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SUMMARY 

 
A simple numerical model to predict the dynamic characteristics, quasi-static pushover and seismic 
response of woodframe buildings is presented. In this model, the building structure is composed of two 
primary components: rigid horizontal diaphragms and nonlinear lateral load resisting shear wall elements. 
The actual three-dimensional building is degenerated into a two-dimensional planar model using zero-
height shear spring elements connected between adjacent diaphragms or the foundation. The hysteretic 
behavior of each wood shear wall in the building can be characterized using an associated numerical 
model that predicts the walls load-displacement response under general quasi-static cyclic loading. In turn, 
in this model, the hysteretic behavior of each shear wall is represented by an equivalent nonlinear shear 
spring element. With this simple structural model, the response of the building is defined in terms of only 
three-degrees-of-freedom per floor. This numerical model has been incorporated into the computer 
program SAWS - Seismic Analysis of Woodframe Structures. The predictive capabilities of the SAWS 
model are compared with shake table tests performed on a full-scale two-storey woodframe house as part 
of the recently completed CUREE-Caltech Woodframe Project. It is shown in this study that the SAWS 
computer program provides reasonably accurate estimates of the dynamic characteristics, quasi-static 
pushover and seismic response of this test structure. Furthermore, the SAWS program requires a minimum 
amount of data input and provides a fast computational turn-around time to analyze a given structure. As a 
result, this simple numerical model may be a useful structural analysis tool for practicing engineers and 
researchers. 
 

INTRODUCTION 
 
Light-frame residential wood buildings are by far the most common structures constructed in North 
America.  These building systems range in size from small, single-story dwellings to large, multi-level, 
multiple-occupancy condominiums and apartments.  The primary structural components of these building 
are typically horizontal floor diaphragms, horizontal or sloped roof diaphragms and vertical shear walls.  
Each of these structural elements is generally composed of sawn lumber framing members attached to 
sheathing panels using dowel connectors, such as nails, and/or adhesives. Typically, these elements are 
interconnected through nailed connections to make up the overall structural system for the building.  With 
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this type of construction the resulting building typically has a high degree of structural redundancy. In 
addition, the inelastic response of the building under severe lateral loading conditions may display 
significant degradation in strength and stiffness.  These complicating factors have contributed to paucity 
in dedicated three-dimensional structural analysis models for woodframe building [1].  This is in contrast 
to the abundance of static and dynamic structural analysis tools available to evaluate the response of 
building frames composed of other construction materials such as structural steel or reinforced concrete. 
 
In the modeling of woodframe structures, it has been noted that if all of the structural details within a 
woodframe building is captured within a finite element model, the required computational overhead can 
overwhelm practical computing capability [2]. Therefore, model reduction techniques must be 
implemented to produce usable numerical simulations.  Another maxim at work is: the more detailed the 
model, the greater the dependency on test data to calibrate the model.  Unfortunately, the requisite test 
data is not always readily available. 
 
With these considerations in mind, this paper presents a simple and versatile numerical model that 
predicts the dynamic characteristics, quasi-static pushover and seismic response of light-frame wood 
buildings.  The basic modeling approach is to degenerate the actual three-dimensional building into a two-
dimensional planar model composed of zero-height shear wall spring elements connecting the floor and 
roof diaphragms together or to the foundation.  All diaphragms in the building model are assumed to have 
infinite in-plane stiffness.  Using this simple modeling approach, the response of the building is defined in 
terms of only three-degrees-of-freedom (3-DOF) per floor.  Each shear wall spring element is calibrated to 
reflect the strength and stiffness degrading hysteretic characteristics of the associated shear wall it is 
modeling in the structure.  Requisite test data is limited to that necessary to characterize the behavior of 
the shear walls.  This three-dimensional numerical model has been incorporated into the computer 
program SAWS - Seismic Analysis of Woodframe Structures [3].  This paper provides an overview of the 
model formulation. As well, the predictive capabilities of this model are compared with experimental 
results from recent shake table tests performed on a full-scale two-story wood frame house.  It is shown 
that the model predictions are in good agreement with the test results with respect to both the dynamic 
characteristics and seismic response of the building structure. 
 

MODEL FORMULATION 
 
Structural Configuration of the Building Model 
For illustrative purposes, the structural configuration of a typical woodframe building is discussed in 
terms of the simplified single-story building layout shown in Fig. 1a. The main structural elements that 
compose the building are: the exterior and/or interior shear walls, the interior partition walls and the floor 
and/or roof diaphragms. The building structure is assumed to be attached to a rigid foundation.  In the 
modeling of the structure, it is assumed that both the floor and roof elements have sufficiently high in-
plane stiffness to be considered as rigid elements.  This is expected to be a reasonable assumption for 
typically constructed diaphragms with a planar aspect ratio of the order of 2:1, as supported by 
experimental results from full-scale diaphragms tests [4].  Further to this, it is assumed that an equivalent 
horizontal diaphragm can adequately model a sloping roof.  As a final modeling step, the three-
dimensional building structure is degenerated to a planar model by assigning zero-height to all of the 
shear wall elements that connect the horizontal diaphragms to the foundation.  Each shear wall in the 
building structure is, in turn, represented by an equivalent single-degree-of-freedom (SDOF) shear 
element via a calibration procedure discussed in a subsequent section.  Applying this overall modeling 
approach to the building structure illustrated in Fig. 1a produces the simplified building model shown in 
Fig. 1b. 



 
(a)        (b) 

 

Figure 1: (a) Components of a single-storey woodframe structure. (b) Model of the single-storey 
woodframe structure. 
 
It is noted that this degenerated planar model does not capture the overturning and flexural response of a 
building.  However, this is not viewed as a significant limitation of this model for its intended application.  
Most woodframe buildings are low-rise structures so that overturning is not typically significant and the 
deformation mode is primarily one of shear. 
 
Kinematic Assumptions for the Building Model 
To analyze the simplified building model presented in Fig. 1b, a global rectangular coordinate system is 
prescribed as shown so that the entire building structure is contained within the first quadrant.  The global 
degrees-of-freedom of each diaphragm are then assigned at the origin of the coordinate system. Under the 
assumption that each diaphragm is rigid, only three global degrees-of-freedom are required to completely 
describe its rigid body motion: two translations U and V and one rotation Θ .  Under a general displaced 
state of the diaphragm specified by the values of U, V and Θ , the resulting linearized displacement of any 
point p on the diaphragm can be expressed in matrix form as:  
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where Λ is a transformation matrix and [ ]T,V,U Θ=D  is the global displacement vector.  
 
Load Vector and Stiffness Matrix Formulation 
Consider the application of external forces fpx and fpy located at any point p on the diaphragm, with the 
line of action of fpx parallel to the x-axis and the line of action of fpy parallel to the y-axis, as shown in Fig. 
1b.  These forces are statically equivalent to the following system of forces applied at the origin:  
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where [ ]T

VU M,F,F Θ=F  is the global force vector that is conjugate to the global displacement vector D.  
The force transformation relationship given by Eq. (2) can be used to represent all types of loads applied 
to the diaphragm including inertia forces as well as the restoring forces developed in the SDOF shear 
elements.  
 
For a given building structure let Nx and Ny denote the number of SDOF shear elements parallel to the x-
axis and y-axis, respectively.  For the example building model shown in Fig. 1b Nx = Ny = 3.  For the i-th 
SDOF shear element aligned parallel to the x-axis, let kix denote its in-plane stiffness.  Similarly, let kjy 
denote the in-plane stiffness of the j-th SDOF shear element aligned parallel to the y-axis.  Out-of-plane 
stiffness in all shear elements is assumed to be zero.  This assumption is expected to be reasonable for an 
isolated shear wall, however it also implies that intersecting shear walls behave independently of each 
other, which typically is not the case.  
 
The force developed in a SDOF shear element resulting from a displacement of the diaphragm can be 
related to the global forces in the structure through Eq. (2).  Also, the displacement of the SDOF shear 
element can be related to the global displacement of the diaphragm through Eq. (1).  Applying and 
combining these two steps over all SDOF shear elements in the building model results in the generation of 
the global stiffness matrix K: 
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where Kix and Kjy are given, respectively, by:  
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As presented, Kix and Kjy apply to a 3-DOF building model such as shown in Fig. 1b. In Eq. (3), the 
coordinates in the transformation matrices Λix and Λjy identify the point of attachment of the SDOF shear 
element to the diaphragm.  Extension of the formulation of the global force vector and stiffness matrix to 
multi-story building structures is straightforward.  
 
For the global stiffness matrix K presented above, it is important to note that the contributing stiffness of 
each SDOF shear element is, for the problem at hand, load (or displacement) history dependent.  A 
general characterization of the hysteretic response of the SDOF shear elements is presented in the 
subsequent section.  
 
SDOF Hysteretic Model of Wood Shear Walls 
The force-deformation response of a wood shear wall with dowel-type sheathing-to-framing connectors is 
nonlinear under monotonic loading and additionally exhibits pinched hysteretic behavior with strength 
and stiffness degradation under general cyclic loading.  It is well recognized that the global force-
deformation response of a wood shear wall is qualitatively very similar to that of the individual sheathing-
to-framing connectors used in the construction of the wall [5].   
 
Consequently, when properly calibrated, the same hysteretic model used for sheathing-to-framing 
connectors can be applied to model the global cyclic response of a shear wall.  The authors have 
previously developed a general hysteretic model for sheathing-to-framing connectors, which is defined in 
terms of a number of path following rules to reproduce the response of a connector under arbitrary cyclic 



loading [5].  This same hysteretic model is adopted herein to model the global cyclic response of a wood 
shear wall.  
 

 
 

(a) (b) 
 

Figure 2: Force-displacement response of a wood shear wall under: (a) monotonic loading and (b) cyclic 
loading.  The hysteretic model is fitted to test data for a 2.4 m by 2.4 m shear wall with 9.5 mm thick OSB 
panels [8]. 
 
Figure 2a shows the assumed force-deformation behavior of a wood shear wall under monotonic loading 
to failure.  The monotonic racking response, in terms of top-of-wall force F and displacement δ (see the 
insert in Fig. 2a) is modeled by the following nonlinear relationship:  
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This force-deformation model is characterized by six physically identifiable parameters: F0, K0, r1, r2, δu 
and δF.  Phenomenologically, Eq. (5) captures the crushing of the framing members and sheathing along 
with yielding of the connectors.  Beyond the displacement δu, which is associated with the ultimate load 
Fu, the load-carrying capacity is reduced.  Failure of the wall under monotonic loading occurs at the 
displacement δF. 
 
Next, consider the force-deformation response of a shear wall under the cyclic loading shown as an insert 
in Fig. 2b.  The basic path following rules which define the hysteretic model are identified and briefly 
discussed.  In Fig. 2b, force-deformation paths OA and CD follow the monotonic envelope curve as 
expressed by Eq. (5).  All other paths are assumed to exhibit a linear relationship between force and 
deformation.  Unloading off the envelope curve follows a path such as AB with stiffness r3K0.  Here the 
wall unloads elastically.  Under continued unloading, the response moves onto path BC that is 
characterized by a reduced stiffness r4K0.   The very low stiffness along this path exemplifies the pinched 
hysteretic response displayed by wood shear walls under cyclic loading.  This behavior occurs because of 
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the previously induced crushing of the framing members and sheathing panels around the connectors (in 
this case as the wall followed the path OA).  Loading in the opposite direction for the first time forces the 
response onto the envelope curve CD.  Unloading off this curve is assumed elastic along path DE, 
followed by a pinched response along path EF, which passes through the zero-displacement intercept FI, 
with slope r4K0.  Continued re-loading follows path FG with degrading stiffness Kp, as given by 
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with ( )000 KF=δ  and α a hysteretic model parameter which determines the degree of stiffness 
degradation.  Note from Eq. (6) that Kp is a function of the previous loading history through the last 
unloading displacement δun off the envelope curve (corresponding to point A in Fig. 2b), so that  
 

unmax βδ=δ  (7) 

where β is another hysteretic model parameter.  A consequence of this stiffness degradation is that it also 
produces strength degradation in the response.  If on another cycle the shear wall is displaced to δun, then 
the corresponding force will be less than Fun which was previously achieved.  This strength degradation is 
shown in Fig. 2b by comparing the force levels obtained at points A and G.  Also, with this model under 
continued cycling to the same displacement level, the force and energy dissipated per cycle is assumed to 
stabilize beyond the second loading cycle.  
 
In total, 10 parameters are required to define this hysteretic model.  To obtain these parameters for a 
particular wood shear wall, an analysis tool such as the CASHEW (Cyclic Analysis of SHEar Walls) 
computer program [6] can be employed.  The CASHEW program assumes that a shear wall is composed 
of pin-connected rigid framing members, elastic shear deformable sheathing members and nonlinear 
sheathing-to-framing connectors that follow the same hysteretic model described above.  With the 
CASHEW program, a given wall is first subjected to the CUREE-Caltech Testing Protocol [7], after 
which a fitting procedure extracts the parameters to represent the wall response by an equivalent SDOF 
shear wall spring element.  This model reduction approach has been successfully evaluated against 
experimental tests.  As an example, the force-deformation response shown in Fig. 2b was produced using 
the parameters obtained from the CASHEW program for a 2.4 m by 2.4 m shear wall with 9.5 mm thick 
oriented strand board (OSB) sheathing panels that was also tested cyclically and under an earthquake 
ground motion on a shake table [8].  Comparison between the experimental results and the predicted 
responses of the reduced shear wall model showed good agreement [5].  
 
In recent years, there has been a proliferation of cyclic tests performed on full-scale wood framed shear 
walls.  The resulting database of experimental results can be used to specify equivalent SDOF shear spring 
elements for each of the walls that have been tested. This approach has been utilized by the authors to 
calibrate shear spring elements to model shear walls sheathed with stucco and gypsum wall board [3]. 
 
Dynamic Analysis 
The governing equations of motion for a three-dimensional structure when subjected to an earthquake 
ground motion are given by:  
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where M is the global mass matrix; C is the global viscous damping matrix; Fsw(t) is the global restoring 
force vector generated by all of shear wall elements in the structure; )t(D&& , )t(D&  and )t(D  are, 

respectively, the global acceleration, velocity and displacement vectors relative to the ground; )t(xg
&&  is the 

ground acceleration and r is a vector coupling the ground motion input with the global degrees-of-freedom 



excited by that motion.  The right hand side of Eq. (8) must be replaced by the more general expression 
[ ] (t)x )t(x gVgU

&&&& VU rrM +−  for the case of bi-directional ground accelerations )t(xgU
&&  and )t(xgV

&&  applied 

parallel to the x-axis and y-axis, respectively.  
 
The global mass matrix M, given in Eq. (8), can be obtained through consideration of dynamic 
equilibrium and application of D’Alembert’s Principle.  With reference to Fig. 1b, the global mass matrix 
for a single story structure is given by:  
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where m is the mass of the diaphragm, (xc, yc) are the coordinates of its center of mass from an absolute 
reference and I0 is the mass moment of inertia about the center of mass.  As presented, Eq. (9) only 
represents the contributing mass from the diaphragm; mass associated with each shear wall can be 
represented by a discrete mass that includes rotatory inertia and added appropriately to Eq. (9).  
 
The global viscous damping matrix C, given in Eq. (8), accounts for all supplemental energy dissipating 
mechanisms in the structure other than the hysteretic damping produced in the shear wall elements.  In 
this study a Rayleigh damping model is assumed. 
 
To advance the solution of Eq. (9), from time t to t+∆t, the equations of motion are rewritten in 
incremental form:  
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with ttt )()()( ⋅−⋅=⋅∆ ∆+ .  Within each time step, the structural response is assumed linear.  As a 
consequence, the increment in the global restoring force is given by:  
 

DKF ∆=∆ Tsw  (11) 

where KT is the global tangent stiffness matrix given by Eq. (3) and evaluated at time t. Newmark’s 
Method, utilizing constant average acceleration within a time step, is used to integrate Eq. (10) over the 
time domain.   
 
As presented, this incremental solution strategy does not guarantee that equilibrium is achieved at the end 
of each time step.  To minimize the accumulation of error over time, the relative acceleration at time t + ∆t 
is determined by enforcing dynamic equilibrium of Eq. (8) at the end of each time step.  In turn, this 
adjusted value of acceleration is used in the next time step of the incremental solution strategy.  
 
Also, energy balance calculations are performed at the end of each time step to monitor the accuracy of 
this solution strategy as well as to assess the energy absorption capacity of the shear wall elements of the 
structure.  The process of integrating the equations of motion is generally aborted if an energy balance is 
not satisfied within a specified tolerance.  
 
Pushover Analysis 
The governing equations of motion for a three-dimensional structure when subjected to a general dynamic 
force excitation are given by:  
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where Eq. (12) is identical  to Eq. (8) except that the right- hand side of the equation has been replaced by 
the global applied forcing function P(t).  In order to perform a uni-directional quasi-static pushover 
analysis parallel to the x-axis or y-axis, using Eq. (12), P(t) is decomposed as follows:  

FP ⋅= )t(p)t(  (13) 
with p(t) representing the temporal variation of a slowly varying, monotonically increasing, applied 
pushover load, while F determines the distribution of nodal forces acting on the structure.  The time 
varying load p(t) takes the form:  
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where Pmax represents the magnitude of the maximum lateral load applied to the structure and Tp is the 
duration of the applied loading.  To minimize the contribution from inertia and damping effects in Eq. 
(12), the duration of loading Tp is set to one hundred times the computed fundamental elastic period of the 
structure.  
 
The distribution of the lateral loading applied at the global degrees-of-freedom is determined through F.  
First off, F represents nodal loads equivalent to pushover loads applied at the center of mass of each floor 
of the structure.  Three options on the distribution of loading over the height of the structure are 
considered in this analysis: a uniform distribution, an inverted triangular distribution and a modal adaptive 
distribution [3].  In general, specification of an appropriate lateral load distribution is a weak point in the 
pushover methodology.  At least being able to utilize the three different distribution noted above can help 
determine the response sensitivity of a given structure to applied lateral loadings.  
 
SAWS Computer Program 
The model formulation presented above has been incorporated into the computer program SAWS – 
Seismic Analysis of Woodframe Structures [3].  This computer program has analysis options to predict the 
dynamic characteristics, quasi-static pushover and seismic response of light-frame wood buildings. 
 

MODEL VERFICATION 
 
Description of the Verification Test Structure 
In seeking to validate the SAWS numerical model, it must be noted at the outset that very few tests have 
been conducted in North America on full-scale light-frame wood buildings.  As part of the CUREE-
Caltech Woodframe Project a simplified full-scale two-story single-family house was tested on a uniaxial 
earthquake facility [9].  This extensive experimental study considered 10 different construction phases of 
the test structure.  Only the fully engineered Phase 9 test structure, as described below, will be used in the 
verification study of the SAWS model.  
 
Figure 3 shows plan and elevation views of the test structure along with the identification of the major 
structural components used in its construction.  The Phase 9 test structure included only the bare wood 
framing; interior and exterior wall finishes were not included nor were door and window details.  
 
The design of the Phase 9 test structure was based on the engineering provisions of the 1994 edition of the 
Uniform Building Code [10] for a seismic zone 4 and common design practices in California. The design 
assumes a force-reduction factor Rw of 8, for a lateral load-resisting system consisting light-frame wood 
shear walls. The seismic weight of the structure was 110 kN and the period of vibration estimated by the 
code was 0.18 seconds. The resulting design base shear in the shaking (north-south) direction was 15 kN. 
The ultimate base shear capacity of the test structure was estimated to be 75 kN, according to the FEMA 
273 guidelines [11].  



 
 

 
 

Figure 3: Plan and elevation views of the test structure, with major structural components identified. 
 
During Phase 9, the test structure was subjected to an extensive series of shake table motions, which 
included harmonic, white noise and seismic ground motions.  The white noise was used to determine 
frequencies and mode shapes of the structure under low amplitude vibrations.  The harmonic input at the 
natural frequency of the structure was used to ascertain its damping characteristics.  The seismic ground 
motions were used to determine the inelastic response of the structure under increasing intensities of 
shaking.  Five levels of seismic tests were performed on the test structure.  The input ground motion for 
seismic test levels 1 to 4 represents a scaling of the 1994 Northridge Earthquake recorded at Canoga Park, 
as shown in Fig. 4.  The input ground motion for seismic test level 5 represents the unscaled 1994 
Northridge Earthquake recorded at Rinaldi, also shown in Fig 4. Seismic test level 4 represents a ground 
motion with a hazard level of 10% probability of exceedance in 50 years. Seismic test level 5 represents a 
ground motion with a hazard level of 2% probability of exceedance in 50 years.  As part of the test 
program, one seismic test was repeated once the maximum transient inter-story wall drift exceeded 0.5% 
of its height.  For Phase 9 this occurred at level 3.  Figure 4 presents the complete sequence of acceleration 
records applied to the Phase 9 shake table test structure.  Over Phase 9 the test structure was subjected, in 
turn, to each one of these ground motions without any repair or modification to the structure. 
 
The test structure was monitored with nearly three hundred digital instruments to measure forces, 
displacements and accelerations in the structure during the shake table tests.  For the evaluation of the 
SAWS model predictions, response quantities of interest will be limited to relative displacement and 
absolute acceleration time-histories at the roof level.  Data acquisition sensors to measure displacement 
(C14, C16 and C18) and acceleration (D14, D16 and D18) were placed at roof level along the east wall, 
center-line and west wall of the structure, as shown in Fig. 3. 
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Figure 4: Sequence of acceleration records applied to the shake-table test structure. 
 
SAWS Model of the Test Structure 
The SAWS model for the test structure is schematically shown in Fig. 5.  It is composed of eight zero-
height shear wall spring elements and two rigid diaphragms; one for the second floor and one at the roof 
level.  The force-deformation response of each shear wall spring element requires the specification of ten 
hysteretic parameters, as discussed previously.  These parameters were determined using the analysis 
program CASHEW - Cyclic Analysis of SHEar Walls [6].  As an example from this analysis step, Fig. 6 
shows the CASHEW model predictions of the cyclic response of the first and second level east shear walls 
of the test structure.  As determined by the CASHEW program, the calibrated hysteretic parameters 
required to describe the cyclic response of the eight Phase 9 shear walls are given Table 1.  In Fig. 5 and 
Table 1, the eight shear spring elements have been identified using the notation Sxi and Syi, with i =1, ..4 
and the subscript x and y indicating that an element is aligned either along the x or y axis.  
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Figure 5: SAWS model of the test structure. 



 
 

(a) 1st floor east shear wall  (b) 2nd level east shear wall 
 

Figure 6: CASHEW predictions of the cyclic response of the test structure shear walls. 
 
 
Table 1: Hysteretic parameters for the shear wall spring elements in the test structure. 

 

Spring 
Element 

K0 
(kN/mm) 

r1 
 

r2 r3 r4 F0 

(kN) 
FI 

(kN) 
∆u 

(mm) 
α β 

SX1 Level 1 
East Wall 

2.93 0.083 -0.088 1.00 0.03 36.6 8.36 87.3 0.79 1.07 

SX2 Level 1 
West Wall 

3.89 0.064 -0.056 1.07 0.03 36.7 8.82 57.8 0.87 1.11 

SY1 Level 1 
South Wall 

5.69 0.065 -0.074 1.10 0.03 48.4 10.8 60.6 0.81 1.09 

SY2 Level 1 
North Wall 

5.69 0.065 -0.074 1.10 0.03 48.4 10.8 60.6 0.81 1.09 

SX3 Level 2 
East Wall 

2.10 0.069 -0.038 1.16 0.02 19.6 4.76 76.8 0.77 1.10 

SX4 Level 2 
West Wall 

2.10 0.069 -0.038 1.16 0.02 19.6 4.76 76.8 0.77 1.10 

SY3 Level 2 
South Wall 

3.35 0.054 -0.060 1.10 0.03 35.3 12.9 73.9 0.84 1.09 

SY4 Level 2 
North Wall 

3.35 0.054 -0.060 1.10 0.03 35.3 12.9 73.9 0.84 1.09 

 
 
SAWS Model Predictions 
Dynamic and Seismic Analysis of the Test Structure 
The SAWS model of the Phase 9 shake table test structure predicted a fundamental frequency of 3.28 Hz. 
This prediction is based on assigned seismic weights of 62 kN to the second floor diaphragm and 48 kN to 
the roof diaphragm. At the start of Phase 9 testing, the experimentally measured fundamental frequency 
was 3.96 Hz [9].  The SAWS model under predicts the experimental result by 17%.  Potential sources for 
this difference are the inherent simplicity of the SAWS model and the CASHEW predictions of the initial 
stiffness of each shear wall element.  
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Figures 7 and 8 present the SAWS model predictions of the relative displacement time-histories along the 
centerline of the test structure at roof level for level 4 and 5 testing along with the corresponding 
experimental results. These relative displacement measurements correspond to sensor C16, as shown in 
Fig. 3.  The SAWS model predictions are based on an assigned equivalent viscous damping of 1% of 
critical in the first and second elastic modes of vibration. It is assumed that under the strong motion 
portions of shaking of levels 4 and 5, that damping in the structure can largely be accounted for through 
the hysteretic response of the shear wall spring elements. As a consequence, the viscous damping is set to 
a low value.  This modeling approach is consistent with what has been suggested by other research work 
[5]. Experimentally, the equivalent viscous damping for the test structure was calculated to be 4.2% of 
critical under small amplitude excitation.  
 

 
 

(a) Experimental Result (b) SAWS prediction 
 

Figure 7: Level 4 relative displacement time histories at Sensor C16: (a) experimental result and (b) 
SAWS prediction. 
 

 
 

(a) Experimental Result (b) SAWS prediction 
 

Figure 8: Level 5 relative displacement time histories at Sensor C16: (a) experimental result and (b) 
SAWS prediction. 
 
With respect to maximum response values, over levels 4 and 5, the maximum relative displacement at 
sensor location C16 estimated by the SAWS model under predicts the experimental values by 17.6% and 
6.3%, respectively.  Table 2 provides a complete listing of the maximum response values predicted by the 
SAWS model and obtained experimentally for all of the sensor locations shown in Fig. 3. Comparing the 
maximum relative displacement results given in Table 2, the differences in the numerical predictions and 
the experimental values can, in part, be attributed to the SAWS model not fully capturing the torsional 
response of the Phase 9 test structure and also the model’s inability to account for the in-plane 
deformation in the roof diaphragm. Over test levels 4 and 5, the maximum torsional response resulted in a 
difference in relative displacement between the east and west walls of 5.2 mm and 11.7 mm, respectively.  
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Also for levels 4 and 5, the maximum roof diaphragm deformations were 5.8 mm and 7.1 mm, 
respectively.  
 
Table 2: Comparison of maximum relative displacement and maximum absolute acceleration response 

quantities from SAWS predictions and experimental results. 
 

 Sensor Locations 
 C14 & D14 C16 & D16 C18 & D18 

Level 4 – Maximum Relative Displacement (mm) 
SAWS Model 57.3 57.4 57.5 

Test Result 61.3 69.7 66.5 
% Error -6.5 -17.6 -13.5 

Level 4 – Maximum Absolute Acceleration (g)  
SAWS Model 0.99 0.99 1.05 

Test Result 1.16 1.21 1.13 
% Error -14.7 -19.6 -7.01 

Level 5 – Maximum Relative Displacement (mm) 
SAWS Model 102.8 102.7 102.6 

Test Result 96.7 109.6 108.4 
% Error 6.3 -6.3 5.4 

Level 5 – Maximum Absolute Acceleration (g) 
SAWS Model 1.35 1.23 1.18 

Test Result 1.27 1.36 1.39 
% Error 6.3 -9.6 -15.1 

 
All of the dynamic time-history results were produced by the SAWS computer program using a time 
integration step of 0.001 sec.  In order to properly capture the evolution of damage to the structure over 
the Phase 9 testing regime, the SAWS computer program was run using the train of shake table 
acceleration input records from level 3 to 5 (see Fig. 4).  The experimental results showed that very little 
damage occurred to the Phase 9 structure under level 1 and 2 testing.  The numerical analysis was 
performed with a specified tolerance of 5% on the error in the energy balance applied to the equations of 
motion.  The computational time required to perform a given level of analysis on the Phase 9 test structure 
using the SAWS program on a modern desktop computer was of the order of only 10 seconds.  This fast 
computational turn-around time is attributable to the fact the SAWS computer program models the two-
story shake table test structure using only six degrees-of-freedom.  
 
Pushover Analysis of the Test Structure 
A static pushover test was not performed on the shake table structure.  However, from the seismic test data 
from Phase 9, a capacity spectrum was generated as shown in Fig. 9.  The capacity spectrum is a plot of 
the maximum base shear (obtained as the sum of the floor and roof inertia forces) versus the 
corresponding peak roof relative displacement (measured at sensor location C16) for each test level [9]. 
 
With the capacity spectrum, the computed base shear represents the force induced in the foundation of the 
test structure including the nonlinear restoring force and viscous damping force.  In a static pushover, only 
the nonlinear restoring force is activated since the resulting velocity of the structure is negligible during 
such a test.  Thus, it is to be expected that the maximum base shear predicted by a static pushover analysis 
would be less than that estimated by a capacity spectrum.  Figure 9 shows the SAWS model predictions 
from three static pushover analyses, corresponding to lateral load distributions that are uniform, triangular 
and modal adaptive.  These three results are in relatively close agreement with each other and predict a 



maximum base shear for the test structure of approximately 100 kN.  For comparative purposes, estimates 
of design and ultimate maximum base shears are also shown in Fig. 9. 
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Figure 9: Experimental capacity spectrum and SAWS pushover predictions. 
 

MODEL APPLICATIONS 
 
Performance assessment and design procedures that are currently being developed often require multiple 
structural analyzes to be conducted. Obviously, with these methodologies, the computational efficiency of 
the analysis models becomes important.  The SAWS computer program was developed with the intention 
of minimizing computational overhead in performing a structural analysis.  Consequently, this analysis 
program is well suited for implementation with these approaches.  Two example applications are briefly 
presented here.  First, Fig. 10a shows the variability in response of the Phase 9 test structure to a suite of 
20 earthquake records, scaled to match the NEHRP design spectrum [7].  In conjunction with this 
example, the SAWS computer model could easily be coupled with reliability software to conduct a 
reliability assessment of the test structure.  As a second example, Fig. 10b shows the results of an 
incremental dynamic analysis [12] using the SAWS computer model applied to the Phase 9 test structure 
under a scaling of the 1994 Canoga Park ground motion.  In both of these examples the performance of 
Phase 9 test structure is evaluated against the 2% drift limit for life safety [11]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

Figure 10: SAWS model applications: (a) response variability and (b) incremental dynamic analysis of 
the Phase 9 test structure. 
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CONCLUSIONS 
 
A simple numerical model to predict the dynamic characteristics, quasi-static pushover and seismic 
response of woodframe buildings has been presented. This numerical model has been incorporated into 
the computer program SAWS - Seismic Analysis of Woodframe Structures. The predictive capabilities of 
the SAWS computer program have been compared with recent shake table tests performed on a full-scale 
two-storey woodframe house as part of the recently completed CUREE-Caltech Woodframe Project. It 
was shown in this study that the SAWS computer program provides reasonably accurate estimates on the 
dynamic characteristics, quasi-static pushover and seismic response of this test structure. Furthermore, the 
SAWS program requires a minimum amount of data input and provides a fast computational turn-around 
time to analyze a given structure. Consequently, this simple numerical model may be a useful analysis tool 
for the performance assessment of light-frame wood building by both practicing engineers and 
researchers. 
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