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ABSTRACT 
 
To develop credibility of synthetic seismograms for engineering applications, there is a 
need for a quantitative score that can be used to characterize the how well the synthetic 
matches the statistical characteristics of observed records.  Recognizing that strong 
motion is a very complex time series and any measure that relies on a single parameter 
for the comparison is seriously incomplete, this paper examines use of a suite of 
measurements.  To be specific, we score seismograms that have been filtered into up to 
ten narrow pass-bands.  Each frequency band is scored on ten different characteristics.  
The characteristics scored are the peak acceleration, peak velocity, peak displacement, 
Arias intensity, the integral of velocity squared, Fourier spectrum and acceleration 
response spectrum on a frequency-by-frequency basis, the shape of the normalized 
integrals of acceleration and velocity squared, and the cross correlation.  Each 
characteristic is compared on a scale from 0 to 10, with 10 giving perfect agreement.  
Scores for each parameter are averaged to yield an overall quality of fit.  A score below 4 
is a poor fit, a score of 4-6 is a fair fit, a score of 6 to 8 is a good fit, and a score over 8 is 
an excellent fit. One horizontal component of an actual seismogram typically fits the 
other horizontal component in the “good” range.  The method is applied to a blind 
prediction of ground motions at a station 3 km from the fault in the M7.9 Denali Fault, 
Alaska, earthquake of November 3, 2002.   
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INTRODUCTION 
 
One goal of strong motion seismology is to achieve the ability to generate synthetic 
strong motion accelerograms that are sufficiently realistic that they are useful for 
engineering applications.  Numerous methods to accomplish this have been proposed, 
including stochastic models: e.g. Boore [1]; models that use empirical Green’s functions: 
e.g. Hartzell [2], Irikura [3,4];  and models that start with the representation theorem, e.g. 
Hadley [5], Somerville [6], and Zeng [7].  More recent studies have incorporated an 
increasing amount of physics into the process.   
 
It is somewhat difficult to evaluate how satisfactory the results are for engineering 
applications.  A difficulty is that there is no consensus on how to evaluate the quality of 
the fit.  Every attempt to characterize strong ground motion with a single parameter, such 
as peak acceleration, is certain to fail.  The strong motion accelerogram is variable in its 
duration, spectral shape, spectral amplitudes, and when, during the seismogram, the 
energy arrives.  Seismograms that are similar on three of these criteria may differ on the 
fourth and consequently have very different appearance.   
 
This paper proposes a similarity score based on averages of the quality of fit measuring 
all of these characteristics.  Since the criterion is broadly based, it is not obvious what 
constitutes a good or a poor score.  To answer this question, the paper finds the score for 
the similarity of multiple realizations of synthetic strong motion records generated by the 
same random process, and also the similarity of the two horizontal components of 
observed strong motion accelerograms.    
 

PROPOSED CRITERION 
 
The proposed goodness of fit score is described in detail by Anderson [8].  It is derived 
from ten individual quality measures, each applied to seismograms in ten frequency 
bands.  The quality measures are listed in Table 1.  It is convenient to discuss the 
different goodness of fit criteria in an order different from that in Table 1.  For all 
comparisons, consider two accelerograms, ( )ta1  and ( )ta2 .  Let ( )tvi  and ( )tdi  represent 

the velocity and displacement obtained from ( )tai .  Let ( )ji fSA  be the acceleration 

response spectrum (5% damping) at frequency fj, and let ( )ji fFS  be the Fourier 

amplitude spectrum of the ith accelerogram at frequency fj.  The Arias integral is: 
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Arias [9] defined the Arias intensity as ( )dA TIIA =  where dT  is the complete duration of 
the accelerogram.  The energy associated with the ground motion is related to the integral 
of the velocity, rather than the integral of the acceleration.  Therefore, I define the energy 
integral: 
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The total energy carried by the seismic waves is proportional to ( )dE TI , where the 
complete relationship incorporates the velocity of the waves and the density of the 
ground.   
 
It is assumed that these accelerograms have the same duration and the same origin time.  
Numerically, it is assumed that they are both sampled with the same sample rate, and thus 
are represented by matrices of the same length.  Differences in duration can, of course, be 
handled by padding the shorter accelerogram with zeros.  The assumption of the same 
origin time is perhaps the most difficult to assure as in some cases strong motion records 
do not have known start times, and in any case there may be some uncertainty over the 
origin time of the earthquake.  The scoreing parameters C1, C2, and C10 are sensitive to 
the relative start times, but rest are not.  
 
The order of the presentation in Table 1 goes from integral measures, which are 
potentially the easiest to fit, to peak values, then to spectral amplitudes, and finally to the 
cross correlation, which is by far the most difficult of all of the parameters to achieve a 
high score.  However, it is easier to explain the various measures when they are taken in a 
different order.   
 
First consider the parameter Spga (C5), the goodness of fit of the peak acceleration.  Let 

( )taA ii max= .  Then we define ( )21 , AASSpga =  where 
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The factor of 10 multiplying the familiar function ( )2exp z−  puts the score into a 
comfortable range of values. Equation 1 has several advantageous features. First, it is 
monotonically decreasing as the difference between the parameters increases.  
Optimization programs such as genetic algorithm programs that aim to maximize the 
similarity can find this a convenient feature.  Second, it is symmetrical, in that it gives the 
same score regardless of whether the accelerogram x or y has the larger peak value.  
Third, small differences are not penalized too severely.  When the difference is only half 
the value of the parameter itself, the score is about 8 or larger, out of a peak of 10.  On 
the other hand, it is not sensitivie to differences of more than a factor of 2.5; improving 
the fit from a difference of a factor of 10 to a difference of only a factor of 3 does not 
yield a significant improvement in the score.  This reflects a certain judgement that 
differences greater than a factor of 2 or 3 should not be considered useful fits for 
engineering applications.   
 



  

Table 1.  Goodness of Fit Measurements 
 
Number Symbol Name: Similarity of Definition1 
C1 SDa Arias duration ( )( )[ ]tF IAmax110 −  where 

( ) ( ) ( )tNtNtF IAIAIA
21 −=  and 

( ) ( )
IA

tI
tN AIA =  

C2 SDe Energy duration ( )( )[ ]tF Emax110 −  where 

( ) ( ) ( )tNtNtF EEE
21 −=  and 

( ) ( )
IE

tI
tN EIE =  

C3 SIa Arias intensity ( )21 , IAIAS  where ( )dAii TIIA =  

C4 SIv Energy integral ( )21 , IEIES  where ( )dEii TIIE =  

C5 Spga Peak Acceleration ( )21 , AAS  where ( )taA ii max=  

C6 Spgv Peak Velocity ( )21 ,VVS  where ( )tvV ii max=  

C7 Spgd Peak Displacement ( )21 , DDS  where ( )tdD ii max=  

C8 Ssa Response Spectra ( ) ( )( )[ ]jj fSAfSASmean 21 , , where the 

average is over all frequencies at which 
SA is computed in the frequency band 
being considered. 

C9 Sfs Fourier Spectra ( ) ( )( )[ ]jj fFSfFSSmean 21 , , where 

where the average is over all 
frequencies at which FS is computed by 
the fast Fourier transform in the 
frequency band being considered. 

C10 C* Cross Correlation ( ) ( )( )[ ]0,,max10* 21 tataCC =  where 
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1Definitions of functions: 

( )ta2 , ( )tvi  and ( )tdi  are an accelerogram 
and corresponding velocity and 
displacement, defined for dTt ≤≤0 .  Td is 
the total duration of strong ground motions. 
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The score applied to the peak velocity, peak displacement, and the Arias intensity and 
Energy integral uses the same rationale as the score for peak acceleration.  The Arias 
integral and the energy integral can be used to measure the duration of the accelerograms.  
Trifunac [10] defined duration as the time it takes the  Arias integral to go from 5% to 
95% of its final value.  However, a more sensitive measure of the similarity of the 
duration of the seismograms (C1 and C2) is to look at the differences between the 
normalized integrals, as defined in Table 1.  As the example, ( )tN IA  is monotonically 

increasing from 0 at the start of the record to 1.0 at the end.  If the time series have 
energy coming in at different times, but the total duration (in Trifunac’s [10] sense) is the 
same, then ( )tN IA

1  will differ from ( )tN IA
2 , and C1 will have a score less than 10.   

 
The next two criteria are spectral domain criteria.  The two spectra considered are the 
acceleration response (SA) with 5% damping and the Fourier amplitude (FS).  Although 
the two are similar in some ways, they are conceptually completely different. The SA 
spectrum has asymptotic properties at low and high frequencies that are not shared by FS, 
and SA tends to be smoother.  Thus it is appropriate to develop criteria based on both.  As 
functions of frequency, there is the potential for the spectra from different seismograms 
to be compared at every one of the frequencies where the spectra are computed.  The 
approach used here, although not unique, is to compare the spectra at every frequency 
where they are computed, and to find the mean of the scores for each of those individual 
comparisons for the score for the spectral shape.  The response spectrum can be 
computed at an arbitrary selection of frequencies, and we use a typical selection of 
frequencies.  The Fourier spectra, coming out of an FFT routine, are sampled with 
uniform frequency spacing.  Since reconstruction of the seismogram requires that the 
Fourier amplitude must be correct at every one of these frequencies, score Sfs (C9) is 
testing every frequency in the seismogram.  This is quite a stringent test, and for 
seismograms where only the statistical properties are supposed to agree, the Sfs score 
tends to be lower than others.  The final criterion is based on the cross correlation, except 
that negative values are not allowed.   
 
The scores defined by Table 1 are applicable to any two acceleration time series.  
However, it is common that data or synthetics are not available over all frequency bands.  
Data may be limited by instrument response or noise levels, and synthetics may be 
limited by the methods used to generate them.  The scoring system needs a way to 
accommodate these characteristics.  This can be done by two methods: comparing 
“broadband” accelerograms filtered  to allow the entire frequency band of valid data, or 
comparing in narrower frequency bands.  This study considered both.   
 
Table 2 shows the frequency pass bands used for the narrower frequency bands 
considered.  The spacing of the frequency bands in Table 2 are approximately 
logarithmic, reflecting a weighting by interest and importance.  This contrasts with the 
Fourier spectrum, where spacing is linear.  My preferred score, S1, averages the scores of 
seismograms filtered in each of the valid frequency bands individually, as well as the 
broadband seismogram.  This increases the weight on the lower frequencies, 
appropriately, as these frequencies are more amenable to waveform fitting and are 
particularly important for response of large structures.  An alternative score, S2, is 



  

obtained by averaging the scores on the ten individual criteria in Table 1 for only the 
accelerogram filtered to allow all frequencies to pass.  Numerical studies find that S1 
more fairly represents the quality of the comparison of two seismograms.   
 
Table 2. Frequency bands used 
Band Frequency limits (Hz) 
B1 0.05-0.1 
B2 0.1-0.2 
B3 0.2-0.5 
B4 0.5-1.0 
B5 1.0-2.0 
B6 2.0-5.0 
B7 5.0-10.0 
B8 10.0-20.0 
B9 20.0-50.0 
B10 0.05-50.0 
 

CALIBRATION 
 
It is desirable to determine what the different scores mean.  The purpose of this 
calibration is to develop that information.  These similarity scores were calibrated in two 
different ways. The first was with synthetic seismograms.  The second was to compare 
the two horizontal components of recorded accelerograms.  When generating synthetic 
seismograms with the sole purpose of  matching the statistical characteristics of data, one 
would like to do as well as these approaches.  When attempting to fit waveforms, 
especially at lower frequencies, one would like to do better. 
 

Synthetic seismograms 
 
The synthetic seismograms were created using a new implementation of the method of 
Boore [1].  Pairs of synthetics were generated starting with random numbers, and shaped 
in the time and frequency domains, within the Matlab programing environment.  Each 
pair was compared as described above.  The averages of the 100 different quality of fit 
parameters for the synthetics are tabulated for later use.   
 
Figure 1 considers the statistics of score S1, based on 1000 pairs of synthetics generated 
from the same statistical process to approximate a magnitude 8 accelerogram.  The 
distribution of S1 has a mean of 7.35 and standard deviation of 0.40.  The tails of the 
empirical distribution are not well approximated by the normal distribution.   Figure 1 
also shows the distribution for score S1 for magnitude 7, 6, and 5 synthetics.  The mean 
values for these distributions are 7.16, 6.73, and 6.30 respectively, and the corresponding 
standard deviations are 0.44, 0.55, and 0.73.  The distributions have similar upper limits, 
but the smaller magnitudes show greater numbers of smaller scores and greater standard 



  

deviations.  These may be due to shorter durations of shaking resulting in less stable 
statistics of peak values.   
 

 
Figure 1.  Cumulative distribution of 
similarity score S1 for pairs of synthetic 
seismograms generated by a process similar to 
Boore [1].  Each curve is generated with 800 
or more realizations of synthetic seismogram 
pairs. 

 

 
Figure 2. Cumulative distribution of 
similarity score S1 for east and north 
components of strong motion accelerograms 
obtained on rock stations in Guerrero, Mexico 
(Anderson [12]).  These distributions curves 
are based on 1165 records of magnitude 4.5 or 
larger. 

 
 
 

Guerrero 
 
The Guerrero accelerograph network has been operating since 1985 in a seismic gap in 
Guerrero, e.g. Anderson [11,12].  For this study, we compared the east with the north 
component of 1165 3-component accelerograms.  Figures 2 shows the equivalent of 
Figure 1, based on the similarity of east and north components for earthquakes in 
Guerrero.  There are 31 comparisons for magnitude 7.5-8.1 (M8 in Figure 2), 81 
comparisons for magnitude 6.5-7.49 (M7), 171 comparisons for magnitudes 5.5-6.49 
(M6), and 882 comparisons for 4.5-5.49 (M5).  For the M8, M7, M6, and M5 categories, 
the mean values are 6.4, 6.7, 6.8, and 6.3, respectively, and the standard deviations are 
0.86, 0.71. 0.90, and 1.04, respectively.  For the M6 and M5 categories, the estimated 
means of the distributions are about the same as for the synthetic data.  It appears that 
there is a weaker and less systematic magnitude dependence than with the synthetic 
examples, although this conclusion must be moderated because the uncertainties on the 
estimated distribution parameters are substantial for the large magnitude categories.   
 
From comparing Figures 1 and 2, in each magnitude range the width of the empirical 
cumulative distribution functions are increased in the Guerrero records.  Thus the 
variability of the horizontal components in actual data is greater than the variability of 
multiple realizations of synthetics using a common stochastic process.  All of the 



  

distributions have upper limits at scores of about 8.0, so with the Guerrero records the 
increase in the standard deviation of the scores is accompanied by a shift of the mean 
value to smaller numbers.  Examination of the individual criteria shows that the criteria 
based on peak values have much lower scores in the Guerrero data, but the cross 
correlation tends to be higher especially in the lower frequency bands, resulting from the 
physical relationship that is present due to the physics of wave propagation. 
 

Application 
 
Figures 3 and 4 show how these calibrations might be used, for a single station recording 
the M8.1 Michoacan earthquake.  The seismograms compared (Figure 3) are the east and 
north components from the Caleta de Campos station for the 1985 Michoacan, Mexico, 
earthquake, Mw=8.1, (Anderson [11]).  In Figure 4, each of the criteria is plotted in its 
own subplot.  The comparison of the two seismograms is given by the data points.  The 
averages from the magnitude 8 synthetics are superimposed with the solid line, and the 
averages from the M8 group of Guerrero seismograms are shown by the dashed line.  
Study of Figure 4 allows one to identify which parameters fit well, and which fit poorly.   
  
 

 

Figure 3.  East (A) and north (B) components 
of strong motion recorded at Caleta de 
Campos on Sept. 19, 1985, during the Mw8.1 
Michoacan, Mexico, earthquake (Anderson 
[11]).  Lower frame shows the comparison of 
the similarity score S1 for the accelerograms 
in with the distribution of scores from both 
synthetics and horizontal data components.  
These records have an average score 
compared with other pairs of horizontal 
components.  However, the chances of two 
synthetics with the same duration being more 
different from each other is only about 2%.   

 
Figure 4. Similarity of the two accelerograms 
in Figure 3. Each subplot is for a different 
similarity criterion (Table 1); frequency 
bands are identified in Table 2.  The final 
score S1 is the mean of all of these individual 
scores.  Solid lines show score of the synthetic 
seismograms by the same criterion.  The 
dashed line is the equivalent mean score for 
the similarity of horizontal components of 
Guerrero accelerograms in the M8 group.   

 
 



  

The final score for these two components is S1=6.3.  Figure 3 shows the cumulative 
distribution function of the scores for the two magnitude 8 calibrations.  It also shows a 
vertical line at the score for this accelerogram pair.  The conclusion is that these two 
horizontal components agree about as well as an average pair of horizontal components 
in the Guerrero data (of which they are a member).  However, pairs of synthetics with the 
same target spectrum typically are more similar than these two; only about 2% have a 
lower S1 score.   
 
When comparing data and synthetics, in particular, it is important to know not only how 
closely the two seismograms match, but when they do not match whether the synthetic is 
predicting higher or lower amplitudes.  Therefore, I define the bias in the Fourier 
spectrum and in the response spectra for each of the frequency bands.  For the Fourier 
spectrum, the bias is defined for each frequency fi as: 
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where FS1 is the data, and FS2 is the model.  The bias for a frequency band is taken as the 
mean of bi over all frequencies in that band.  Frequencies outside of the corner 
frequencies of the filter are not included in the average.  The same procedure is used for 
the acceleration response spectrum.  One might expect, on first thought, that a low bias 
should correspond to a high score.  The scoring system could be set up to do that, but that 
is not how it was done here.  Consider for instance a case where the mean bias is zero.  
Criteria 8 or 9 may still be small if the small bias is the result of model spectra being say 
three times larger than the data at some of the individual frequencies, and one third of the 
data at an equal number of other individual frequencies in the frequency band. 
 

BLIND PREDICTION 
 
The Mw 7.9 Alaska earthquake on Nov. 3, 2002, provided a timely opportunity to test 
predictions of strong ground motion recordings obtained very close to a large magnitude 
crustal earthquake.  The results of this blind prediction exercise are described in detail in 
a paper by Anderson [13].  Several strong motion sites are located along the route of the 
Alaska Pipeline which crosses roughly perpendicular to the fault rupture about 85 km 
east of the epicenter. The closest site is PS10, located about 3 km from the fault.  Prior to 
the release of these data, we conducted a blind prediction experiment to estimate the 
ground motion waveforms at this closest recording site. Ground motions are computed 
using, along with other methods, realizations of the stochastic composite source 
simulation methodology of Zeng [7] with some relatively minor modifications to the 
source time function.  Since the source is stochastic, Zeng prepared 10 realizations of the 
source model.  Predictions were made without accurate knowledge of site conditions or 
fault-station geometry.  The predictions were well publicized before the data were 
released.  The predictions were particularly interesting due to interest in capabilities to 
predict directivity pulses using synthetic methods.   
 
 
 



  

 
Figure 5.  Approximate fault geometry 
distributed by John Anderson to potential 
ground motion predictors.  Actual rupture 
proceeded farther to the east, but that is so far 
from the accelerograph that it does not affect 
the blind predictions. 

 
Figure 6. Detail of fault geometry distributed 
by John Anderson for the area near PS10.  
The dashed line is the approximate route of 
the Trans-Alaska Pipeline, which parallels the 
Richardson Highway.  The fault’s nearest 
approach to accelerograph station PS10 (~3 
km, as shown) is about 4 km northwest of 
where the fault crosses the pipeline and the 
highway.  Base map from DeLorme Topo 
USA. 

 
 
Figure 5 shows the fault geometry on a large scale, and Figure 6 shows the detail of the 
location of the fault and the station.  Figures 7 to 9 each show, for one of the Zeng 
models, one of the three components of data, the synthetic velocity, and the comparison 
of score S1 with the same parameter from synthetics and data used to generate Figures 1 
and 2.  Data and synthetics are band-pass filetered from 0.1 to 2.0 Hz.  The highest 
scoring of Zeng’s ten models is intentionally selected for Figures 7-9.  These models do 
not attempt to match any teleseismic slip functions.  The range of scores among the 
multiple realizations for each component is a little more than one unit of the abscissa.  
Figure 10-12 shows the fitting scores, equivalent to Figure 4, but in this case the points 
are the average score of the 10 realizations.  Figure 13 shows the mean bias of the ten 
realizations.   
 
Figures 7-9 shows that the velocity at PS10 is dominated by a strong pulse at the time 
that the rupture passes the station.  The model by Zeng is able to predict that the data 
would show a strong, compact pulse with high velocities, and to predict the peak 
velocities within about 30%.  The model seems to overestimate the period of the actual 
pulse slightly, and in detail the observed pulse has a different polarization.  The scoring 
system indicates that on the fault normal and vertical components, the model is as similar 
to the data as one can expect for the similarity of two randomly-oriented components.   
 
 



  

 
Figure 7. Top, filtered data, rotated into the 
fault normal orientation and integrated to 
velocity.  Center, prediction by Zeng.  Bottom, 
compares the S1 similarity score of the Zeng 
synthetic with data to cumulative distribution 
functions from Figures 1 and 2.   

 
Figure 8. Equivalent to 7 for the fault parallel 
component of ground motions.  

 
Figure 9. Equivalent to 7 for the vertical 
component of motion.  

 
Figure 10. Breakdown of mean similarity 
scores for the fault-normal component, from 
10 realizations of synthetic seismograms. Fig. 
7 shows one of the ten.  Symbols are as in 
Figure 4.  Frequency band 11 is 0.1 to 2.0 Hz. 

 
Figure 11. Equivalent of Figure 10 for the 
fault parallel component. 

 
Figure 12. Equivalent of Figure 10 for the 
vertical component. 



  

 

 
Figure 13. Bias of the mean of the ten Zeng 
realizations relative to the data. 

 

CONCLUSIONS 
 
The establishment of a widely-accepted scoring system for the comparison of synthetic 
seismograms with observations will be a major benefit for the engineering seismology 
community.  Once accepted, it will give us a means to increase the credibility, and to 
document our improved capabilities, in the process of generating realistic synthetic 
ground motions for engineering applications.  
 
Independence and efficiency are desirable characteristics of a set of parameters to 
characterize ground motions.  The characteristics are related.  Independent parameters are 
not inherently correlated with each other.  An efficient set would be a minimum set of 
parameters that provides the same information as the full set.  The scoring system here 
has not optimized for either of these characteristics.  It is in fact easy to recognize that the 
parameters used here are not independent, and thus efficiency is also sacrificed.  In the 
context of this general approach, such optimization would be possible, and should 
perhaps be done.  On the other hand, it is convenient to be able to look at figures like 
Figures 10-12 and see at a glance which characteristics of the seismograms do match 
well, and which do not. 
 
If this score system were to be adopted for synthetic seismogram testing, then an 
important question is how good is good enough?  This will depend on the application.  
For the generation of synthetics for some engineering applications, where the phase of the 
seismograms is not critical, then a similarity as good as the two horizontal components is 
probably good enough.  On the other hand, if the phase is critical, as for instance in fault-
normal pulses associated with rupture passing the station, then one would hope to achieve 
high correlation coefficients at the low frequencies in addition to average scores in other 
categories.   
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