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Abstract: An equivalent method is suggested to analyze the horizontal impedance function of single pile in 
horizontal soil layer with variable properties. In this approach, three main steps are included. First, a simplified 
method, which is established on the one-dimensional shear wave equation and modal perturbation technique, is 
developed to determine the modes of the complicated soil layer with variable properties. Then an equivalent 
homogeneous soil layer is suggested to instead of the variable-property soil layer. The equivalent physical 
parameters of the equivalent homogeneous soil layer are determined by weighted integral. Finally, the impedance 
function of the pile in the equivalent homogeneous soil layer can be considered as the one of the complicated soil 
layer approximately. Numerical example verifies that reasonable precision can be achieved. 
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1. Introduction 
 
Pile foundation is a popular type of the deep foundation of large-scale structure. The dynamic 
interaction between soil, pile foundation and structure under seismic excitation is an important problem 
in the seismic stability research of high-rising buildings and long-span bridges. In the substructure 
method for soil-structure interaction (SSI) problem, the impedance function or matrix of the pile 
foundation is usually introduced in the equation of motion of the structure as the consideration of the 
SSI effect upon the dynamic behavior. Many useful research works have been done for determining the 
impedance function or matrix of single and group pile foundation[1-4]. However, most of these works are 
only available to homogeneous half plane (or space) and layered soil. Finite element method (FEM) and 
boundary element method (BEM) or other numerical methods can be used to solve the impedance 
function of the pile foundation in more complicated soil layer, but numerous calculation has to be 
carried out. In the engineering practice, the properties of the soil medium vary with the soil depth for 
most of soil site. Therefore, it is an interesting work to develop a simplified method with high precision 
for determining the impedance function of pile foundation for structure design and analysis. As known, 
time-lag has an important influence on the effectiveness of the structural control. It also requires the 
simplified method with high precision method to achieve the fast computation for the online analysis if 
the soil-pile-structure interaction should be considered in the seismic control [5,6]. As a basic work, a 
simplified method for calculating the horizontal impedance function of pile in horizontal 
variable-property soil layer is discussed in this paper.  
      
2. Impedance Function of Pile in Homogeneous Soil Layer 
 
The approach suggested by Novak[1] is adopted in this paper to calculate the horizontal impedance 
function of single pile in homogeneous soil layer. But the soil is assumed as linear viscous-elastic media 
instead of linear elastic media in the approach. It means that the computing formula of the impedance 
function of the pile will be same, only the complex viscous-elastic modulus of the soil is used to replace 
the modulus of elasticity in the equation of motion. 
 
3. Modal Perturbation Technique 
 
The partial differential equation of motion for determining the dynamic behavior of the horizontal soil 

layer with variable property under the horizontal seismic excitation )(
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where ),( tyu  is the relative horizontal displacement to the rock surface motion )(tug ; )(yρ , )( yc  

                                                       
1 Tongji University, State Key Laboratory for Disaster Reduction in Civil Engineering, P. R. China, professor 
2 Tongji University, P. R. China, graduate student  

 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 2485 



and )( yG  are the mass density, damping coefficient and shear elastic modulus at vertical location y  
from the rock surface, respectively. Applying separation of variables, the shear vibration modal 
characteristics of the variable-property soil layer can obtained from the following equation: 
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Obviously, it is difficult to solve analytically Eq. (2) to get the eignvalue j

−
λ  and vibration function 

)(yjϕ  of thj  shear mode. Let 
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where 0G  and 0ρ  are arithmetic average of the shear elastic modulus and mass density over the 

depth H of the soil layer respectively, 
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As known, the thj  shear vibration modal parameters jλ  and )(yjψ  of the homogeneous soil layer 

with shear elastic modulus 0G , mass density 0ρ  and same depth H can be easily determined from the 

constant coefficient ordinary differential equation: 
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Based on the modal property jλ  and )(yjψ  of the homogeneous soil layer, the eigenvalue j

−
λ  and 

shear vibration function )(yjϕ  of the thj  mode of the variable-property soil layer can be expressed 

approximately as 
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After substituting Eqs. (5) and (6) into Eq. (2) and premultiplying )(yjψ  on both sides of Eq. (2), an 

algebraic equation will be obtained by integrating from 0 to H along the layer depth, 
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In Eq. (7), there are n unknown variables, that is { } T

jnjjjjjjjj aaaaaa LL ,,,,,, 1121 +− ∆= λ . When 

circulating i  from 1 to n, a nonlinear algebraic equation can be formed to determine the variable 

vector { }ja . Then the thj  eigenvalue j

−
λ  and modal shape function )(yjϕ  can be obtained 

immediately from Eq. (5) and (6). If the second order small quantity in Eq.(7) is neglected, a very 
simple expression can be gotten: 
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4. Equivalent Homogeneous Soil Layer 
 
It had been verified that the dynamic flexibility coefficient of the variable-property soil layer could be 
computed approximately by mean of the equivalent homogeneous soil layer[7]. This technique will be 
applied to solve the problem of the impedance function of single pile in the horizontal soil layer with 
variable properties. Using this equivalent technique, the problem to obtain the impedance function of 
single pile in variable-property soil layer is displaced by the problem of solving the impedance function 
of the single pile in the homogeneous soil layer with same depth. It becomes easy to solve the problem, 
because there have been several theoretical and analytical method to solve the latter problem. 
Two basic principles will be used in the equivalent procedure. First, the static equivalent principle is 
applied to find the equivalent elastic modulus for the variable-property soil layer. And then the dynamic 
equivalent principle, which requires to keep the same fundamental frequency for the variable-property 
soil layer and its equivalent homogeneous soil layer, is used to determine the equivalent mass density. 
Detail of the equivalent method is described as following. 
 
4.1 Equivalent Elastic Modulus 
As known, the elastic modulus of soil medium is the key factor to influence the static deformation of 
the soil layer. Therefore, the first thing to do in the equivalent procedure is to choose the reasonable 
equivalent formula for determining Young’s elastic modulus Ee and shear elastic modulus Ge. Three 
formulas are listed for trial analysis and comparison. 

(1)                       ∫ ′=
H

e dyyfyfyGG
0

)()()(
1

α
                           (10) 

where α  is a constant. It is obtained from the condition that when G y( )  is equal to Ge , two sides 
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In above formulas, Ge  is the equivalent shear modulus; f y( )  is a weighted function and is assigned 

as the first modal function )(1 yφ  of the variable-property soil layer that can be determined by the 

perturbation method in above section. If )(yG  is displaced by )(yE  in Eqs. (10)-(12), the 

equivalent Young’s elastic modulus Ee  can be obtained. 
 
4.2 Equivalent Poisson’s Ratio 
The equivalent Poisson’s ratio can be determined from equivalent Young’s elastic modulus and shear 
modulus under the isotropy assumption of the soil medium: 

                           µ e
e

e

E

G
= −

2
1                                  (13) 

 
4.3 Equivalent Damping Ratio 
If damping form of soil medium is assumed as a hysteretic damping, the complex shear modulus may 
be expressed as: 
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in which, )(yζ  is defined as the equivalent hysteretic damping factor; 1−=i . For the 
homogeneous soil layer, the complex shear modulus can be expressed correspondingly as: 
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in which eζ  is defined as the equivalent hysteretic damping factor. Due to both of the damping force 

and the elastic resistance are proportional to the displacement amplitude, eζ  can be determined by 

using similar equations shown in Eqs. (10) to (12), except using )(yζ  in place of G y( ) . 
 
4.4 Equivalent Mass Density 
According to the second equivalent principle, the equivalent mass density of the equivalent soil layer is 
determined by: 
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in which ω 1  is the fundamental frequency of the variable-property soil layer and can be calculated by 
modal perturbation technique mentioned last section in this paper. 
 
5. Numerical Example  
 
A horizontal soil layer with 9 groups of variable properties shown in table 1 is taken as the numerical 
example. In the table, z∆ , ,E V , ζ  and µ  are the thickness, Young’s elastic modulus, shear wave 
velocity, hysteretic damping factor and Poisson’s ratio of each soil layer. The first layer is located at the 
top of the variable-property soil layer. 

 
Table1       The parameters of variable-property soil layer  

Layer number ∆Z )(m  E ( )MPa   V ( / )m s   ζ  µ  

1 
2 
3 
4 
5 
6 
7  
8  
9  

0.42 
0.42 
0.43 
2.99 
7.53 

10.72 
5.0 
2.0 
20.0 

58 
87  
116 
132 
86 

  200 
357 
273 

 480 

 112 
 135 
 159 
 165 
 130 
 184 
 257 
 232 
 300 

0.04 
0.04 
0.04 
0.04 
0.07 
0.03 
0.02 
0.02 
0.02 

0.25 
0.25 
0.25 
0.25 
0.49 
0.45 
0.35 
0.30 
0.30 

The properties of the equivalent homogeneous soil layer, decided by using three basic Eqs. (10) to (12) 
respectively, are listed in Table 2 ,.  
 
              Table 2   Properties of the equivalent homogeneous soil layer 

Equivalent basic equation )(MPaEe  )/( smVe  eζ  eµ  )(MPaGe

 
Eq.(10) 
Eq.(11) 
Eq.(12) 

214 
207 
191 

261 
261 
261 

0.039 
0.041 
0.045 

0.36 
0.36 
0.38 

79 
76 
69 

 
The pile, 34 meters in length and 1.4 meters in diameter, is a steel pipe filled with concrete. The 
horizontal impedance function of the pile in these equivalent homogeneous soil layers can be easily 
obtained by using the method suggested by M. Novak[1]. These solutions are taken as the approximate 
horizontal impedance function of the pile in the variable-property soil layer. The real and imaginary part 
of the impedance functions gotten from using different equivalent basic equation, that is Eq. (10), (11) 
or (12), are shown in Figure 1 and 2.  
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               a. Equation (10)                          a. Equation (10)  
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                b. Equation (11)                          b. Equation (11) 
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c. Equation (12)                           c. Equation (12)  

 
Figure 1 Real part of impedance function      Figure 2 Imaginary part of impedance function 

 
Otherwise, the horizontal impedance function had been calculated before this research by finite element 
method (FEM) and the simplified method. These results are taken for the comparison. All of 
comparisons of the current results and previous results are shown in the Figures 1 and 2. The solid line 
and the dashed line represent the results obtained by the FEM and approximate method suggested by 
G.Gazetas and R. Dobry[4], respectively. The dot lines show the results obtained by this paper using 
basic Eq. (10), (11) and (12) respectively. 
 
From the results, it can be shown that, the choice of equivalent equation for elastic modulus has a little 
influence on the imaginary part of the impedance function but more important effect on the real part of 
the approximate results. From these comparisons, the best precision is achieved in the case shown in 
Figure 1a and Figure 2a. Because the equivalent equation (10) describes the reasonable relation that the 
works by the internal shear stress in both soil layers are equal to. So, the equivalent equation (10) is 
recommended to use in the equivalent procedure. 
 
Comparing with the approximate method developed by G. Gazetas and R. Dobry, the approximate 
method suggested by this paper is more easily to get the numerical results. Because, it is not necessary 
to calculate the static stiffness and deflection line of the pile by FEM to determine the radiation and 
material damping of soil medium.  
 
 



6. Conclusion 
 
A simplified method for determining the horizontal impedance function of single pile in the horizontal 
soil layer with variable properties is suggested in this paper. In this method, the static and dynamic 
equivalent principles and the modal perturbation technique are applied. The numerical results show the 
method has good precision. 
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