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SUMMARY

In this paper, to examine more precisely prediction potential of the ground motion model on the
basis of wave propagation theory and source kinematics, first the decay of seismic wave with
propagation distance has been evaluated using the ground motion model. Second such seismic
wave attenuation has been compared with the ones for the ground motions observed at several
sites. The research into seismic wave attenuation has suggested that the source-site distance, the
source-site geometry, particularly the ratio of epicentral distance to focal depth, and the
directivity effects in the source radiation are related essentially to the description of attenuation
of ground motion.

INTRODUCTION

In the previous paper”, the prediction model of ground motion has been presented on the basis
of wave propagation theory and source kinematics. In this modeling of ground motion, the
rupture process for a unit event on the fault plane has been idealized as an impulse response of
elastic membrane. This dynamic response has been applied for modeling source rupture process
as a unit slip function with ®” spectral characteristics. The soil ground model for source-site
path has been presented as a multi-layered half-space which consists of some soil layers
overlying a semi-infinite random medium. The prediction model of ground motion has been
presented by the Green’s function of soil ground model and the source rupture process model.
The excellent prediction potential of this ground motion model has been verified through a
simultaneous simulation test against the observed ground motions at some sites during the 1995
Hyogo-ken Nanbu Earthquakel).
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In this study, to examine precisely the prediction potential of this ground motion model, the
attenuation of ground motion with propagation distance has been estimated using the above
ground motion model. It has been compared with some observed data at the several sites.

GROUND MOTION MODEL

Source model for rupture process on fault plane

In order to investigate how the source rupture process gives an effect on ground motion, the earthquake
source rupture growth process is modeled. This model is presented in terms of seismic moment tensor
including the starting and stopping effects of the rupture front at the mth fault element, using the above
slip vectors and slip function with temporally and spatially random variation due to heterogeneous
asperity on the fault surface as follows";
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where My(m), Au'm), Ry and [ are seismic moment, average slip displacement, radiation pattern and shear
rigidity at the mth fault element, and AT; and ATy are the fluctuating rupture time and rise time due to the
small-scale heterogeneity on the fault plane, ® is the frequency, N; and N, denote the event number and
the fluctuating number associated with building up dislocation at the mth fault element. §; and i are the
weighting factors for the dislocation amplitude. {§;}, {w}, {AT;} and {At} in Equation (1) are
considered random variables with a uniform distribution, the coefficients of variation of which are taken
to be 0.2. Ny and N, in Equation (1) are set to be 5 so that the source model includes the maximum
frequency component of up to 10 Hz by producing a short fluctuating rise time ATy.

For the reference case of this study, the source rupture process of an earthquake of Magnitude M=7.7 is
modeled for a rectangular fault plane with length L=100 km and width W=50 km placed in a semi-infinite
homogeneous region as shown in Figure 1. The fault plane is fixed with strike direction angle 0" and dip
direction angle 45°. The rake angle is 0°.

The seismic moment of the earthquake is M =6.31x10""dyneecm. The fault plane is divided into N, x N,
=10 x 20 subfaults with equal area X, = Z. = L. x W, as shown in Figure 1. The total seismic moment is
distributed on each subfault in proportional to the random numbers ;. The average slip over the entire
fault plane is 281cm. In this study, the seismic moment distribution is supposed as shown in Figure 2.
The source rupture initiates at the left (south) side area of the fault plane, propagates laterally along the
fault length with a random velocity with average 3km/s and arrives at the right (north) side of the fault
plane. The seismic moment is assumed to be released at the every time when the source rupture front
arrives at the center point on each fault element.

This source rupture growth process on the entire fault plane may be modeled as the sum of elementary
seismic moments releasing with the random lagged times t,(E.y) to the rupture events on the fault surface.
Then the source spectra of the large event is shown to be
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Figure 1 Fault plane, source rupture initiation area on the left side of fault plane, source rupture direction,
and observation sites on the Ss- and Sd-lines
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Figure 2 Seismic moment distribution
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Soil sediment structure model for source-site path

The direct waves from source area and their first reflection waves are considered to be most reliable waves
In this study, the ground motion model will consider the
problem in essential way by taking into account the two representative physical phenomena; the scattering
of seismic waves in the lithosphere region and the amplification of seismic waves in surface soil sediment
structure over the lithosphere region. Then the refined soil sediment structure model for source-site path
could be presented as a multi-layered half-space which consists of a surface layer overlying a semi-infinite

for seismic design of a structural system.

random medium.

Ground motion model

The ground motion consists of wave motions with the rupture events occurring at the 200 subfaults of a
rectangular fault plane in a semi-infinite homogeneous medium as shown in Figure 3. When Au gy (&,t)
takes place at the center point &, located on a subfault ¥, the nth component of displacement U (X;t)
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Figure 3 Geometric relation between causative fault and
observation sites

at observation point x and time t may be represented by the convolution integral as
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where Gp(X, t ; Em)» 0) presents the Green's function of the nth component of displacement at the position
at x and time t when the unit impulse is applied in the p direction at the center point &, located on the
mth fault element and time t=0. My)pq(t) is described by the source rupture process model. Then the
ground motion may be expressed by the summation of seismic waves radiated from all the rupture events
on the entire fault plane as

u, (X%, 0 =D 0, (5 t=t(&,)
“4)

in which &, and t.(§.y) are the center point and dislocation initiation time on the mth fault element X ).
In this ground motion modeling, the source directivity effects could be realized by the two time
differences with wave propagation; the one is the arriving time difference at the site on the two wave
motions radiated from the starting and stopping phases; the other is the traveling time difference at the site
on wave motions radiated from the different subfault on the fault plane. Then such directivity effects
could be produced with the surface integration of wave motions over the entire fault plane, which are
expressed by the convolution of Green's function and source model reflecting the irregular rupture process
on the entire fault plane.

NUMERICAL EXAMPLE

The ground motions calculated by Equations (3) and (4) are shown for the one soil sediment structure
model at the 21 observation sites under the fault-site geometry relation in Figure 1. The site SO is situated
just above the center of fault plane. The sites SdO1, Sd02, ... , Sd10 and the SsO1, Ss02, ...., Ss10 are
located in the dip direction on the fault plane (EW direction), and in the strike direction on the fault plane
(NS direction), respectively. The same soil sediment structure model in Table 1 is supposed for all the
sites. The amplification factors of this soil sediment structure model are shown in Figure 4.

The large components are recognized in the short period range about 0.2 and 0.4 sec. They reflected the
amplification characteristics of shallow surface soil sediment layers. Some large components are also
clearly recognized in the long period about 2, 5, and 10 sec. They correspond with the predominant
periods of deeper soil sediment layers.

Wave form function and response spectra
Figures 5 and 6 show acceleration time histories and velocity response spectra with 5% damping ratio for

NS, EW and UD components of ground motions at the observation sites Sd(i) (i=1~10) on the center line
of fault plane.



Table 1 Soil sediment structure model

P-wave S-wave Damping | Damping
Depth velocity velocity Density | factor h(%) | factor h(%)

H(m) Vp(m/sec) | Vs(m/sec) | p(g/cm3) Vp Vs
0-3.45 1,450 220 1.70 1.0 1.0
3.45-8.35 1,450 220 1.60 1.0 1.0
8.35-23.15 1,870 540 1.75 1.0 1.0
23.15-29.8 1,810 520 1.80 1.0 1.0
29.8-40.2 1,960 570 1.80 1.0 1.0
40.2-85.2 1,800 550 1.90 1.0 1.0
85.2-153 1,800 610 1.90 1.0 1.0
153-1000 1,860 720 1.90 1.0 1.0
1000-3500 2,800 1,500 2.20 0.5 0.5
3500-6000 4,700 2,500 2.40 0.5 0.5
6000- 5,500 3,000 2.50 0.5 0.5
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Figure 4 Amplification factors for all the sites
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Figure 5-1 Acceleration time histories for NS, EW and UD components of ground motions at S0, Sdo1,
Sd02, ....and Sd10 sites
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Figure

5-2 Acceleration time histories for NS, EW and UD components of ground motions at SO, SsO1,

Ss02, ....and Ss10 sites
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Figure 6-1 Velocity response spectra with 5% damping ratio for NS, EW and UD components of ground

motions at SO, SdO1, Sd02, ...., and Sd10 sites
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Figure 6-2 Velocity response spectra with 5% damping ratio for NS, EW and UD components of ground

motions at SO, Ss01, Ss02, ...., and Ss10 sites



Attenuation curves

Figures 7 and 8 show acceleration and velocity attenuation relationship in distance for ground motions at
all the sites. The focal distance is supposed to be the shortest distance from fault plane to each site.

There is clear difference in the attenuation relationships between the sites Sd01, Sd02, Sd03, Sd04 located
at the upper side of center line cross the fault length direction and the sites Sd06, Sd07, Sd08, Sd09, Sd10
located at the lower side of center line cross the fault length direction. The maximum acceleration and
velocity values of ground motions at the sites Sd01, Sd02, Sd03, Sd04 are larger than those of the sites
Sd06, Sd07, Sd08, Sd09, Sd10.
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Figure 7 Attenuation of acceleration ground motions in distance along the Sd- and Ss- line sites on the
fault plane
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Figure 8 Attenuation of velocity ground motions in distance along Sd- and Ss- line sites on the fault plane



CONCLUSIONS

In this study, the ground motion model has been applied to predict the attenuation of peak values and
response spectra of the ground motions with propagation distance. The investigation results have
suggested that the accurate prediction of ground motion depends on the derivation of the physical laws
and quantities which could describe essentially the characteristics of ground motion. They are the source-
site geometry, particularly the ratio of epicentral distance to focal depth, the source-site distance, and the
directivity effects in the source radiation.
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