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DIMENSIONAL ANALYSIS OF YIELDING STRUCTURES
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SUMMARY

This paper summarizes recent work by the authors that revisits the way of presenting information on the
dynamic response of inelastic structures. The nonlinear response of rigid-plastic, elastic-plastic and bilin-
ear systems is presented in terms of the dimensionless -products that result from rigorous dimensional
analysis. The main advantage of the analysis presented in this study is that it brings forward the concept of
self-similarity—an invariance with respect to changes in scale or size—which is a decisive symmetry that
shapes nonlinear behavior.

INTRODUCTION

Within the context of earthquake engineering the first systematic work on the response of an elastic-plastic
single-degree-of-freedom system subjected to earthquake and pulse-type ground shaking was presented in
the seminal papers by Veletsos and Newmark [1] and Veletsos et al. [2]. In these pioneering studies the
response of the elastic-plastic system was normalized to the response of an elastic system having the same
stiffness as the initial stiffness of the inelastic system. This approach was mainly motivated from: (a) the
need to explain why the forces that develop in yielding structures are considerably smaller than the forces
computed from elastic analysis; and (b) an idea that the energy input in the two systems should be compa-
rable.

In this paper we first present an alternative way of presenting the nonlinear response of an elastic-plastic
system which is derived from formal dimensional analysis (Langhaar [3], Housner and Hudson [4], Baren-
blatt [5]). The proposed dimensionless variables are liberated from the associated elastic system response
and reveal remarkable order in the normalized response. It is most interesting, that the fundamental con-
cepts upon which the proposed dimensional analysis is built have been put forward in the 1965 Newmark’s
Rankine lecture (Newmark [6]) and in the paper by Veletsos et al. [2].

Our interest in this study focusses on the response of yielding structures under strong earthquake shaking
which is the strongest nearby the causative faults where, in most occasions the ground exhibits distinguish-
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able pulses. Accordingly, our investigation focusses on the response analysis of elastoplastic and bilinear
single-degree-of-freedom oscillators subjected to pulse-type excitations. The ability of distinct pulses to
generate structural response that resembles the earthquake induced response has been examined in past
studies (Veletsos et al. [2], Yim et al. [7], Hall et al. [8], Makris and Chang [9], Makris and Roussos [10]
among others). 

Type-A (one-sine acceleration) pulse and Type-B (one cosine acceleration) pulse, shown in Figure 1, are of
particular interest to this study as the existence of distinct pulse duration and pulse amplitude allows the
introduction of dimensionless parameters that reveal the underlying physics of the response.

DIMENSIONAL ANALYSIS OF THE RIGID PLASTIC OSCILLATOR

A length scale of Ground Excitations Relevant to Structural Response
Within the context of earthquake engineering an early solution to the response of a rigid-plastic system
(rigid mass sliding on a moving base—see Figure 2) subjected to a rectangular acceleration pulse has been
presented by Newmark [6]. In this case, the strength of a rigid-plastic system is . Under a rectan-
gular acceleration pulse with amplitude  and duration, ,

, (1)    

the entire relative displacement of the mass on the moving surface is (Newmark [6])

. (2)    

Equation (2) indicates that the plastic displacement is proportional to the intensity of the acceleration
pulse, , and the square of its duration, . The product,  is a characteristic length scale (in
this case, the displacement of the base when the acceleration pulse expires) of the ground excitation and is
a measure of the intensity of the excitation pulse. The rectangular acceleration pulse used by Newmark [6],
which leads to an infinite base displacement, is probably the most well-suited example to introduce the
finite length scale, , of the energetic pulse of the motion. Upon the expiration of the pulse, the
base moves with a constant velocity and the inertia demand on the structure is zero. This situation is remi-
niscent of the minor seismic demands on structures subjected to selected near-source ground motions
which, upon the expiration of the main pulse, induce incrementally very large ground displacements with
minor inertia effects.

Figure 1. The one-sine Type-A pulse (left), and the one cosine Type-B pulse (center), which
approximate strong ground motions with distinguishable pulses (right). 
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Following this discussion it is natural to normalize the relative structural response, , to the length scale
of the energetic excitation, , and Equation (2), is re-written as

. (3)    

Equation (3), which was obtained by solving the differential equation that governs the sliding response
(Newmark [6] among others), relates the dimensionless displacement  to the dimension-
less strength . The relation, defined by Equation (3) is plotted with a heavy line in Figure 3
(left) in a logarithmic scale. 

Review of Dimensional Analysis
Dimensional analysis is a mathematical tool that shapes the general form of relations that describe natural
phenomena. The application of dimensional analysis to any particular physical phenomenon is based on
the premise that the phenomenon can be described by a dimensionally homogeneous equation that relates
the dependent variables, , and the independent variables, :

. (4)    

Figure 2. Rigid-plastic and elastic-plastic behavior (top); and the acceleration and velocity time
histories of a rectangular and a one-sine acceleration pulse (bottom).
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For instance, in the case of a rigid-plastic system subjected to an acceleration pulse with amplitude, , and
duration, , it is expected that the maximum relative displacement, , is a function of the specific
strength of the system, , and the characteristics of the pulse,  and  giving

. (5)    

In the case of Equation (5), the four variables , ,  and 
involve only two independent reference dimensions ( ), that of length  and time . According to
Buckingham’s -theorem the number of independent dimensionless -products is equal to the number of
physical variables appearing in Equation (5) (four variables) minus the number of reference dimensions
(two). Therefore, for a rigid-plastic system subjected to an acceleration pulse, we have 4 - 2 = 2 -terms.
Since we are focusing on the response to pulse-type motions, the obvious choice for the repeating variables
is the acceleration amplitude of the pulse, , and its duration, , which gives  and

. With the two -terms established, Equation (5) reduces to

. (6)    

In the elementary case of a rectangular acceleration pulse the form of the function  was obtained analyti-
cally by solving the differential equation (Newmark [6] among others) and is given by Equation (3). For
trigonometric pulses such as the one sine pulse or the one cosine pulse introduced earlier, the response of
the rigid-plastic system is also described by Equation (6) with the form of the function  obtained numeri-
cally. Figure 3 (right) plots with a heavy line the response of the rigid-plastic system when subjected to a
one-sine acceleration (Type-A) pulse. The response is plotted on a logarithmic scale next to the response

Figure 3. Normalized relative displacement curves of an elastic-plastic structure subjected to a
rectangular and a one-sine acceleration pulses. The self-similar solutions approach the rigid-
plastic limit as the normalized yield displacement tends to zero.
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from a rectangular pulse in order to illustrate the relative strength of a rectangular acceleration pulse and a
forward displacement (one-sine acceleration pulse).

DIMENSIONAL ANALYSIS OF THE ELASTIC-PLASTIC OSCILLATOR

The idealized rigid-plastic system analyzed in the preceding section exhibits zero yield displacement (infi-
nite pre-yielding stiffness), and therefore infinite ductility. We now consider the response of an inelastic
system that exhibits a finite yield displacement before sliding. With reference to Figure 2 (right) the
response of an elastic-plastic system subjected to some acceleration pulse of amplitude  and duration

, should be a function of the specific strength, , the yield displacement, , and the characteristics
of the pulse,  and . Accordingly, 

. (7)    

The five variables appearing in Equation (7) involve only two reference dimensions, that of length  and
time . According to Buckingham’s -theorem the number of independent dimensionless -products
is now: (5 variables) - (2 reference dimensions) = 3 -terms. 

. (8)    

Figure 3 illustrates how the response of the elastic-plastic system amplifies as the normalized yield dis-
placement increases. The most notable observation from Figure 3 is that the normalized response is invari-
ant with respect to the level of the acceleration amplitude, ; the solid and dotted lines have been
computed for different levels of acceleration, , yet the normalized response is identical. This scale
invariance between the size of the maximum relative displacement, the size of the yield displacement, and
the intensity of the acceleration pulse is known as self-similarity (Langhaar[3], Barenblatt[5]) — a special
type of symmetry that has unique importance in understanding and ordering nonlinear response. Another
interesting observation is that for values of normalized strength below one ( ), the rectan-
gular pulse induces much larger displacements than the one-sine acceleration pulse; whereas, as the value
of the normalized strength,  increases the situation reverses.

DIMENSIONAL ANALYSIS OF THE LINEAR OSCILLATOR

Before considering the bilinear oscillator we first discuss the linear single-degree-of-freedom (SDOF) sys-
tem. Dynamic equilibrium of a linear SDOF oscillator with mass m, stiffness , and damping C, that is
subjected to a ground excitation described either by a Type-A pulse or a Type-B pulse gives

(9)    

where,  is the viscous damping ratio,  is the undamped natural frequency and
 is a cycloidal pulse ground excitation that is fully defined by the parameters  and . Accordingly,

the maximum relative displacement of the linear SDOF oscillator, , is a function of four variables

. (10)    

It is observed that the 5 variables appearing in Equation (10), , , , 
and  involve only two reference dimensions; that of length  and time . Therefore, for a lin-
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ear SDOF oscillator we have 3 -terms. Herein, as in the previous section we select as repeating variables
the characteristics of the pulse excitation,  and . The three independent -terms are

, , . (11)    

With the three -terms given above, the relation of the five variables appearing in Equation (10) is
reduced to a relation of three variables

. (12)    

Figure 4 plots the dimensionless maximum value of the solution of Equation (12), , as
a function of  for different fixed values of . The two shock spectra for  and

 show that for structures with , the peak relative displacement is nearly the same
when they are subjected to a Type-A or a Type-B cycloidal pulses that exhibit the same peak pulse acceler-
ation yet different pulse velocities. 

The non-dimensional results presented in Figure 4 are independent of the intensity of the ground shaking
showing that the non-dimensional response of a linear SDOF oscillator is self-similar—meaning that the
normalized peak response values follow the same master curve for any value of the induced peak ground
acceleration, . While this result is well known to the literature for the linear SDOF oscillator, the dimen-
sional analysis presented in this study shows that the same is true not only for the elastic-plastic oscillator
but also the bilinear oscillator.

DIMENSIONAL ANALYSIS OF THE BILINEAR OSCILLATOR

In previous sections we examined the dimensional response analysis of rigid-plastic and elastic-plastic sys-
tems which are systems that exhibit a zero post-yielding stiffness. In reality, steel structures and other tradi-
tional structures exhibit a non-zero post-yielding stiffness and their response is better approximated with a
bilinear idealization, shown in Figure 5, rather than with an elastic-plastic idealization. In addition to tradi-

Figure 4. Normalized relative displacement spectra of a linear SDOF oscillator.
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tional structures, the bilinear idealization has been found to be most appropriate in the modelling of mod-
ern seismic protection devices. 

The main difference between the behavior of structures equipped with seismic protection devices and the
behavior of traditional structures built either from concrete or steel is the intentional lower value of
strength, , and the large value of available ductility, . In the extreme case of a sliding spher-
ical bearing the yield displacement of the teflon layer on the articulated spherical bearing is 
(Mohka et al. [11]). Assuming for instance a design base displacement , the result-
ing ductility demand on a sliding bearing is . In the case of lead rubber bearings, the yield dis-
placement can be as high as  and in this case the ductility demand is 
(Kelly [12]). Similarly, for lead extrusion dampers  or even more (Skinner et al. [13]); whereas, for
buckling-restrained braces to  (Black et al. [14]). While these aforementioned values of ductility
are much larger than the values of ductility ( ) of well engineered traditional structures, the two
orders-of-magnitude variability in the ductility capacities of seismic protection devices (  for lead
rubber bearings; whereas  for friction pendulum bearings) suggest that the ductility parameter
should be immaterial in the response. Earlier parametric studies by Makris and Chang [9] concluded that
when seismically isolated structures are excited by strong earthquakes, the value of the yield displacement
has marginal effects. This conclusion, which applies in the case of relatively small values of strength
( ) and a non-zero post-yielding stiffness, is confirmed in this study with rigorous dimensional
analysis. 

The relatively small strength and large values of ductility associated with the bilinear behavior shown in
Figure 5 suggest that bilinear systems exhibit an oscillatory response that is characterized by the second
stiffness . The mechanical model adopted herein is most appropriate for the modelling of seis-
mic isolation systems (Kelly [12], Skinner et al. [13]) and has been used widely for the response analysis
of seismically isolated bridges (Makris and Chang [9] and Chang et al. [15] among others), however, it can
approximate the mechanical behavior of other yielding structures that exhibit a distinct yield force, ,
while delivering appreciable ductility such as one-story frames equipped with buckling-restrained braces
(Black et al. [14]). 

The characterization of a structural element with bilinear behavior is fully described with any three of the
five parameters shown in Figure 5—the strength, , the pre-yielding stiffness, , the yield displacement,

, the yield force,  and the post-yield stiffness, . Here, we define the force-displacement behavior of

Figure 5. The bilinear mechanical model.
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the bilinear model with the structural frequency , the characteristic strength, , and
the yield displacement, . Note that the structural frequency, , is the undamped frequency of the mass,

, of the SDOF structure supported on the elastic spring, , which is the second slope of the
bilinear loop. This definition is consistent with the frequency of oscillation of isolated structures supported
on friction pendulum bearings with radius of curvature, , In this case

. (13)    

With reference to Figure 5, the yield force, , is

(14)    

from which

. (15)    

Dynamic equilibrium of the more general elasto-viscoplastic oscillator gives

(16)    

where  is the relative-to-the-ground displacement history;  is the ground acceleration; and  is
the internal force resulting from the restoring mechanism and damping (viscous or hysteretic). For the
most general case, the internal force is expressed mathematically as

(17)    

where  is the specific strength;  is undamped natural frequency; and  is a hysteretic
dimensionless quantity with  that is governed by

. (18)    

The model given by Equations (17) and (18) is a special case of the Bouc-Wen model (Wen [16] [17])
enhanced with a viscous term. In Equation (18), ,  and  are dimensionless quantities that control the
shape of the hysteretic loop.

Substitution of Equation (17) into Equation (16) gives

(19)    

where  is governed by Equation (18). Equations (18) and (19) indicate that the SDOF with viscous and
hysteretic behavior is characterized with parameters , ,  and .

Since viscous damping was included in the response analysis of the linear SDOF oscillator, in this section
we focus our attention on a purely hysteretic bilinear oscillator that is described fully by the three parame-
ters ,  and , ( ), subjected to either a Type-A or Type-B cycloidal pulses that are fully
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described by the parameters  and . With these parameters the maximum relative displacement of the
bilinear hysteretic SDOF oscillator is a function of five variables

. (20)    

The six variables appearing in Equation (20), , , , ,
 and  involve only two reference dimensions; that of length  and time . There-

fore, according to Buckingham’s  theorem, we have 6 - 2 = 4 -terms

, , , . (21)    

Here again we select as repeating variables the characteristics of the pulse excitation,  and . With this
selection the maximum displacement response of interest, , is normalized with the length scale 
that is representative of the inertia loading of the excitation. Had the maximum response been scaled with
the yield displacement, , , the structural response would have been normalized with a
length scale of the structural behavior—a poor choice which does not factor the inertial loading from the
energetic pulse.

With the four -terms given above, the relation of the six variables appearing in Equation (20) is reduced
to a relation of four variables

. (22)    

Alternatively, if one describes the cycloidal pulse with the peak pulse velocity  and  rather than 
and , Equation (20) takes the form 

. (23)    

This normalization and a comparison of the effect of normalizing the response with respect to velocity
rather than acceleration is presented in Makris and Black [18].

Figure 6 plots the dimensionless value of the solution of Equation (22), , as a function of
 for two different fixed values of  and . The two shock spectra in

each of the plots show that for structures with , their peak relative displacement is nearly the
same when they are subjected to Type-A or Type-B cycloidal pulses that exhibit the same peak pulse accel-
eration yet different peak pulse velocities (a result not seen if normalized by pulse velocity, see Makris and
Black [18]). 

Figure 6 reveals two additional important results that confirm the unique advantages of dimensional analy-
sis. The first result is that for a fixed value of the  and  terms, the response of the bilinear oscillator
follows the same master curve for all values of excitation levels (any value of peak ground acceleration,

) showing that the solutions for the dimensionless peak response-values are self-similar. This result con-
firms the important physical significance of the -terms given by Equation (21). The second important
result is that the top row of plots is nearly identical to the bottom row—an observation that suggests that
the response is insensitive to the value of . In fact the responses, , converges to a finite
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limit as  tends to zero; and according to the theory of dimensional analysis, one can simply replace
Equation (22) or (23) by its limiting expression in which  (Barenblatt 1996)

. (24)    

The existence of a finite limit for  as  tends to zero indicates that the normalized relative displace-
ment of a bilinear oscillator, , exhibits a complete similarity, or similarity of the first kind (Barenblatt
[5]), in the yield displacement, , and thus, the exact value of the yield displacement, , is immaterial in
the response of a bilinear SDOF oscillator that exhibits large values of ductility. Furthermore, with this
limiting operation the number of arguments in the function ( ) appearing in Equations (22) and (23)
reduce by one and therefore, the number of analysis in a parametric study reduces appreciably. For
instance, Equation (22), by way of Equation (24), becomes

. (25)    

Figure 6. Normalized relative displacement spectra of a bilinear oscillator. The response is seen to be
self-similar (independent of excitation intensity) and insensitive to yield displacement.
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The plots shown in Figure 6 are computed for =0.01 and 0.1 which are values much smaller than most
values of the dimensionless parameter . The other limiting case is where a low frequency pulse excites
a structure with a protective device that exhibits a very small yield displacement (friction pendulum bear-
ings). In this case the dimensionless yield displacement can be as low as 0.001.

Figure 7 plots the variation of  when subjected to a Type-A pulse (left) and a Type-B
pulse (right) for different values of the  parameter and three values of the 
parameter. Figure 7 confirms the very small variation of the response for two orders of magnitude of the
parameter —a result that further demonstrates that the value of the yield displacement, , is immate-
rial in the response of a bilinear SDOF oscillator or, in mathematical terms, that the response of the bilinear
oscillator exhibits complete similarity in the parameter .

Another response quantity of interest is the total acceleration of the SDOF oscillator, ,
that is directly related with the base shear . The maximum total acceleration  is also a
function of the five variables:

(26)    

and according to the previous discussion there are four -terms. In this case

(27)    

while ,  and  are given by Equation (21). With four -terms being established the relation of the
six variables appearing in Equation (26) is reduced to a relation of four variables

Figure 7. Non-dimensional relative displacement spectra of a bilinear oscillator subjected to a forward pulse
(left) and a forward-and-back pulse (right). For a given non-dimensional strength, , the response is
virtually independent to two orders-of-magnitude variation of the non-dimensional yield displacement, .
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. (28)    

Figure 8 plots the dimensionless value of the solution of Equation (28),  as a function of
 for the two different fixed values of  and . The two shock spectra

appearing in each of the four top plots show that for most structures, their peak total acceleration (base
shear) is nearly the same when subjected to Type-A or Type-B cycloidal pulses that exhibit the same peak
pulse acceleration yet different peak pulse velocities (a result not seen if normalized with velocity). 

The self-similarity in the response observed in Figure 6 for the relative displacement is also observed in
Figure 8 for the total accelerations. For a fixed value of the  and  terms, the response of the bilinear
oscillator follows the same master curve for all values of excitation levels (any value of the peak pulse
acceleration, ). The complete-similarity in the  parameter is again seen for this dimensionless
response quantity ( ), as the response is insensitive to an order of magnitude difference in

.

Figure 8. Normalized total acceleration spectra of a bilinear oscillator. The response is seen to be self-
similar (independent of excitation intensity) and insensitive to yield displacement.
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CONCLUSION

In this study the nonlinear response of inelastic structures was investigated using the theory of dimensional
analysis. Starting from the rigid-plastic and elastoplastic systems, the dimensional analysis presented in
this study shows that what is important matters when ordering inelastic response is not the yield displace-
ment , alone, but its normalized value to the energetic length scale of the excitation, . 

Table 1 presents a summary of the systems considered and the associated dimensionless -terms along
with the pulse approximations. When the response of the nonlinear systems studied here is presented in
terms of the dimensionless -terms the response curves are self-similar and follow a single master curve.
This remarkable order in the response is invariant with respect to changes in scale or size.

It was shown that for a given value of dimensionless strength and dimensionless yield displacement the
dimensionless response (normalized relative displacement or base shear) is independent of the intensity
level of the pulse shaking. 

In addition, it was shown that the value of the normalized yield displacement, , is immate-
rial in the response of bilinear oscillators that exhibit large values of ductilities. This finding shows that the
response (peak relative displacements and base shears) exhibits a complete similarity (similarity of the first
kind) in the dimensionless parameter  that is associated with the yield displacement. 
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Table 1. Practical idealizations of structural behavior (left); the dimensionless response functions
 together with the associated dimensionless -products (center); and simple

acceleration pulses that approximate the strong earthquake shaking (right).
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