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SUMMARY 
 
This paper presents a direct boundary element approach for solving two-dimensional problems of dynamic 
poroelasticity in the time domain. The derivation of the time-dependent integral equations is based on 
Biot's theory and reciprocal theorem. An analytical form of two-dimensional transient fundamental 
solutions for porous media saturated with incompressible fluid in the case of u-p formulation is obtained. 
After an analytical temporal integration of the fundamental solution kernels, a boundary element time-
marching procedure is established. The comparison of different time interpolation functions shows that 
the mixed time interpolation gives more stable solutions. In addition, the linear θ method is used in order 
to improve the numerical stability of time-stepping procedure. Finally, two examples are presented to 
investigate the stability and the accuracy of this approach for wave propagation analysis. 
 

INTRODUCTION 
 
The efficiency of Boundary Element Method (BEM) in dealing with the wave propagation phenomena in 
infinite or semi-infinite elastic media is well recognized. This method is actually widely applied in 
geomechanics, seismology and earthquake engineering. But the application of this method to dynamic 
poroelasticity has, until now, been limited. The first integral formulations for poroelastodynamics based 
on solid and fluid displacements have been established in Laplace transform by Manolis & Beskos [1]. 
Nevertheless, it can be shown that only the solid displacements and fluid pressure are independent 
(Bonnet [2]). Based on these four unknowns (three in 2D), integral formulations have been developed by 
Cheng et al [3], Dominguez [4] for frequency domain, and by Chen [5], Gatmiri & Kamalian [6] for 
Laplace domain. However, it is more natural to work in the real time domain and observe the phenomenon 
as it evolves. Wiebe & Ante [7] suggested a time domain formulation in terms of solid and fluid 
displacements and with the restriction of vanishing damping between solid and fluid particles. Another 
formulation of Chen & Dargush [8] is based on inverse transformation of Laplace domain fundamental 
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solution. Recently, Schanz [9] proposed a time-stepping procedure, using only the Laplace transformed 
fundamental solution and convolution quadrature method. 
 
A specific and important subject in BEM approach is to determine the fundamental solution, which is the 
response of the medium to unit point excitation. But a such solution is not available for porous elastic 
media although more half a century has passed since Biot [10] has developed the full dynamic 
poroelasticity theory. The first attempt to obtain fundamental solution for dynamic poroelasticity was 
made by Burridge & Vargas [11]. Later, Wiebe & Antes [7] found a time-domain solution by neglecting 
the viscous coupling, Kaynia & Banerjee [12] derived an approximation of transient short-time solution. 
The Burridge & Vargas' solution was obtained for three forces, which is not enough, while the solution of 
Wiebe & Antes and Kaynia & Banerjee was sought for six variables (ui, wi) and six forces, which is too 
much. Based on four unknowns (ui, p), Chen [5] derived a complete fundamental solution in Laplace 
transform domain and, in the same work, proposed two approximations for corresponding transient 
solution. Gatmiri & Kamalian [6] suggested an adapted solution to the u-p formulation. 
 
In this paper, a time domain integral formulation for dynamic poroelasticity is presented. In order to obtain 
time-dependent fundamental solutions, two simplifications are introduced. Firstly, the u-p formulation 
(Zienkiewicz et al [13]) is considered. Secondly, it is assumed that solid particles and fluid are 
incompressible. According to these assumptions, an analytical transient fundamental solution is derived 
(Gatmiri & Nguyen [14]), this formulation is more appropriate for the problems involving water saturated 
soils under earthquake solicitations. For the numerical implementation, three types of time interpolation 
functions are introduced and time integration is performed analytically. The numerical instability of BEM 
solution during the time-stepping procedure is observed, as in elastodynamics. In order to improve the 
numerical stability, the linear θ method (Yu et al [15]) is incorporated. In addition, the mixed time 
interpolation is recommended because it gives a more stable solution. 
 

GOVERNING EQUATIONS 
 
By using the basic principles of continuum mechanics [13], the equations governing the transient response 
of poroelastic media can be expressed as follows: 
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ui is the displacement of the solid skeleton, p denotes the fluid pressure, wi represents the average 
displacement of the fluid relative to the solid skeleton and ζ represents the increment of fluid content; λ 
and µ are drained Lamé constants; ρf is the fluid density, ρs is the solid density, ρ=(1-n) ρs + nρf is the 
density of solid-fluid mixte and m=ρf /n [13] is another mass parameter where n is the porosity; κ=k/η is 
the permeability coefficient, with η and k denoting the fluid dynamic viscosity and the intrinsic 
permeability of the solid skeleton respectively; α and M are material parameters which describe the 
relative compressibility of the constituents and are defined as α=1-Kd /Ks, 1/M=n/Kf+(α-n)/Ks where 
Ks,Kf are the bulk modulus of solid grains and the fluid while Kd denote that of solid skeleton (drained 



bulk modulus); Fi and fi are respectively the buck and fluid body force; Q denotes the cumulative injected 
volume from a fluid source injection of strength γ. 
 

TIME DOMAIN BOUNDARY INTEGRAL EQUATIONS 
 
Reciprocal theorem 
A reciprocal theorem generally provides a convenient starting point for a direct boundary integral 
equation. For the current coupled problem, Cheng & Predeleanu [16] have derived local reciprocal 
relation by using the constitutive equations (2), (3) and the symmetry of the elasticity tensor: 

 ζ+εσ=ζ+εσ **** pp ijijijij  (6) 

which relates two independent states at different spatial and time coordinates, denoted by a symbol * and 
without * superscript. In order to yields the reciprocal work theorem, equation (6) must be integrated over 
the solution domain and time. Then, after integrating by parts and considering the linear strain-
displacement relation, the divergence theorem, the equilibrium equation (1) and the generalized Darcy's 
law (5), one obtains: 
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where symbol × indicates a Riemann convolution integral; subscript o denotes the initial values; ti 
represents boundary traction vector, w is normal component of relative fluid-solid displacement; Γ is the 
bounding surface of domain Ω, and ni the component of the unit outward normal to Γ. 
 
Integral equations 
It appears from equation (7) that with the respective substitutions of delta functions (in space and in time) 
for the bulk body force Fi and fluid dilatation Q, we can obtain Somigliana-type integral equations with 
solid displacements ui and fluid pressure p as the left-hand side. However, these equations involving wi 
are not yet in suitable form for a BEM implementation since the physical conditions are hardly given in 
term of relative fluid-solid displacements. A formulation with displacements, tractions, pore pressure and 
fluid flux as primary quantities is therefore more suitable. For this purpose, it is better to consider the 
sources (point forces and fluid injection) which are delta functions in space and Heaviside step functions 
in time as: 

 )()(,0),()( *** τχδγτχδδ −−==−−= tHxftHxF iijij  (8) 

Therefore, using these sources and admitting homogeneous initial conditions and absence of body forces 
and fluid injection lead to the following integral equations: 
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or in a more convenient matrix notation as 
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In equations (9), (10), (11) we have introduced new tensor functions Gij, G3j, Hij, H3j which are the 
displacement, pressure, traction and normal flux kernels due to a unit step point force in the j-direction 
along with Gi3,  G33, Hi3, H33 which are similar kernels but due to a unit step point source of fluid 
injection. Notice that the traction and flux kernels Hij, H3j, Hi3, H33 can be obviously derived from the 
displacement and pressure kernels through the constitutive relationship presented in the previous section. 
This can even be further compacted by generalizing the displacement and traction vectors to include pore 
pressure and flux, respectively, as an additional component. Then (11) becomes  

 [ ] Γ×−×= ∫Γ
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α, β vary from 1 to 3; cαβ(χ) is a matrix of constants and dependent only upon the local geometry of the 
boundary at χ: cαβ=δαβ/2 for points χ on a smooth boundary and cαβ=δαβ for points χ in the domain Ω. 
 

FUNDAMENTAL SOLUTION 
 
Laplace transformed fundamental solution 
Taking  the Laplace transform of equations (1)-(5), assuming that the initial conditions for ui and wi are 
zero and performing appropriate substitution, one obtains  a set of coupled differential equations with 
solid displacement iu~  and fluid pressure p~  as four independent variables to describe the behavior of the 

porous medium (Chen [5]) : 
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where s is the Laplace transform parameter and the tilde denotes the Laplace transformation, 
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The explicit two-dimensional fundamental solution of equations (13), (14) was derived by Chen [5]. But 
the expressions of this transformed solution are too complex, so the analytical transient fundamental 
solution has long been thought to be extremely difficult, even considered impossible. In order to overcome 
this difficulty, we simplified the basic equations (1)-(5) so that the transformed solution of the modified 
equations can analytically be inversed. For this purpose, we adopted two assumptions. Firstly, the second 
time derivative of the relative fluid displacements is considered small and all terms involving iw&& are 

neglected. That corresponds to the well-known u-p formulation which is appropriate for the medium-
speed phenomena. This approximation is valid for most problems of earthquake analysis and frequencies 
slower than this. Secondly, we assume that solid particles and fluid are incompressible. Indeed, the 
constant M, which represents the combined compressibility of the fluid and solid phases, tends to infinity 
and one can remove the term containing this coefficient. This hypothesis is valid for most soils. Moreover, 
such compressibility is now relatively unimportant as the wave motion in the fluid is essentially excluded 
by the omission of the fluid acceleration term. Thus the equations (13), (14) are modified as following: 
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By using the Kupradze method, the two-dimensional transformed solution is the following 
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Transient fundamental solution 
After an inverse Laplace transformation, we have the corresponding analytical form of time-dependent 
fundamental solution as following 
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The expressions of the functions hkl (r,t) as well as the coefficients d, e, f, g are given in the appendix.  
 
Since the analytical expressions of the fundamental solutions are extremely complicated, it is better to 
investigate graphically. The new time-domain fundamental solution are compared to the Chen's complete 
solution [5] obtained by numerical Laplace transform inversion (figures 1-4). The soil material properties 
are: λ = 12,5 MPa; µ = 8,33 MPa; Ks = 105 MPa; Kf = 0,22.104 MPa; α = 1; ρs = 2600 kg/m3; ρf = 1000 



kg/m3; m = 5533,33 kg/m3; κ = 3,55.10-2 m/s. The applied force point (or fluid source point) is located at 
(0;0), the receiver is chosen at the  coordinate (0,1;0,2). 
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Figure 1: Two-dimensional displacement time history at (0,1;0,2) due to point force at (0;0) 
 
From this numerical result, several features of the new fundamental solution are deduced as following 

• This new solution agrees very well with the complete solution at the long time. As the time 
increases, both of these solutions approach to the corresponding quasi-static state. Nevertheless, 
they differentiate one with the other at the short time, especially for the components of pressure 
G3j and G33. 
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Figure 2: Two-dimensional displacement time history at (0,1;0,2) due to fluid injection at (0;0) 
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Figure 3: Two-dimensional pressure time history at (0,1;0,2) due to point force at (0;0) 
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Figure 4: Two-dimensional pressure time history at (0,1;0,2) due to fluid injection at (0;0) 
 
• In the expressions of the new solution, there are only two waves: pressure wave P1 and shear wave 

S associated with the coefficients λ1 and λ2, respectively. The arrival time of these two waves can 
be detected on figures 1-4 by sudden changes appearing in displacements or by pulse appearing in 
excessive pore fluid pressure, while the pulse associated to the coming of low compression wave 
P2 does not appears in the curves of the new solutions.  Indeed, once the assumption of the 



incompressibility of the components is adopted, there is only one dilation in phase of the 
ensemble solid-fluid. Thus, the slow-velocity wave P2 is completely replaced by a process of 
consolidation. Consequently, the initial values of the pressures G3j and G33 differ from zero, and 
the diffusion begins early before the arrival of the waves. 

• The velocity of pressure wave P1 calculated by analytical solution is rather small to that obtained 
by the complete solution. 

 
NUMERICAL IMPLEMENTATION 

 
Equation (12) can be considered as generalized Somigliana-type integral equations for dynamic 
poroelasticity. This equation is formally equivalent to the one obtained for elastodynamics, but with a 
different range of the indices. Therefore, the numerical treatment of equation (12) is achieved following 
the usual point collocation procedure as in elastodynamics. We have a system of algebraic equations 
containing the generalized displacements and tractions at all collocation points at time t=N∆t 

 ( )∑
−

+−+− −+=
1

1

1111
N

mmNmmNNN uHtGtGuH  (19) 

or finally, after applying the specified boundary conditions 
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where um, tm are nodal generalized displacements and tractions at the moment tm; GN-m+1, HN-m+1 are kernel 

matrices, with cαβ included in the diagonal blocks of 1H ; XN, YN are respectively the unknown and known 
components of uN, tN  and A, B are the associated coefficients matrices. 
 
Equation (20) can be solved for the unknown boundary values using any standard solution procedure. The 
spatial integrals are performed numerically by invoking self-adaptive schemes to ensure both accuracy and 

efficiency. Strongly singular blocks in 1H are evaluated indirectly with a generalization of the rigid body 
technique (Chen [5]). This technique is valid only for a closed boundary, thus for half-space problems; the 
domain of interest must be enclosed with a fictitious boundary (Ahmad & Banerjee [17]). The temporal 
integration is achieved analytically according to the choice of time interpolation functions: constant, linear 
or mixed. During a time step, the field variables (generalized displacements and tractions) are assumed to 
remain constant in the case of constant interpolation functions, while in the case of linear interpolation 
functions, they vary linearly. However, we noted that the displacements ui and the fluid flow q are always 
continuous, it is thus logical to use the piecewise linear temporal interpolation function for these 
quantities. On the other hand, the tractions ti and the pore pressure p can be discontinuous in time in 
certain cases: the sudden application of the boundary external forces or the reflection of wave at a fixed 
boundary. In these cases, the use of a mixed kind of variation seems more correct. In this formulation, the 
tractions and pressure are assumed to remain constant during two consecutive time-steps while the 
displacements and fluid flux are taken to be linear during a time step, then the generalized displacement 
and traction kernels take the form 
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Numerical results have shown that numerical instability can occur in the temporal scheme of dynamic 
BEM formulation (19). In order to improve the stability, we have applied in this work the linear θ method, 
proposed by Yu et al [15] in elastodynamics, because of its simplicity and effectiveness. According to this 
method, generalized tractions and displacements are supposed vary linearly from time t-∆t to time t+θ∆t 
(θ≥1), the response is first evaluated at time t = (N-1+θ)∆t, and subsequently the solution at time t=N∆t is 
obtained. Hence, the formulation (19) is modified like following: 
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Note that if θ=1, equation (22) becomes equation (19). The kernels Gk
αβ(x,θ), Hk

αβ(x,θ) are given exactly 
like Gk

αβ(x) and Hk
αβ(x) except that k is replaced by k-1+θ. 

 
VALIDATION 

 
Transient load on surface of half-space 
The first problem addressed concerns plane strain step loading applied uniformly to the surface of a soil 
half-space. That is equivalent to the problem of one-dimensional wave propagation in a column of soil. 
The loading boundary conditions for this test problem include a step total stress σ = 1.H(t) N/m2, and free 
fluid flow, p=0, at the top surface of the half-space. The following material properties are specified:  E = 
254,4 MPa; M = 5210 MPa; ν = 0,3; α = 0.981; ρ = 1884 kg/m3; ρf = 1000 kg/m3; κ = 3,55.10-2 m/s. The 
half-space is modeled by using 10 quadratic boundary elements of equal length ∆h=1 m, enclosing 
elements are used to regularize singular elementary integrals (figure 5a). Time step ∆t=2.10-4 s is chosen, 
and the mixed interpolation function is used. The variation of vertical displacement at the surface versus 
time is shown in figure 5b. A good agreement between BEM and analytical solution (Schanz & Cheng 
[18]) is observed. 
 
In order to study the numerical stability of the time-marching procedure, the effect at different time step 
values and the different time interpolation functions are examined (figure 6). It is shown that the 
instability is more important for the larger time step and the linear or mixed interpolation functions give 
more stable results than constant interpolation function. By using the θ method, the stability of time 
domain BEM formulation is improved considerably (figure 7). 
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            a) Geometry and discretization                              b) Vertical displacement at the surface 

Figure 5: Half-space under uniform load 
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Figure 6: Influence of time step size and choice of time interpolation functions 
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Figure 7: Result with θ method (∆t = 1.10-4 s, constant interpolation function) 
 



The numerical instability during the BEM time-stepping scheme, observed in this example, is an 
important remark. In elastodynamics, a similar problem involving a half-space does not practically pose 
any problem of instability, thus a broad choice of ∆t is possible. But in poroelastodynamics, there is a new 
source of error concerning the condition number of the matrix A. In fact, this matrix is obtained by a 

columns permutation of matrices G1 and 1H , and the order of the components of these two matrices are 
so different that the matrix A is usually ill-conditioned. 
 
Generation of Rayleigh wave 
Objective of this example is to model the generation of the Rayleight wave on the top surface of a fluid-
saturated soil half-space.  The study of this wave is interesting because of its serious consequence in 
earthquake. A part of the free half-space of width 2m is excited by a triangular impulse as a vertical stress 
field (figure 8b). The discretization is extended up to a distance of 10m from loading area (figure 8a). This 
distance is considered sufficiently faraway so that the response to the interested points A (0,0) and B (3,0) 
is not compromised by the truncation. A uniform mesh of 22 quadratic elements of length ∆h=1 m is built, 
enclosing elements are introduced to regularize the singular integrals. The same material as preceding 
example is considered. The mixed temporal interpolation functions with linear θ method (θ=1,4) are used 
with time step ∆t=2.10-4 s. Figure 8c shows the vertical displacement at points A, B. In comparison with 
the result obtained by finite element method, a good agreement can be observed. 
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Figure 8: Generation of Rayleigh wave 
 

CONCLUSION 
 
In the present work, a boundary element formulation and fundamental solutions are presented for the two-
dimensional simplified u-p formulation of dynamic poroelasticity. The analytical time-dependent 
fundamental solutions for saturated porous media of incompressible components are derived. It seems that 
the proposed formulation is more appropriate for the saturated soils under earthquake solicitations. 
Numerical studies show that the results of the proposed BEM formulation can be unstable during time-
marching procedure and the choice of time step size becomes significant. The numerical stability can be 
improved by using a linear θ method. In addition, the mixed time interpolation is recommended for having 
a more stable solution. 
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