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SUMMARY 
 
An approach to the availability evaluation of repairable subsystems and equipment in NPPs, presented in 
an earlier authors’ paper, is further developed. The unavailability state of a subsystem is split into three to 
five “smaller” ones. The loss-of-availability process can be modeled by means of a semi-Markov process 
and a Markov renewal process, which generalize Markov jump processes. The criterion to identify the 
state of the subsystem is expressed in terms of a vector parameter whose components consist of a set of 
selected relevant parameters, with a specific interval / threshold for each of them.  
 
 

1.  INTRODUCTION 
 
The notion of availability of a system or subsystem admits various interpretations and definitions, 
depending on the nature of the system in discussion, on the types of situations when it may become 
unavailable / unfunctional, on the possibilities to repair a system entering a down state or to replace its 
damaged components. Operations of periodic inspections and maintenance must also be taken into 
account. The concept of availability should not be identified with that of reliability. Yet, when the 
availability of a system / subsystem / component is analysed some general notions from the theory of 
reliability and life testing, some of them from the classical reference [1], cannot be avoided but have to be 
possibly adapted. The most appropriate class of mathematical models to describe and give a ground for 
the analysis of behavior of systems from the point of view of availability consists of stochastic (or random) 
processes in time. Since, in many cases, the next state of a system or subsystem depends on its state at a 
given moment of time only, the Markov-type processes have been accepted as suitable models, e.g. in  [2], 
[3]. We have also approached the problem of availability evaluation of repairable subsystems in NPPs 
(nuclear power plants) in our paper  [4] – a contribution to SMiRT 15 Conference. Here we go further 
with developing the models presented in that paper. We try to make use of some recent concepts and 
results presented in several contributions to reference [5], and also to apply the interval reliability method 
[6] as a tool for identifying the state of some components subjected to a deterioration process.  
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The amount / level of deterioration at a moment of time can be represented by a gamma stochastic process 
characterized by its density function or by its mean and variance. A set of time dependent limit state 
functions is formulated for a proper definition of change of state for the subsystem. Another section of this 
paper presents some possibilities to adapt Markov renewal matrices and semi-Markov transition matrices 
to our models, and gives corresponding methods to estimate a reliability function. Finally, some of the 
models developed in the previous sections appear to be compatible with the interval availability concept, 
which allows for the evaluation of accident probabilities in power plant structures and equipment, but also 
in more general structures. They are adapted to availability / reliability problems in this field, also 
involving events of type (k-out-of-n).   
 

2. THE STATE SPACE AND AVAILABILITY OF SUBSYSTEMS 
 
A random process in time may be written as  X t( )  where  X  is a random function and the time variable t 
takes values in an interval of the form [ , ] ;0 T T = ∞  is not excluded.  T  can be, for instance, the designed 
lifetime of the system or the operational cycle length of an equipment. For every fixed  t, X t( ) takes 
values in a specified set of states, sometimes called the state space of the process and denoted by  E.  This 
state space for Markov-type processes is usually considered to be finite. Therefore is we may write it as 
the finite set  E = {1, 2,…, s}. The number of assumed states depends on the desired complexity of the 
model. In the simplest case, two states are considered  :  the up state u and the down state d. 
Conventionally, these states may be represented by  1  and  0, respectively.  Hence, X t( ) = 1 if the system 
is operating at moment  t,  and X t( ) = 0  otherwise. This model seems to be too simple for describing the 
state of a subsystem or component in a power plant, for instance. We just proposed, in  [4], a partition of   
E in two subsets of  up / down  states :   
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The number of states and their nature depends not only on the desired accuracy of the analysis but rather 
on the nature of the system itself. Thus, the subsystem / component may not simply be in an  up / down  
state but also in a state of periodic inspection or maintenance, or also in a state of failure or repair. We are 
going to give more details in the next section.   
 
Another important issue concerns the ways to identify the state of the (sub)system at a certain time 
moment   t T∈[ , ) .0 We shall discuss this point in a final section of our paper. Here we only mention the 
possibility to consider a vector of state parameters  

 

                  (2) 

Certainly, not all the components of  Θ  should be relevant for checking the state of the subsystem ;  if − 
for instance −  θ k  is not a relevant parameter for checking whether  X(t ) = i ∈ E or, more precisely, 

whether  i  is contained into one of the subsets taken into account (like  U  or  D), then the corresponding 
interval in  Eq. (2)  may be taken as Ik = R .   Another remark concerns the natural possibility that all (or a 

part of) the parameter components of  Θ  are time dependent. For instance, if the system is in a state of 
maintenance at  t  and the scheduled maintenance duration is  M  then the system will be outside this state 
at a subsequent moment  t + x  if  x > M.   
 
The Markov renewal processes and semi-Markov processes are briefly presented in the next section, as 
being better suited probabilistic models for describing the behavior in time of subsystems as those just 
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suggested. The mathematical theory of Markov-type processes has developed very extensively but we 
recall the essential definitions, only.  
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3. SEMI-MARKOV PROCESSES, KERNEL AND TRANSITION MATRICES 

 
A Markov renewal process (MRP), defined on a complete probability space, is introduced in [7] as the 
pair  

( , ) ( , ) ,J S J Sn n n= ≥ 0  

where ( )Jn n ≥ 0  is  a  Markov  chain  taking values  in  a finite set           = the state space of 

the process, and ( ) , [ , ]S Sn n n≥ ∈ = + ∞0 0R+  is a sequence of jump times, while J J Jn1 2, ,... , ,...  are 

the consecutive states to be visited by the MRP. The random variables X X Xn1 2, ,..., ,... , defined by  

X S Sn n n= − −1  for n ≥ 1, are the sojourn times in these states taking values in R+ .  A MRP can be 

completely determined by its initial law and its semi-Markov kernel, respectively defined by 
P( ) ( )J k p k0 = = and  

P  a.s( , | , ,... , ) ( ) ,J k X x J J J Q xn n n
nJ k+ += ≤ =1 1 0 1 .             (3) 

for all x k s∈ ≤ ≤R+ and 1 ;  a.s. means almost surely. The probabilities  

p Q Q ti j i j i j
t

= ∞ =
→ ∞

( ) lim ( )                   (4) 

are the transition probabilities of the Markov chain ( ) .Jn n ≥ 0  
 
A much simpler alternative to the semi-Markov processes are the failure processes described in  [8]  (Ch. 
16 in  reference [5]). Two states only are considered :  the  failure state and the operating state. The times 
for repairs are ignored, and the times when a failure state occurs are also taken as points T T1 2, , ...  on the 
time axis. Another restriction consists in the hypothesis that the time intervals between two successive 
failures, that is  

X T X T T X T T
n n n1 1 2 2 1 1

= = − = −
−

, ,..., ,...               (5) 

are independent and identically distributed (abbreviated  i.i.d.).  A numerical characteristic of such 
processes is N t( ) = the number of failures in interval [ , ] .0 t The failure rate of the failure process is 
defined by   

[ ]r
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t
P t X t h X t

h

f t

F t

d

d t
F t( ) lim

( | ) ( )

( )
ln ( ) ,=

≤ < + >
= = −

→ 0
           (6) 

where F t F t P X t r x d xt
( ) ( ) ( ) exp .[ ( ) ]= − = > = − ∫1 0  This later “complementary”  cdf  equals the 

probability that a continuous operating cycle (without any failure) is longer than  t .  The conditional 
probability P( | )X t y X t− ≤ > = [ ( ) ( )] / ( )F t y F t F t+ −  is the residual cycle length ;  in  [8], this 
characteristic is called the residual lifetime. We have recalled these notions connected with the failure 
processes in order to see how some of them can be extended to corresponding characteristics of semi-
Markov systems with several states.   
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Coming back to the  MRPs, let us suppose that, for all   i  and   j , Q
ij

( )⋅   is absolutely continuous with 

respect to the Lebesgue measure and q
i j

( )⋅  is the corresponding density. Then, for any two indices  i  

and    j  ( , ) ,1 ≤ ≤i j k the instantaneous transition rate of the semi-Markov kernel is given by  
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The cumulative hazard rate from state  i  to  state  j  is defined by   

Λ i j i j
t

t u du( ) ( )= ∫ λ
0

                   (8) 

and the total cumulative hazard rate of state  i  at time  t  by Λ i i

s

i j
t t( ) ( ) .=

−
∑

1
λ  For    and  

t ∈ ∞[ , )0   the probabilities involved in  Eqs. (4) and  (5)  are given by  

Q t u u dui j i i j

t

( ) exp ( ( ) ( ) .= −∫ Λ λ
0

                           (9) 

For a uniform division ( )vk k m0 ≤ ≤
of interval [0, T] , with step  ∆ m T m= /  and  m  a positive integer, 

the transition rate λ i j t( ) can be approximated by   

λ λi j
k

m

k k
t i jk tv v* ( ) ( ) ., )=
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1
1 [             (10) 

The maximum likelihood values of the transition rates λ i j k are given by  
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where vik  is the sojourn time in state  i  on the time interval I k given, for N
T

> 1,  by  
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The functions 1 [ , ) and 1 { , . . .} are the indicator functions of the interval / set that appears as a subscript.  
 
Availability Estimation by Semi-Markov Models  
As we have remarked in the Introduction, the two-state (up and down) models are inadequate for 
describing the possible states of a subsystem in a complex system like an industrial facility. As we 
suggested in  Eq. (1), two subsets of states U  and  D  are better suited for describing the evolution of a 
subsystem during its lifetime or operational cycle. We keep the notation suggesting “up” and “down” 
states, but a state in U  will be − in fact − a state in which the subsystem is available but not necessarily 
operating ;  a state in D  will correspond to various situations when the system is unavailable like a state of 



failure, of repair, of preventive / periodical maintenance or off-service inspection, etc. A more detailed 
discussion on the possible states in  U or D  will be presented in the next section. The availability at a 
certain time  t  in  [0,T]  of the subsystem means that it is either operating or (let us say) in a stand-by state 
allowing it to become immediately operational on demand at time  t .  We denote the availability function 
by  A (t)  and it can be formally defined, for a  MRP, by  

A t J U
N

t

( ) [ ]= ∈P                 (14) 

where  Nt   is a positive integer indirectly defined by  NT  of  Eqs. (12)  and  (13). It follows from  Eq. (12)  
that Nt  equals the number of states of availability J

l + 1  at  t  provided the preceding state 
was J i

l
= and the sojourn time in J

l + 1 is X
l + 1 , at least equal to the left end of the division interval  

I v v tk k k= ⊂+[ , ] [ ]1 0,  .  According to  [9], the availability of a semi-Markov system at time  t  can be 
expressed in closed form as  

A t p i A t
i

i
( ) ( ) ( )=

∈

∑

E

               (15) 

where A t
i
( )  is the availability at  t  given that the system starts in state  i  at the initial time ; p i( ) is the 

initial law for state  i  in  E .  Eq. (15)  can be rewritten under the matrix form  

A t t s s( ) ( ) ,= ⋅ ⋅p P 1
1

               (16) 

where p = [ ( ) ... ( ) ... ( )]p p i p s1  is the initial law, P by by( ) [ ( ) ] [ ( | )]t p t P J j J i
i j s s s sN

t
= = = =− − − −0 is 

the semi-Markov transition matrix, and 1s s1
1 1 1 0 0 0, [ ... ... ]= T  with the first s1 entries = 1  while 

the next s s− 1 are = 0.  A more explicit form for  Eq. (16)  is  
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It is possible to obtain, from  Eqs. (16) – (17), several types of availability (at time t)  depending on the 
initial state of the system. For instance, the availability at  t  provided the system started in state  i  is given 
by   

A t p i p t
i

i j
j

s

( ) ( ) ( ) .= ⋅
=
∑

1

1

               (18) 

A relevant availability measure is the so-called  interval availability  (also considered in our paper  [4]). It 
expresses the probability that the system is available at time  t + x  provided it has been available at  t  and 
on the whole interval  ( , ) .t t x+ . Formally, we may define it by  

IA x t J U t t x( , ) ( ( ) : [ , ]) .= ∈ ∈ +P τ τ              (19) 
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If the states of availability are grouped together as above (from  1  to s
1

) , then the interval availability in  

Eq. (19)  can be equivalently written as  

IA x t J s t t x( , ) ( ( ) : [ , ]) .= ≤ ∈ +P τ τ
1

             (20) 

 
Certainly, this grouping could be considered as being more or less arbitrary, and it is implicity assumed 
that the set of states   E  is  −  in fact  −  an ordered  s-tuple   
 

 

We can also remark that  Eqs. (19) & (20)  express the probability that the system remains in an available 
state along the whole interval  [ , ] ,t t x+ what does not exclude the possibility that it changes its state but 
without going out of  U.  The evaluation of the  interval availability  would clearly be of practical interest 
since it gives a measure of continuous availability over a given time interval. If J t j U( ) = ∈ and the 
successive jump times to other states of availability, following to  t ,  pass over  t + x  then it is clear that 
the system will be still in a state of availability at time t x+ .  However, this is only a sufficient and 
particular condition for the system to remain available over the whole interval in discussion. We have to 
look for a general formula to evaluate the probability in Eq. (19). Let us first remark that the interval 
availability generalizes what is called the reliability of a MRP (in  [7]), given by  

( )R t J U t( ) ( ) .= ∈ ≤P τ τfor  all              (21) 

In other words, the reliability in  Eq. (21)  equals the probability that the system remains available over the 
whole time interval  [0, t].  It follows from  Eqs. (19)  and  (21)  that R t IA t( ) ( , ) .= 0  The reliability can 
be expressed in terms of the reliability conditional on the departure state  i ,  by equations similar to  Eqs. 
(15)  and  (16) :   

R t p i R t t
i U i U

U( ) ( ) ( ) ( ).= = ⋅
∈
∑ p P 1              (22) 

where p
U

 is the subvector of the (initial) probability law restricted to the up-states,  1 = [1 1 … 1] T  and   

U U Ut I Q t I Q tP diag( ) [ ( ) ] [ ( ( ) ) ].= − − ⋅− ∗1 1             (23) 

with  ∗  = the Stieltjes convolution product. However, it appears that these measures of the time dependent 
availability of a (sub)system, based on the  MRP  model, are less adequate for a system which can “visit” 
(or pass through) states when it is not available, yet such states are not actual failure states. This is the 
case with states of periodic maintenance / off-service inspections, for instance.  
 
A couple of relevant parameters and functions for the availability of a semi-Markov system are the 

following:  N j (t) =  the number of visits paid to state  j  in the interval  [0, t] ; R i j  (t ) = E [N j (t) | J (0) = i], 

that is the expected number of vistits paid to state  j  (over the same interval) provided the initial state was  

i  ;  pi j  (t) =  P[J (t) =  j | J (0) =  i ] ;  G i j  (t)  = the distribution function of the first jump time from  i  to  j. 

These parameters can be evaluated provided certain assumptions of the distribution / density functions are 

adopted. Such assumptions will be presented in the next section.  



4.  AVAILABILITY EVALUATION OF SUBSYSTEMS BY MULTI-STATE SEMI-MARKOV 
MODELS 

 
We consider subsytems with a larger set of states  E,  including operating states as well as states of repair / 
replacement, maintenance, off-service and in-service inspection, stand-by (or ready) states, etc. Certainly, 
the set of states to be accepted/selected depends on the technical or engineering nature of the subsystem. 
We extend the set of possible states that we have considered in  [4]. Certainly, a larger state space will 
lead to a more complex model. However, such a larger model will may be rather easily adapted to simpler 
cases by appropriate choices for the distributions of the corresponding sojourn times. In general, the 
appropriate stochastic model to formalize the behavior of such subsystems will consist of a semi-Markov 
system since − for instance − the sojourn times in different states cannot be assumed to be i.i.d. 
(independent and identically distributed).  The set of possible we take into account is given in Table 1.  
 

Table 1. The set of possible states of a subsystem 
 

No. of 
state 

 
Name / Definition 

Type of state : 
 AV  : availability 

UNAV : unavailability 

 
Description 

2 Operating AV System is operating 

2 Stand-by AV Ready for operation on demand 

3 In-service 
inspection 

AV Periodic inspection during operation 

4 Maintenance UNAV Includes off-service inspections 

5 Failure UNAV Failure due to external events / lack of 
required input /  human error / failure by 
control system 

6 Post-failure repair UNAV Repair or replacement after a failure 

 

A couple of comments or explanations might be necessary. Some of the states could be further split into 
smaller ones, with the risk to get a too complex model. 2 : In some systems a stand-by state could be a cold 
stand-by or a hot stand-by state ; anyway, the subsystem / equipment is available on demand. 3 : The states 
of in-service inspections are clearly states of availability. These inspections have deterministic time 
lengths and also deterministic time intervals between an inspection and the next one. An in-service state 
could be assimilated to an operating state. However, a difference appears regarding the probability of a 
jump to a state 4 (of maintenance) or even to a state 6 (of replacement). 4 : In some models, it is also made 
a distinction between the preventive (or prophylactic) maintenance and corrective maintenance. The 
former may be periodic, similar to the periodic inspections. An off-service inspection can obviously be 
assimilated to a maintenance, but the same remark holds on the probabilities of jumps to next states.  5 :  
As it is specified in the fourth column of Table 1, a state of failure may occur due to an external event like 
an earthquake, a LOSP accident (loss of off-site power), the lack of required input caused by a failure of 
an upstream component (in the feedwater system of a NPP, for instance) ;  a failure may also occur due to 
an automatic shutdown by the control channels. Other types of failures could be included in this state and 
all of them depend on the nature of the system and its subsystems / components. In the case of NPPs, the 



possible failures and accident sequences are identified by means of the so-called CCF (Common Cause 
Failure) analysis and fault tress or event trees, and the PSA (Probabilistic Safety Assessment) developed 
by NUREG in the United States are widely known and applied since decades. Another remark regards the 
possible distinction between failures which may be revealed or not revealed  [9]. Let us also mention that 
the structure of a complex system (parallel / series systems and combinations thereof) is quite important 
since this structure may be essential not merely for the whole system but also for the subsystems it 
consists of. This situation occurs, e.g., when events of the type “k-out-of-n” are considered :  a system 
consisting of n  components (or subsystems) is available if at least  k subsystems are available.  We give a 
simple example of a series system consisting of two parallel subsystems in the figure that follows.  
 

          1     

                   4  

          2  

                   5  

          3  
 

Fig. 1  A series system consisting of two parallel subsystems 
 

A typical event for the system in Fig. 1 to remain in an  up  state consists in the availability of two among 
the subsystems (components)  1 , 2 , 3  and the availability of two components among  4 , 5. Then the 
event that the system is in an  up  state can be expressed in terms of a Boolean expression. If we denote by 
[ ]i  the event that component  i  is up, while [ ]j  stands for the component  j  in a down state, then the 

event we consider can be expressed by 

[ [ ] [ ] [ ] [ ] [ ]) [ ] [ ] [ ] [ ] [ ])System is up] = ( (1  2 3 4 5 1 2 3 4 5 ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩∪ ∪ K  

with a total number of six join events in this union.  
 
Before seeing how some of the formulas connected with the semi-Markov processes of the previous 
section can be applied, let us sketch a transition diagram corresponding to a subsystem with the state 
space  E = {1, 2, 3, 4, 5, 6}  described in the previous table.  
 
 
 

             2                       4 
 
 
      1        5 

 
 

                3                       6 

 
 Fig. 2   The transition diagram for a subsystem with the states in  Table 1 

 



In reference [7] it is presented a simple application in terms of a 3-states semi-Markov system. The 
sojourn times in a certain state are conditional on the nature of the next state to be visited. This 
dependence is expressed in terms of the distributions assumed for the sojourn times. We also admit 
similar assumptions for the 6-states system in what follows. We recall that the time variable is assumed to 
take values in the interval  [0, T]  with  T =  the designed lifetime or operational cycle length of the system.  
 
The initial probability law, i.e., the vector of the probabilities of the initial (or departure) states is  

p =( [ ].0) 1 0 0 0 0 0                (24) 

The transition matrix is here considered as constant, meaning that the transition probabilities do not 
depend on time. We take this matrix, corresponding to the transition diagram, as given below :  
 

P =

055 015 015 010 005 0
060 040 0 0 0 0
055 0 030 015 0 0

0 060 0 040 0 0
0 0 0 0 0 1

065 015 0 0 0 020

. . . . .

. .

. . .
. .

. . .

.





















            (25) 

Certainly, this is only an illustrative example. For instance, the entries on the main diagonal give the 
probability that the system remains in the respective state, but this obviously depends on the time passing 
since that state was entered and the expected sojourn time, specific to the same state. The matrix in (25) 
should be taken as giving only plausible transition probabilities at a moment when the system changes its 
state. A realistic model should operate with time dependent transition probabilities, and also with specific 
rates like repair rates, maintenance rates, etc.   
 
In our opinion, one of the most interesting approaches is that due to  A. Csenki [6] since his model 
operates with the probabilities that a system keeps or changes its state over a time interval of length  x.  
This notion of interval reliability is quite naturally suitable for using semi-Markov models since the 
sojourn time (in a certain state) is just the essential issue that makes the difference between these models 
and other (simpler) ones. It remains as an objective for us to go further along this line of using notions like 
interval reliability and availability and semi-Markov systems for the stochastic evaluation of subsystem 
availability.  
 

5. CONCLUDING REMARKS 
 

We have continued our research of [4], giving more details on the mathematical nature of the semi-
Markov systems. We have also discussed possibilities to consider systems with a larger variety of possible 
states. Certainly, the availability evaluation for such systems would imply rather sophisticated and 
complex mathematical (stochastic) models. The semi-Markov models provide the important advantage 
that they take into account the sojourn times in the possible states, while the renewal models assume that 
any failing component is immediately replaced by a new one. It still remains to go further with the 
application of semi-Markov models and interval reliability in the stochastic evaluation of the availability 
of subsystems and systems.   
 
The impact of earthquake motions on the reliability and availability of (sub)systems has not been 
explicitly taken into account in this paper. However, the seismic effect can be expressed in terms of 
certain parameter components of the vector of  Eq. (2). On another hand, the relevance of the Markov-type 
systems in the reliability assessment of structures subjected to earthquake actions is taken into account in 
the other paper we have submitted to 13WCEE, that is Paper 2278.  

 



 
REFERENCES 

 
1. Lin YK. “Application of Markov process theory to nonlinear random vibration problems.” Chapter 4 
in Stochastic Methods in Structural Dynamics, Dordrecht: Martinus Nijhoff Publishers, 1987, 134-153.  
2. Elsayed AE, Ribeiro JD. “A reliability approach for optimal design of structural components.” 
Transactions of the 13th  SMiRT International Conference, Porto Alegre, Brasil, 1995, Vol. IV, 545-552.  
3. Choi SY, Yang J-E, Jin Y. “Development of Markov model of emergency Diesel generator for 
dynamic reliability analysis.” Transactions of the 15th  SMiRT International Conference, Seoul, Korea, 
1999, Paper M/05/2, X-491-498.  
4. Carausu A, Vulpe A. “Markovian and semi-Markovian models for availability evaluation of repairable 
subsystems & equipment in NPP’s.” Transactions of the 15th  SMiRT International Conference, Seoul, 
Korea, 1999, Paper M/05/4, X-499-506.  
5. Ionescu DC and Limnios N (Eds.). “Statistical and Probabilistic Models in Reliability.”, Boston-
Basel-Berlin: Birkhäuser, 1999.   
6. Csenki A. “An integral equation approach to the interval reliability of systems modelled by finite 
semi-Markov models.”  Reliability Engineering and System Safety  1995: 47, 37-45.  
7. Ouhbi B, Limnios N. “Estimation of kernel, availability and reliability of semi-Markov systems.” 
Chapter 8 in Ref. # 5: “Statistical and Probabilistic Models in Reliability.”, Boston-Basel-Berlin: 
Birkhäuser, 1999, 113-124.   
8. Oprisan Gh. “On the failure rate.” Chapter 16 in Ref. # 5: “Statistical and Probabilistic Models in 
Reliability.”, Boston-Basel-Berlin: Birkhäuser, 1999, 235-242.   
9. Rao SS. “Reliability-based design.” New York: McGraw-Hill, 1992.  
 
 
 
 

 


	Return to Main Menu
	=================
	Return to Browse
	=================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



