many problems that affect active control technique towards large-scale practical 
application. Time delay and limited number of sensors and controllers are two of these problems. Strictly 
speaking, a real structure has an infinite number of degrees of freedom (DOFs). It is impossible to acquire 
full-state measurements and feedback to calculate the required control force. Therefore, a direct output 
feedback control algorithm becomes necessary from practical point of view.  Moreover, in real active 
control systems, time is consumed in data acquisition, data processing, on-line calculation, and control 
force execution. There is always a delay between the time at which the control force is assumed to be 
applied and actually applied, and which may cause degradation in control efficiency or even render the 
system unstable. Therefore, a robust control with the consideration of time delay effect is necessary. In the 
literature, the time delay effect on the H∞  active control system has not been investigated by researchers 
as much as those on the LQR optimal control [9-11]. Mahmoud et al. [12] designed the H∞  controller for 
a class of dynamical systems considering state and input delays. They expressed the control design 
procedures in the form of linear matrix inequalities. No time-delayed H∞ output feedback control system 
was studied. 
 
In this paper, a H∞  direct output feedback control algorithm through minimizing the entropy, a 
performance index measuring the trade-off between H∞  optimality and 2H  optimality, is developed to 
reduce the structural responses due to seismic loads. To achieve optimal control performance, the strategy 
to select both control parameters γ  and α  is extensively studied. The exact solution of output feedback 
gain for a single-degree-of-freedom (SDOF) damped structure is derived. It can be proved analytically that 
LQR control is a special case of H∞  control. Direct velocity feedback control is effective in reducing 
structural responses with very small number of sensors and controllers compared with the degrees of 
freedom of the structure. Moreover, explicit formulas are obtained to calculate the maximum allowable 
delay time to avoid system instability. A formula is also derived to determine the critical control weighting 
factor of α  to assure the system stability. Finally, we propose some solutions to increase the maximum 
allowable delay time. 
 
 

∞H  DIRECT OUTPUT FEEDBACK CONTROL ALGORITHM 

 

The equation of motion of an n -DOF discrete-parameter structure under dynamic loading and active 
control force can be written as  

( ) ( ) ( ) ( ) ( )t t t t t+ + = +1 1Mx Cx Kx B u E w&& &  (1) 

where M , C , K  are the n n×  mass, damping and stiffness matrices, respectively. ( )tx  is the n -
dimensional displacement vector, ( )tw  is the r -dimensional external excitation vector and ( )tu  is the 
q -dimensional control force vector. The n q×  matrix 1B  and n r×  matrix 1E  define the locations of 
control forces and excitations, respectively. 

Represented in state-space form, equation (1) can be rewritten as 

( ) ( ) ( ) ( )t t t t= + +X AX Bu Ew&  (2) 
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are 2 1n×  state vector, 2 2n n×  system matrix, 2n q×  controller location matrix and 2n r×  external 
excitations location matrix, respectively. Define a 1p×  control output vector ( )tZ  and a 1s×  output 
measurement vector ( )ty  as 

( ) ( ) ( )t t t= +1Z C X Du  (3) 

( ) ( )t t= 2y C X  (4) 

where 1C , D  and 2C  are 2p n× , p q×  and 2s n×  matrices. In the absence of time delay, the direct 
output feedback control force is calculated by 

( ) ( )t t=u G y  (5) 

where G  is a q s×  time-invariant feedback gain matrix. According to H∞  control algorithm, the H∞  
norm of transfer function matrix ( )jωZwT  of control output with respect to external excitation, takes the 
form 
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Z
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w
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where 1j = − , and sup is defined as the supremum over all ( )tw ；γ  is a positive attenuation constant 
which denotes a measurement of control performance. 

2
*  denotes the 2H  norm. From equations (2)-(6), 

it is derived that the transfer function matrix ( )jωZwT  is expressed by  

1( ) ( )[ ( )]j jω ω −= + ⋅ − +Zw 1 2 2T C DGC I A BGC E   (7) 

And, the optimal H∞  controller is designed such that the H∞  norm of ( )jωZwT  satisfies the following 
constraint 

( ) sup [ ( )]j jω σ ω γ∞ = <Zw ZwT T  (8) 

where supσ  is the largest singular value of ( )jωZwT . It has been proved [13] that an optimal H∞  control 
system is asymptotically stable if there exists a matrix 0≥P  that satisfies the following Riccati equation 

T T
2

1
( ) ( ) ( ) ( ) 0T

γ
+ + + + + + + =2 2 1 2 1 2A BGC P P A BGC PEE P C DGC C DGC  (9) 

The controllers that satisfy equation (8) are not unique and may have an unbounded closed-loop 2H  
norm. Thus, one way to design the optimal H∞  output feedback gain is to solve equation (9) with 
constraint of the 2H  norm. For example, the so-called combined 2H / H∞  control problems which the 
bound of H∞  norm is imposed and the upper bound of 2H  norm is minimized. Another example is to 
minimize the Entropy of transfer function ( )jωZwT  

2
2 *( , ) ln | det[ ( ) ( )] |

2n ZwE j j d
γγ γ ω ω ω
π

∞ −
−∞

≡ − −∫ Zw ZwT I T T  (10) 

where * ( )jωZwT  is the conjugate transform of ( )jωZwT . It has been shown that the Entropy of a complex 
function is an upper bound of its 2H  norm. Therefore, the minimization of Entropy is equivalent to limit 
the magnitude of 2H  norm. In addition, the Entropy of a function is a useful measurement of how its 



singular values are close to the upper bound, γ . By minimizing the Entropy, we push all singular values 
of ( )jωZwT  away form γ . From the results by Stoorvogel [14], the Entropy is also expressed by  

T( , ) { }nE trγ =ZwT E PE  (11) 

where tr{-} denotes trace of a square matrix. Then, the optimization problem is converted to minimize the 
Entropy of equation (11) subject to the constraint of equation (9). Incorporated with the constraint, the 
Lagrangian can be introduced as  

T T( , , ) { [( ) ( )L tr≡ + + + +2 2G P λ E PE λ A BGC P P A BGC  

T T
2

1
( ) ( )]}

γ
+ + + +1 2 1 2PEE P C DGC C DGC  (12) 

where λ  is a 2 2n n×  Lagrangian multiplier matrix. For simplicity and without loss of generality, let 
T 0=1D C  and T =D D I , the necessary and sufficient conditions for minimization of ( , , )L G P λ  are 

T T T T T
2

1
( ) ( ) 0

γ
+ + + + + + =2 2 1 1 2 2A BGC P P A BGC PEE P C C C G GC   (13a) 

T T T T
2 2

1 1
( ) ( ) 0

γ γ
+ + + + + + =2 2A BGC EE P λ λ A BGC EE P EE   (13b) 

T T T 0+ =2 2 2B PλC GC λC  (13c) 

Thus, the procedures to obtain the H∞  direct output feedback gain matrix G  are: (i) decide a control 
output vector of equation (3), (ii) select a disturbance attenuation constant γ , (iii) solve equations (13a-
13c) to obtain P , λ  and G  by any iterative scheme.  

According to Yaesh and Shaked [13], the Ricatti equation (9) can be rewritten as 

T T T T T T
2

1
( ) 0

γ
+ − − + + =1 1A P PA P BB EE P C C ν PBB Pνp  (14) 

where T T 1( )−= − 2 2 2 2ν I λC C λC C 。For full-state measurement, =2C I , equations (13a)-(13c) reduce to  
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γ
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which is the same expression derived by Lin and Wei [15] for the H∞  state feedback control. Thus, direct 
output feedback control is a general form of the state feedback control. Furthermore, the Entropy is a 
performance index measuring the trade-off between H∞  optimality and 2H  optimality. When γ  
approaches infinity (∞ ), the Entropy of equation (10) takes the form 

22
2

1
lim ( , ) ( ( )) ( )

2n i
i

E j d j
γ

γ σ ω ω ω
π

∞

−∞→∞
= =∑∫Zw Zw ZwT T T  (16) 

and equations (13a)-(13c) reduce to  

T T T T( ) ( ) 0+ + + + + =2 2 1 1 2 2A BGC P P A BGC C C C G GC  (17a) 

T T( ) ( ) 0+ + + + =2 2A BGC λ λ A BGC EE  (17b) 

T T T 0+ =2 2 2B PλC GC λC  (17c) 



Above equations have the same forms as those of the optimal LQR direct output feedback control [4]. It 
shows that the LQR direct output feedback control is a special case of the developed H∞  direct output 
feedback control. 

 
Control parameters 

Consider a n -story linear shear building equipped with an active tendon control system as shown in 
Figure 1. The control force ( )tu  is expressed as  

( ) 4 ( )cosct k t θ=u U  (18) 

where ( )tU  is actuator stroke. ck  and θ  are the stiffness and inclination angle of tendons, respectively. 
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Figure 1. n -story shear building with active tendon control system 

Define the control output vector satisfying T =D D I  and T 0=1D C  as  

( ) ( ) ( )t t tα    
= +   

   

Γ 0
Z X U

0 I
 (19) 

Where ( )tZ  denotes the combination of structural displacement response and actuator stroke and Γ  is a 
scalar matrix with element 0 or 1. In equation (19), the control weighting factor, α , determines the 
relative importance between response reduction and control force requirement. The larger value of α  is, 
the greater reduction of responses. 0α =  represents uncontrolled case. 

For a SDOF structure with mass m , natural frequency 0ω  and damping ratio 0ξ  as example, [ ]1 0=Γ . 
The analytical expression of optimal state feedback gain matrix G  is obtained by solving equation (15) as  

1 2
4 cos

[ ] [ ]c
d v

k
g g P P

m

θ= = − ⋅G  (20) 



And, the controlled frequency, cω , and damping ratio, cξ , are expressed as 
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It is seen from equation (21) that, both control parameters γ  and α  determine the control performance. 
0α =  leads to G =0 and 0cξ ξ=  indicating the uncontrolled case, as expected. As γ  decreases or α  

increases, the controlled damping ratio cξ  increases. For the extreme case of α = ∞ , the controlled 
damping ratio is expressed as 0 12 / 2( / )c P Pξ =  which is a constant value for a chosen γ . At the same 
time, if γ = ∞ , cξ  reduces to 2 / 2  (i.e. 70.71%) as obtained by Chung et al. [4] and Lin et al. [11] for 
the LQR control. This proves that the LQR state feedback control is a special case of the H∞  state 
feedback control as γ = ∞ . In addition, under the constraints of dP  and vP  to be real numbers, and cξ  
less than 100％, the selecting ranges of γ  and α  are given as 
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Equation (22b) shows that in practice, a minimum value of γ , limγ , exists and takes the form  

lim 2 2 2 4 2
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 (23a) 

Above equation shows that limγ  decreases as α  decreases or  0ω  and 0ξ  increase. For the extreme case of 
0α = , limγ  equals to zero, as expected. However, for a general structure, as α = ∞ , limγ  equals to a 

constant as  

lim
0

1
( )

4 cosc

m

P k
γ α

θ
= ∞ = =  (23b) 

which depends on the structural system parameters. The stiffer tendon system, the smaller limγ . Moreover, 
equations (23a) and (23b) reveals that if a γ  larger than lim ( )γ α = ∞  is used, the control system is always 
stable no matter what α  is selected. 

Similarly, for only velocity measurement, the analytical expression of direct velocity feedback gain G  is 
obtained by solving equations (13a)-(13c) as  
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And, the controlled frequency and damping ratio are expressed as 
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In above equations, 
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Same as the state feedback control, as γ  decreases or α  increases, the controlled damping ratio cξ  
increases for direct velocity feedback control. However, due to only velocity feedback, the controlled 
frequency, cω , remains unchanged. From equation (25), it shows that the controlled damping ratio can 
reach 100%. For the SDOF active tendon control structure, if the desired controlled damping ratio, objξ , is 
given, the required control weighting factor , objγ ξα  can be obtained from equation (25) as 

2 2
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1
2
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= −  (26) 

where ( ) ( )
2 2
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ω ξ ωξ ξ ξ ξ ξ= − + − . If 100%objξ = , the maximum value of ,100%γα  can 

be obtained from equation (26) after determining γ .However, under the constraints of 2P  and vP  to be 

real numbers and cξ  less than 100 %, the selecting ranges of γ  and α  are 
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Based on above derivations and discussions, to achieve optimal control performance and assure control 
system stability, the appropriate control strategy is to adjust control weighting factor α  after the selection 
of γ  based on equations (22) and (27). That makes the selection strategy of control parameters more 
efficient and flexible. 

 
Numerical simulation 

A SDOF structure (S1) which system parameters listed in Table 1 is used for a parametric study to 
demonstrate the effectiveness of the proposed control algorithm. The analytical and numerical solutions of 
G  and cξ  of direct velocity feedback (DVF) control for different γ  and α  are shown in Figure 2. It is 
seen that the absolute values of G  and cξ  increase dramatically as γ  decreases or α  increases. The 
controlled frequency cω  is always equal to the original natural frequency 0ω . Figure 3 illustrates the 
transfer function of absolute acceleration with respect to support acceleration for 0.01γ =  and 

0.1,  0.5, and 1.0α = . It is found that the larger α , the smaller peak amplitude of the transfer function. 
The time histories of acceleration response and control force with ( 0.1,   0.01)α γ= =  and without control 
under the strong motion part of the free field ground acceleration (EW component) recorded at the campus 
of National Chung-Hsing University (NCHU) during the 1999 Taiwan Chi-Chi earthquake (Figure 4) are 
illustrated in Figure 5. Because the system damping ratio increases (from 1.24% to 4.58%), the 
acceleration response is significantly reduced. It is also seen that the required maximum control force is 
only 6% of the structural weight. 



For a three DOF control structure (S3), which system properties listed in Table 2, the patterns of control 
force and sensor location are symbolized by F and V. For example, F1V1 indicates that one controller is 
placed at the first floor and the first floor velocity is measured. The more number of controllers and 
sensors, the more reduction in structural responses. However, it is found that one pair of collocated 
controller and sensor at the first floor (F1V1) is effective in significantly increasing all modal dampings 
and reducing the total structural responses, as illustrated in Table 2 and Figures 6-8 for the case of 

0.1α =  and 0.1γ = . The required maximum control force is 11% of structural total weight. 

Table 1. System parameters of S1 structure 

Mass , (Kg)m  3109235.2 ×  

Stiffness , (N m)k  6103898.1 ×  

Damping , (N s m)c ⋅  3105808.1 ×  

Natural frequency , 0 (Hz)ω  3.47 

Natural period , 0 (sec)T  0.288 

Tendon stiffness , (N m)ck  510721.3 ×  

Tendon inclination , θ )(o  36 
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Figure 2. Variation of velocity feedback gain G  and controlled damping ratio cξ  for S1 structure 
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Figure 3. Absolute acceleration transfer  
function for different α  

Figure 4. NCHU campus record (EW) of 1999 
Taiwan Chi-Chi earthquake 
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Figure 5. Time histories of acceleration response and control force of S1 structure 

Table 2. System parameters of S3 structure with and without control 

Mass matrix, (Kg)M  

981 0 0

0 981 0

0 0 981

 
 
 
  

 

Stiffness matrix, (N m)K  

2741500 1641500 369100

1641500 3022000 1624700

369100 1624700 1333500

− 
 − − 
 − 

 

Damping matrix, (N s m)⋅C  

382.78 57.29 61.66

57.29 456.89 2.63

61.66 2.63 437.44

− 
 − − 
 − 

 



Table 2. System parameters of S3 structure with and without control (continued) 

 uncontrolled 
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Figure 6. Variation of controlled damping ratio of S3 structure for different α   
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Figure 7. Top floor displacement transfer function of 
S3 structure for different α  
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Figure 8. Time histories of top floor 
displacement response 



 
CONTROL FORCE EXECUTION TIME DELAY 

 

In real active control systems, time is consumed in data acquisition, data processing, on-line calculation, 
and control force execution. There is always a delay between the time at which the control force is 
assumed to be applied and really applied. That means the control force at time instant t is expressed as  

( ) 4 cos ( )c dt k t tθ= ⋅ −u G y  (28) 

where dt  is the delay time. Substituting equation (28) into equations (2) and (3), the system poles or 
eigenvalues are obtained by solving the following sets of homogeneous algebraic equations 

( ) 0dte λλ −⋅ − + ⋅ ⋅ ⋅ =2I A B G C  (29) 

where I  is the identity matrix and λ  represents complex eigenvalues of the time-delayed control system. 
The corresponding controlled frequency and damping ratio are given as  

cω λ=    Re( )c cξ λ ω= −  (30) 

Where −  and Re ( )−  denote absolute value and real part of a complex number, respectively.  
 
For S1 structure with direct velocity feedback, when delay time dt  increases, the controlled damping ratio, 

cξ , varies slightly for small dt  and then drops to zero very fast as shown in Figure 9 for the case of 
0.01γ =  and 0.1,  0.5, and 1.0α = . The larger α , the faster degradation of controlled damping. The 

maximum allowable delay time ( ,maxdt ) which causes system instability ( 0cξ = ) will also decrease as α  
increases. As 0.01γ = , the comparison of ,maxdt  for state feedback (SFB) and direct velocity feedback 
(DVF) is given in Table 3. It is found that the smaller α , the longer maximum delay time for both SFB 
and DVF controls. However, with the same control weighting factor, direct velocity feedback allows 
longer delay time than state feedback.  
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Figure 9. Variation of cξ  for different 0/dt T  (S1, DVF) 

 



Similarly, for MDOF control systems with time delay, all modal controlled damping ratios decrease as the 
delay time or α  increases. The higher modal damping ratio reduces faster than those of lower modes. For 
the S3 structure with F1state and F1V1 controls, the results are given in Table 4 and Table 5. It shows 
that, when a large α  is used, the highest damping ratio, 3,0ξ , drops to zero first and results in instability of 
the whole control system for both control types. However, it is also found that, when α  is smaller than a 
certain value, to be determined later, the second modal damping reduces to zero rather than the third and 
thus, the maximum delay time increases.  

Table.3 Maximum delay time of S1 with SFB and DVF controls (γ ＝0.01) 

 α=0.1 α=0.5 α=1.0 
 SFB DVF SFB DVF SFB DVF 

,maxdt  

(msec) 
84.8 86.7 54.2 60.6 40.9 48 

Table.4 Controlled results of S3 with F1State control for different α  (γ ＝0.1) 

 
α＝0.05 α＝0.1 α＝0.2 α＝0.5 α＝1.0 

1,c
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,maxdt  

(msec) 
64.2 43.0 36.3 21 16.3 

Table.5 Controlled results of S3 with F1V1 control for different α  (γ ＝0.1) 

 α＝0.02 α＝0.03 α＝0.05 α＝0.1 α＝0.2 

1,c

2,c

3,c

(%)

(%)

(%)

ξ
ξ
ξ
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00.0
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74.5

 
















00.0

27.8

00.10

 
,maxdt  

(msec) 
46.9 29.3 24.2 21.5 20 

 

Maximum delay time 

For the S1 control structure, the analytical expression of ,maxdt  for direct velocity feedback control is 
given as  

1 0 0
,max 22 2 2 4 2 4 2 2 2 4 2 2

00 0 0 0 0 0 0 0 0

22
cos

2 4 4 [2 4 ]
d

vv v

t
P PP P P P

ω ξ
ω ω ξ ω ω ω ξ

−  − =  
 − + − + − +  

 (31) 



It is observed that ,maxdt  increases as system original damping ratio, 0ξ , increases and control weighting 
factor α  decreases as seen in Figure 10. For a damped structure, a critical (or maximum) value of α , 

maxα , exists. When maxα α<  is selected, the control system will remain stable even with long delay time. 
 
In addition, as observed previously, the stability of the S3 control system, is generally determined by the 
third (highest) mode. However, when α  decreases or the third original modal damping ratio, 

3,0ξ , 
increases, the controlled damping ratio of the second or first mode will decrease to zero earlier than that of 
the third mode. Under this circumstance, ,maxdt  will thus be increased as seen in Figure 11. This finding 
eliminates the question that a real structure allows very small delay time because of inherent large 
frequencies in higher modes, and thus increases the confidence of the application of active control. 
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Figure 10. Variation of ,maxdt  for different α  
and 0ξ  (S1, DVF) 
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Figure 11. Variation of ,maxdt  for different α  
and 3,0ξ  (S3, F1V1) 

 
Critical control weighting factor 

As found in preceding section, the max delay time may be lengthened by selecting appropriate control 
weighting factors and/or increasing the damping ratio of higher modes. For a given SDOF damped 
structure, the maximum control weighting factor ( maxα ) exists to satisfy equation (24). That means the 
value of the function in are cosine equals to minus one, i.e., 2

0 0 0(2 ) ( ) 1vP Pω ξ = . For the S1 structure 
with direct velocity feedback, maxα  takes the form as  

2 20
max 0 2 2

0 0

2
1 (3 )

P

ξα ω γ
ω γ

= − −  (32) 

which corresponds to 0 02cξ ξ= . It indicates the control system will always be stable if maxα α<  or say 

0 02cξ ξ< . The variation of maxα  with different 0ω  or 0ξ  for S1 structure with DVF control is shown in 
Figure 12. The larger 0ω  or 0ξ  is, the larger α can be used.  
 
For the S3 structure with F1V1 control, the maxα  that system stability is dominated by the second mode, 
versus the third original damping ratio 3,0ξ  for the third original frequency 3,0ω =l, 5, and 10 Hz is shown 
in Figure 13. maxα  increases with the increase of 3,0ω  and 3,0ξ . The larger 3,0ω  or 3,0ξ  is, the larger α  
can be used. This reconfirms the fact that the stability of MDOF control systems turns to be dominated by 
lower modes if the higher modes have some dampings for certain value of α . 
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Figure12. Variation of maxα  for different 0ξ  
and 0ω  (S1, DVF) 
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Figure13. Variation of maxα  for different 3,0ξ  
and 3,0ω  (S3, F1V1) 

  
CONCLUSIONS 

 

This paper develops an optimal H∞  direct output feedback control algorithm with the consideration of 
limited number of sensors and controllers and control force execution time delay. The closed form 
solutions of optimal output feedback control gains, controlled modal frequency and damping ratio are 
obtained. From the modal parameters, frequency domain and time domain analysis of controlled systems 
under earthquake excitations, it is demonstrated that one pair of collocated velocity sensor and controller 
such as F1V1 is sufficient and effective in reducing the dynamic responses of MDOF structures. 
Analytical expression of control parameter, γ , is also derived to make the control strategy more efficient 
and flexible. Moreover, the explicit formula is obtained to calculate the maximum allowable delay time. 
This quantity is a useful parameter for the design of control devices. Finally, the critical control weighting 
factor is also derived to avoid control system instability. The allowable delay time is lengthened by adding 
structural dampings through passive dampers and/or selecting a control weighting factor smaller than the 
critical one. The control performance can thus be significantly improved even with time delay. 
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