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SUMMARY 

Under which conditions is it economically convenient to seismic retrofit a structure? This paper 
present a procedure whose results allow to give a simple answer to the above question, central in 
earthquake engineering and, in a broader context, in any man-made activity. The procedure uses, as a 
starting point, the results of a standard reliability analysis conducted on the structure in its present state 
and after retrofitting. Once these are known, expressed in terms of mean rate of exceedance of 
specified limit states, it is shown that it is possible to compute whether the upgrading should be made 
after all and how convenient it is. 
The assumptions to make the problem tractable are clearly listed and appear, in authors’s viewpoint, 
quite reasonable. The final results are presented both in diagrams and with a simple formula. The 
method is finally applied to the case of bridges on an Italian highway stretch [1]. 

INTRODUCTION 

Seismic retrofitting of existing structures is a key issue in any earthquake – prone region. Moderate to 
strong earthquakes, in fact, claim many lives and cause extensive damage to structures and 
infrastructures [2, 3] at a regional scale, halting normal life and the economy. 
In developed countries, earthquakes may cause severe economic loss also at a national scale; estimates 
of the monetary damage [4, 5] put the figure for direct costs at some points per cent of the gross 
domestic product (gdp) and estimates of total costs, sum of direct and indirect costs, indicate [5] 
values almost double as shown in Table 1. 

Table 1: damages expressed in monetary values for some past earthquakes (1) 
country earthquake year costs (1995 billion US$) costs/gdp (%) 
Japan Great Hanshin 1995 110 2.3 

California, USA Northridge 1994 20 2.4 
California, USA Loma Prieta 1989 7.1 0.9 

(1): for Northridge and Loma Prieta, the gdp considered is the one of the State of California. In the costs/gdp ratio, costs and gdp are both 
relative to the year of the earthquake occurrence 

 
To cope with the problem, a variety of technical solution has been implemented for seismic 
retrofitting, ranging from strengthening of parts of the structure to seismic isolation and active control. 
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However a systematic application of retrofitting techniques on a national, or even regional, scale has 
not been undertaken, because of the high costs involved. 
This is true both for developed and developing countries in which seismic risk is a concern. In Italy, 
where most of the territory is at risk, no special public policy is adopted for earthquake protection of 
existing structures, apart from temporary and partial eligibility of retrofitting costs for fiscal deduction. 
Earthquake insurance is moreover used by a negligible minority and so the costs of repairing the 
earthquake damages have been up to now partially footed by the State (only for the direct part of the 
costs). This situation is similar to Japan, another country where earthquake insurance is not used (only 
3% of home owners in the Kobe area were insured) and different from the US, where about half 
properties are covered by insurance. The scheme in the US looked like a working one because 
insurance costs for owners of important properties like industrial plants were a function of the 
structural risk of failure (considering both hazard, earthquake intensity at the site, and fragility, the 
capability of the structure to withstand the action) and so owners were economically motivated to 
retrofit their facilities. For houses and less important properties, the authors’s information is that no or 
very approximate seismic assessment was made so that insurance costs were more weakly correlated 
with actual seismic risk. The drawback of the scheme showed up right after the Northridge event: 11.4 
billion US$ worth claims for property damage, about 4 billion US$ collected as insurance fees 
between 1970 and 1994 [5]. Insurers decided then to drop the residential earthquake insurance market.  
The drawback is, in the authors's opinion, that earthquake damage is highly random both in place and 
in time and in magnitude and so, in order to have the economics of investment under risk work, costs 
and risk must be spread on a large community for a long period of time. Financial resources ought to 
be used to make preventive retrofitting (isn't it common knowledge that prevention is better than 
cure?) under a compulsory scheme (retrofit or pay the damage by yourself) fitted to the local 
conditions and customs. 
A second important issue concerns cost-evaluation: in Europe and especially in Italy, unbiased cost – 
evaluation is more difficult than elsewhere because most civil engineering works are old or ancient 
[6], often with artistic or historical values, and have not been designed for seismic action, and hence 
the assessment of their safety is subject to a high degree of uncertainty. 
These two issues (Is retrofitting worth the cost? How can costs be computed?) have been dealt with in 
state-of-the-art literature. Cost – benefit models have been proposed for the evaluation of the 
profitability of public or private investment in seismic retrofitting [7, 8, 9]. These models permit 
comparison among alternatives by assigning monetary values to costs and benefits happening in the 
future and discounting them at the present time accounting for inflation and interest rate. Some of the 
most advanced models also account for the system behaviour of the networks [10, 11]. Nonetheless, 
their application to the real world is often problematic because of their complexity and of the 
subjectivity in the phase of assignment of monetary values to costs and benefits of unhomogeneous 
nature and of difficult evaluation. 
The model presented in this study tries to address both issues. It does not solve the problem of cost – 
evaluation but, by using an agile representation of the economic problem of retrofitting, identifies the 
few basic variables which govern the problem. Results readily exploitable are then produced 
performing parametric studies. 
In the model, structural behavior is represented with a fragility curve, relative to a selected limit state, 
which may be of the serviceability or ultimate type. After structural retrofitting the fragility curve is 
updated. The seismic action is represented with the classical Cornell’s model [12]. The convolution of 
the structural fragility curve with the probability density function (pdf) of the earthquake intensity, 
yields the mean rate in time of structural failures. These are Poisson distributed, with a change in the 
mean rate when seismic upgrading is implemented. We next compute the Annual Equivalent cost for 
the problem thus modeled and minimize it with respect to the time of retrofitting. The option which 
makes the equivalent cost minimum is defined as the most convenient one. Different options account 
for design type, its cost and the time of implementation. 
It must be certainly highlighted that this study is not the final answer to the problem of seismic 
retrofitting: first for technical reasons, because the issue of cost estimation is here tackled only in a 
parametric form and, once one goes down to real world problems, things certainly become more 
complex and subjective; and above all because the initiative to widespread seismic retrofitting 
typically comes from governmental decisions through various means (be it legal and/or financial ones) 
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and is therefore a classical political problem, which involves weighting in also such diverse issues like 
funds availability, global economic conditions, importance of the involved industries, job creation. 
However we think that application of this procedure can give valuable information to decision makers 
and may remove a significant amount of uncertainty from the overall decision problem. 

MODEL OF THE PROBLEM 

In the proposed model, the structure is described by its fragility curve ( )zP zl
f

),( : the function expressing 

the probability of exceedance of the limit state l vs. an earthquake intensity parameter z, usually the 
Mercalli intensity or the peak ground acceleration. Methods to establish structural fragility curves are 
well known [13, 14] and will not be dealt with in this paper. 
In the present version of this study, ageing effects [15, 16] are not considered. Ageing effects would 
cause the structural fragility function to be continuously time-dependent and this would cause sensible 
increase in complexity of the mathematical passages which follow. On the other hand, any increase in 
fragility due to age is negligible in most big reinforced concrete infrastructures, like bridges, during 
their normal economic life, provided that ordinary maintenance operations are routinely carried on and 
that the structure has been originally well designed and constructed. The effect of ageing might 
however be included in an improvement of this method while keeping the same solution framework. 
The seismic action at the site, following Cornell's method [12], is modeled as a Poisson process with 
mean rate equal to ν.  Earthquake intensity Z, given an event, is distributed according to the Gutenberg 
- Richter law: 
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max min
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between the minimum and maximum values zmin and zmax. β is the so – called severity parameter for the 
site. Physically, it is the slope of the minimum error interpolation line in a diagram having the 
recorded intensities on the abscissa axis and the natural logarithm of the frequency on the ordinate 
axis. In equation (1), and in the following, fX(y) and FX(y) respectively indicate the probability and 
cumulative distribution functions of the random variable X evaluated at y. 
The probability ),( el

fP  of exceedance of the limit state l, henceforth indicated as failure, given an event 

is equal to: 
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In equation (2), the familiar resistance and action terms may be recognized: the first term, ( )xP zl
f

),( , is 

inversely proportional to the structural resistance under the action x, while the second term fz(x) 
expresses the likelihood of action x. In short, equation (2). says the probability of failure is obtained 
summing up the contributions at each value of the action x. The distribution of failures in time is then 
a homogeneous Poisson process with mean rate equal to: 

( )l,e
l fλ νP=  (3) 

The time τ elapsed between the beginning of exposure of the structure to earthquakes (at time t=0) and 
the first failure(at time t=τ) is a random variable exponentially distributed: 
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Now, let T the time at which retrofitting is implemented. After upgrading, the structural fragility curve 
( )zP zl

f
),(  will have changed and hence the values of the probability of exceedance of the limit state l 

(equation (2)) and the mean rate of collapses (equation (3)) will have (hopefully) decreased. Let Λl the 
new value for the latter variable. As it was prior to retrofitting, the time to the first failure is 
exponentially distributed, equation (4), with λl substituted by Λl and t substituted by (t-T), time elapsed 
from T. 
This paper attempts at answering the following question: is it economically convenient to retrofit the 
structure at time T? The answer to this question, central in earthquake engineering, will also yield, as 
will be illustrated in the coming sections, a criterion to discriminate among different retrofitting 
designs and choose both the most convenient one and the time at which it is best implemented. 

SOLUTION SCHEME 

Let us first make the following definitions: 
� l=particular limit state which we are considering; 
� Cl(t)=cost (born at time t) to restore the structure to its previous functionality level if the limit 

state l is exceeded at t; 
� Sl(T)=cost (born at time T) to upgrade the structure. After upgrading, the mean rate of collapses 

changes from λl to Λl; 
� L=economic life of the structure after upgrading; 
� if=money interest rate for the owner of the structure; 
� f=inflation rate; 
� i*=inflation-free money interest rate for the owner of the structure=(if–f)/(1+f); 
� i=inflation-free logarithmic interest rate=loge(1+i*). 
and the following assumptions: 
1. interest and inflation rates are constant in time, i.e. if (t)=if and f(t)=f; 
2. the cost to restore the structure to its previous functionality level, Cl(t) is independent of 

upgrading. Since in the computations that follow we will be using only inflation-free interest 
rates, and thus we will be moving in an inflation-free environment, because of this assumption we 
can set Cl(t<T)=Cl(t≥T); 

3. Cl(t) and Sl(t) can be correctly estimated using the prices of today, i.e. Cl(t)=Cl(t=0) and 
Sl(t)=Sl(t=0); 

4. the time required to upgrade the structure at T is negligible i.e. mean rate of failure (t<T)= λl and 
mean rate of failure (t≥T)= Λl; 

5. after retrofitting, the structure has a service life equal to L, after which it has no economic value. 
Before retrofitting, the structure has a service life lower or equal to L, after which it has no 
economic value; 

6. the benefits in time deriving from utilization of the structure are independent of upgrading. Since 
the cash flow of costs and benefits will be expressed in terms of their Annual Equivalent [17], in a 
procedure to minimize costs, benefits can be canceled out. 

From assumptions 2 and 3, it follows that Cl(t)=Cl(t=0)=Cl and Sl(t)=Sl(t=0)=Sl. Assumptions 1 and 3 
are quite reasonable in developed economies. The remaining assumptions are made in order to keep 
the problem simple. There are clearly cases that do not respect these assumptions, e.g. long service 
interruption for upgrading vs. assumption 4, but for many real cases the method should be applicable. 
In the computations that follow, for mathematical convenience, only i, the inflation-free logarithmic 
interest rate, will be used; notice, however, that for small values of the inflation f and money interest if 
rates, the approximation i≈i*≈if-f is correct within a few points per cent. When using i, the familiar 
formula to bring capital forth in time: 

( ) ( ) ( )*0 1
t

K t K t i= = +  (5) 

in which K(t) is the capital at time t deriving from an investment done at time t=0 with interest rate i*, 
can be rewritten as: 
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( ) ( ) ( )0 expK t K t it= =  (6) 

Now, following equation (4), in the range [t; t+dt], the expected cost due to exceedance of limit state l 
may be written as: 

[ ] ( )
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λ t
l l τ l l l

t T
l l l

EC t t t dt C f t dtC e C dt t T
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= ∈ + = = <
= Λ ≥

 (7) 

Costs deriving from use of the structure may be then summed up in the cash-flow of Figure 1. 

0 t T 

Sl 

Economic life of the structure after retrofitting 

T+L t 

EC(t)=Clλle
-λt 

t 

EC(t)=ClΛle
-Λ(t-T) 

 

Figure 1: cash-flow deriving from use of the structure exposed to the risk of earthquakes 

The Annual Equivalent AE to the cash - flow in Figure 1 can be computed as follows [17]: 
(i) compute the present value PV of the expenditures born between 0 and T, at T, and between T and 
T+L: 
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(ii) compute, on the period T+L, the value of AE, the annual equivalent to PV: 

[ ][ ]
( )

exp( ) 1 exp( ( ))

exp 1

i i T L
AE PV

i T L

− +
=

 +  − 
 (9) 

(iii) substitute PV of equation (8) in equation (9). After some algebra, it follows: 

[ ] 1
exp( ) exp( ) 1

exp( ) exp( ) 1 exp( ) exp( )
l l l l

l
l l l l

C S
AE iT T

iT iL i C i L Li

λ λ
λ

  Λ = − − + + −  − + Λ + Λ   
 (10) 

Now, we are interested in studying the variability of expression (10) with respect to T. Although the 
derivative of expression (10) with respect to T has a nasty aspect, and cannot be employed in a simple 
way to solve the problem of minimization, expression (10) is found to be monotonous in the range 
T∈[0;L]. This means that it is either convenient to do the upgrading at time T=0 (AE(T) is a monotonic 
increasing function) or never to do it (AE(T) is a monotonic decreasing function). This behavior has 
been proven numerically, allowing large variability to i, L, λl, Λl with the only (reasonable) constraints 
that Sl≤Cl (the cost to upgrade is lower than or equal to the cost of failure) and λl≥Λl (upgrading does 
not make things worse). 
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Developing further the property of monotony of AE(T) in equation (10), it is found that, in the range 
T∈[0;L], the upgrading is convenient if the following condition is met: 

( )
( )

 monotonically increasing upgrade at 0

 monotonically decreasing do not upgrade
l l l

l l l

R F f AE T T

R F f AE T

+ < ⇔ ⇒ =
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 (11) 

in which: 
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The letter i to indicate 
l

iλ  and 
l

iΛ  in equation (12) has been chosen on purpose since they physically 

are (rather awkward) interest rates. The numerator of the former, 
l

iλ , is a difference of capitals: if one 

invests capital 1 at time t=0, with interest rate i+λl, after L time periods one ends up with a capital 
equal to exp[L(i+λl)]. So, the ratio defining 

l
iλ is a capital difference (value at t=L minus value at t=0) 

divided by a capital (value at t=L). The same holds for 
l

iΛ . Notice also that Rl, Fl, fl, 
l

iλ  and 
l

iΛ in 

equation (12), are all bounded between 0 and 1. 
It can further be noticed that the value of the minimum of the annual equivalent AE in equation (10) 
(be it at T=0 or T=L) decreases with decreasing values of (Rl+Fl), the left-hand side of equation (11). 
Inequalities in equation (11) are nice expressions to assess the economic convenience of any 
retrofitting design. Their use can be summed up in what follows: (i) for the structure to upgrade, first 
compute the value of λl in its present state (ii) compute the value of fl, equation (12) (iii) different 
options for structural upgrading are normally available, each one having a different cost Sl and global 
outcome Λl. Only the options having Rl+Fl<fl are economically convenient; for the remaining ones, 
the do nothing option is preferable. (iv) among the options which are economically convenient the best 
is the one with the minimum value for (Rl+Fl). 

PARAMETRIC STUDY 

In the previous section the criterion Rl+Fl<fl, equation (11), was developed to assess economic 
convenience of the upgrading design. The value of the cost ratio Rl such that Rl+Fl=fl is therefore the 
maximum allowable value for a retrofitting to be convenient. Hence we define: 

{ }llll fFRR =+max max  :  (13) 

Rl max is a function of λl, Λl, i and L and is shown in the following figures for this combination of 
values: L=50 years and i=0.001 and 0.03; i=0.001 and L=10 and 100 years. 
Each figure is drawn for constant values of i and L, and has the values of λl and Λl on the abscissas and 
ordinates axes respectively. Level curves are shown for values of Rl max varying between 0 and 0.9, at 
0.1 steps. The values of i chosen, 0.001 and 0.03, should be representative of many situations, ranging 
from the cost of debt for trusted countries to that for trusted industries, for medium and long term 
bonds. The range of values for the year to 2002 for selected situations is shown in Table 2 [18]. 
As an example of the values computed in Table 2, consider a country within the euro area which 
finances itself by issuing 2 years bonds. The State succeeds in selling its debt at 3.72% annual gross; 
inflation is worth 2.5%. Since most of the debt is sold to residents, and profits are taxed at about 30%, 
and the taxes return to the State, i=loge(1+i*)=loge(1+(if–f)/(1+f))=loge(1+(0.0372(1-0.30)–
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0.025)/(1+0.025)))=0.1014%. Also notice that if the approximate formula for the interest rate were 
used, i≈i*≈if-f=0.0372(1-0.30)-0.025, the value of 0.1040% would be computed, with a difference of 
2.6% with respect to the exact value. 

Table 2: values of annual interest rates and inflation in points per cent for selected countries (1) 
gross interest rates inflation free log interest rate i 

government bonds at government bonds at country inflation 

2 years 10 years 

corporate 
bonds 2 years 10 years 

corporate 
bonds 

Euro area 2.50 3.72 4.76 5.63 0.10141 0.80843 1.39606 
USA 1.60 2.97 4.93 6.76 0.47035 1.80545 3.03612 

Japan -1.20 0.08 1.53 1.64 1.26324 2.27256 2.34872 
(1) the interest rate i is computed assuming the issuer (country or company) bears 70% of the gross interest because of taxes 
remittance (countries) or deduced costs (companies) 
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Figure 2: Level curves of Rl max(i,λl,Λl) for L=50 years and (a) i=0.001, (b) i=0.03 

Let us examine some interesting characteristics of the diagrams. First, in each diagram, curves at 
constant Rl max are similar to circumference sections centred at the bottom-right corner; the 
circumferences radii are inversely proportional to the values of Rl max. 
Notice that, once the value of λl is known, the value of Rl max for the minimum value of Λl is the 
maximum that one can spend to upgrade the structure, independently on the final value for Λl; for 
instance, in Figure 2(a), if the structure as is has a mean rate of failures equal to 5.10-2, then the 
maximum that one can spend is 0.9.Cl. Of course, if the final result of retrofitting, as measured by Λl, is 
not good enough, the maximum that one can spend decreases. For instance, if Λl=10-2 ,then the 
maximum one can spend is 0.5.Cl. In each diagram notice also that, depending on the value of λl, 
ranges of Λl more convenient than other ones exist. Consider Figure 2(a) again, and assume that the 
structure in its present state shows the value of 10-2 for λl. If Λl=λl (point of coordinates 10-2;10-2) from 
the figure it can be seen that Rl max=0. This is a trivial result: no money should be spent on an 
upgrading intervention which offers no improvement. If Λl decreases to the values of 7.10-3, 4.10-3, 
2.10-3, 10-4, Rl_max respectively increases to the values of 0.1, 0.2, 0.3 and almost 0.4. Further decrease 
of Λl brings no increase of Rl max: notice that for Λl as low as 10-6, Rl max is still lower than 0.4. 
As for results for different interest rates i is concerned, another important consideration can be made: 
attempts to decrease the values of Λl to lower than 10-4, i.e. one collapse every 10000 years on 
average, brings about no increase of Rl max. This can be observed in Figure 2 and Figure 3, irrespective 
of the values of i and L. We remind that these results are conditioned to the assumptions made. 
The global influence of the interest rate on the results is that level curves move towards right and up 
with increasing i levels. This means that, with λl and Λl fixed, and if λl has ordinary values, say lower 
than or equal to 0.1, Rl max decreases with increasing values of i. If, for instance, λl=10-1 and Λl=10-3, 
the maximum that one can spend is more than 90% of Cl in the case i=0.001 (Figure 2(a)), but only 
75% for i=0.03 (Figure 2(b)). As a corollary, it follows that seismic structural upgrading is most 
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economically done by States, rather than by smaller – and typically less trusted – organizations, for 
which the cost of debt is substantially higher. 
Increase of the economic life L, has the opposite effect: for increasing values of L level curves move 
towards left and down. All other things equal, and if λl has ordinary values, this means that Rl max 
increases with increasing economic life. This results is rather intuitive: the longer the economic life, 
the more can be spent to achieve a predefined result. In Figure 3 two level curves, with constant 
i=0.001 and L=10 and 100 years, are shown. 
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Figure 3: Level curves of Rl max(i,λl,Λl) for i=0.001 and (a) L=10 years (b) L=100 years 

Finally, the variability of AE(T), equation (10), is shown in the Figure 4 for selected values of the 
governing parameters. The situation presented is rather convenient one: Rl max is in this case 
respectively equal to 0.57, 0.48, 0.35 for i=0.001, 0.01, 0.03 while the curves shown are relative to the 
value of Rl=Sl/Cl=0.1/1=0.1. 
It can be seen that postponing retrofitting can cost more than twice the minimum value. 
It must be highlighted that the procedure can be used both for serviceability and for ultimate limit 
states and, in the next section, an application with the ultimate limit state will be presented. 
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Figure 4: AE(T), eq. (10), for λl=0.02, Λl=0.001, i=0.001, 0.01, 0.03, L=50 years, Cl=1, Sl=0.1 

SIMPLIFIED ASSESSMENT OF THE ECONOMIC CONVENIENCE OF RETROFITTING 

The expanded form of equation (13) is: 
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exp 1 exp 1
-  
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R
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    +  −  + Λ  −Λ      = = ⋅ ⋅   + Λ + +   + Λ          
 (14) 

Each of the two terms within braces at the right hand side can be expressed in series. For the former: 

( )
( )

( ) ( )
1k

1

k=1

exp 1
= 1  

!exp

k
kL i L i

i kL i

λ λλ λ
λ λ

−∞
−  +  − +   ⋅ ⋅ −

+  +      
∑  (15) 

A similar expression holds for the latter, substituting Λ for λ. The first order approximation to 
equation (14) is then: 

( )max
max max = -IS

R R L 
C

λ= ≈ Λ  (16) 

Further, if Λ may be disregarded with respect to λ, equation (16) may be rewritten as: 

_max
max max =I apprS

R R L
C

λ= ≈  (17) 

Equations (16) and (17) are definitely simple expressions for Rmax and are certainly suitable for back-
of-an-envelope computations (provided one can know or guess the value of λ); but in which range of 
the parameters can they be used? As a general rule, the smaller the values of i, L, λ and Λ the better 
the approximation of equation (16) to the real value of Rmax; the smaller the value of Λ with respect to 
λ, the better is the approximation of equation (17). The user of equations (16) and (17) should also be 
aware that the approximations are on the unsafe side, i.e. they tend to overestimate the value of Rmax. 
In order to be more precise on when the approximations can be used, while retaining simplicity, we 
studied the errors of both equations (16) and (17) with respect to the real value of Rmax by looking, for 
selected values of i and L, at the values of the errors: 

_
_max max max max

max max

          
I I appr

I I apprR R R R

R R

− −
∆ = ∆ =  (18) 

For example, for i=0.001 and L=50 years, we obtained the results shown in Figure 5. 
From the following figures, and the similar ones for different values of i and L, not shown here, it is 
clear that the applicability of equations (16) and (17) strongly depends on the values of i and L since 
the errors may be either acceptable or not. We have summarized the applicability of the 
approximations in Table 3. We have considered the values of 10, 50, 100 and 200 years for L and the 
values of 0.001, 0.01, 0.02 and 0.03 for the inflation-free interest rate i. The four i values are 
respectively representative of debts for Euro area governments at 2 years (i≈0.001), for Usa and Japan 
at 2 years and Euro area at 10 years (i≈0.01), for Usa and Japan at 10 years and Euro and Japan 
companies (i≈0.02), and finally for Usa companies (i≈0.03), see Table 2. 

The table shows the maxima of the errors I∆ , equation (18), with the assumption that λ≤10-2; it can 
also be used to estimate the errors _I appr∆ , equation (19), provided that Λ≤2·10-5. The no symbol 
indicates that the approximations should not be used. Also notice that the values in Table 3 can be 
approximated by: 

( )_ 0.4 75I I appr L i∆ ≈ ∆ ≈ +  (19) 
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Table 3: maxima of errors I∆  and _I appr∆ in points per cent; λ≤10-2 is assumed. 

L (years) i≈0.001 i≈0.01 i≈0.02 i≈0.03 
10 5 10 15 20 
50 25 60 90 no 
100 50 no no no 
200 no no no no 
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Figure 5: Level curves of (a) ∆I(i,L,λl,Λl), (b) ∆I_appr(i,L,λl,Λl) in [%] for i=0.001 and L=50 years 

As a short example, assume i=0.01, L=50 years, λ=8·10-3, Λ=5·10-6. The correct value of Rmax, 

equation (14), is 0.26; the value of max
IR , equation (16), is 0.39. From Table 3, we read that the 

maximum error is about 0.6 (0.58 if we use equation (19)) and hence compute a minimum value for R 
of 0.39/(1+0.6)=0.24. The real value of Rmax will be in the interval [0.24; 0.39]. 

Since Λ≤2·10-5, we could have made the same computation using _
max
I apprR , equation (17) which is 

computed in this case as 0.40; again this is an upper bound for Rmax, with the lower bound equal to 
0.40/(1+0.6)=0.25. As shown, the computation can be very easily made by hand. 
Notice that in this case the value of Rmax is rather close to the lower bound of the intervals; this 
happens because the value of λ of the example (λ=8⋅10-3) is close to the value of λ=10-2 with which 
Table 3 has been built. 

EXAMPLE: BRIDGES ON A16 NAPLES – CANOSA HIGHWAY, RETROFIT FOR THE 
ULTIMATE LIMIT STATE 

In [1], the results of the risk analysis on the highway bridges belonging to the network of Società 
Autostrade S.p.A. were published. The methods presented in this paper are applied to some of these 
infrastructure, those of simple structural conception: single and framed piers bridges, belonging to the 
A16 Naples – Canosa stretch. 
The hazard values obtained applying the Cornell’s method [12] (for two different return periods, 50 
and 500 years), for points along the highway lie in the range [8.5; 9.6] IMM (Modified Mercalli scale) 
for 500 years return period and [6.5; 7.6] IMM for 50 years return period. The first return period is the 
value ordinarily chosen to check the serviceability limit state; the second is relative to the ultimate 
limit state. The maxima of both curves are found at about halfway the highway stretch, when it passes 
by the region of Irpinia which is seismically very active. With the 500 years return period earthquake, 
the bridges were checked for the ultimate limit state; risks were very high: 14 of the 50 bridges 
examined had values above 0.5 and 3 above 0.9. The limit states considered were flexural and shear 
ultimate capacities of piers, for which non linear analyses were conducted. The earthquake action is 
assumed to occur in the transverse direction with respect to the bridge, which in many cases is the 
most severe load condition. 
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Departing from these data, performing the convolution of hazard and fragility curve for each bridge 
we have computed the value of λu (equation (2)) for each of the 50 bridges (notice that in the 
expression of λ the suffix l has been changed to u because we are considering the ultimate limit state). 
The values for λu are, as expected, very high and are shown in Figure 6, highlighted by square 
symbols. 
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Figure 6: λu and Ru_max(λu,Λu) computed with different assumptions on Λu 

As a first application of the procedure, in the same Figure 6 we show the values of Ru_max(λu,Λu) 
(equation (13)) computed with i=0.001 (an appropriate value since resources for upgrading would 
likely come from bonds guaranteed by the State), L=50 years and four different assumptions for the 
values of Λu of each bridge: 

3
 1

1

( ) ( ) ( ) ( ) min( ,10 )
2 10 100

N
pieru u u

u u u u u j
j

i Λ ii Λ iii Λ iv Λ Λ
λ λ λ λ −

=
= = = = =∑  (20) 

where N is the number of piers in each bridge, λj
pier is the mean annual rate of failures for the j-th pier 

of the bridge. 
Assumption (iv) has the following rationale: design guidelines and codes specify earthquake design 
actions for retrofitting in terms of their return periods. For the ultimate limit state, the value of 1000 
years is selected by the Applied Technology Council [20]. The latter value, if we regard the structure 
as deterministic, is the inverse of the mean annual rate of collapses for each pier after retrofitting 
(unless the bridge, in the state before upgrading, as measured by λj

pier, over performs this code 
requirement). For a bridge composed of N piers, assuming that pier failure is a Poisson process and 
that pier failures are independent events, the mean annual rate of failures is then equal to expression 
(iv) in equation (20).  
All four assumptions are indeed crude but can help in visualizing the order of magnitude which one 
can expect for Ru_max(λu,Λu) in this example. 
From Figure 6 one can see that the upgrading is likely to be convenient for many bridges. Broadly 
speaking, a good generalized design criterion would be to decrease by ten the value of λu (curve with 
circle symbols). In this case, in fact, the values of Ru_max would be sufficiently high from the 27th 
bridge on, with values equal or higher than 0.1. Such interventions, provided that pier foundations are 
strong enough, often require just jacketing the base of the bridge piers which in turn, provided that 
yard conditions are normal, is rather inexpensive. 
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For bridge number 30 in Figure 6, the viaduct ‘Lenze Penze di Valle’, in reinforced concrete, a 
complete example safety assessment before and after retrofitting has also been conducted. The 
structural scheme of the viaduct is shown in Figure 7. 
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Figure 7: structural scheme of the ‘Lenze Penze di Valle’ viaduct 

The bridge is composed of eight piers plus abutments, with heights varying between 18 and 27 m. The 
structural scheme is isostatic since slabs are simply supported. The two extreme piers are single 
columns with the same height (18m) and cross section (rectangular and hollow, 3.0×2.5×0.4 m3); the 
remaining piers are portal frames and are much more ductile than the extreme ones, which fail in 
bending. Figure 7 shows also the cross section of the extreme piers; the material is reinforced concrete 
fck 30 MPa with steel rebars classified in Italy as Feb38k (fyk=380 MPa), for a total of 150 cm2. 
The safety assessment of the extreme piers, which govern the overall structural fragility, has been 
conducted with the methods of structural reliability. For the sake of conciseness, we repeat here only 
the conceptual steps used in the computations; interested readers can find the details of the 
computations in [1]. 
The hazard assessment has given the following values for the hazard curves (equation (1)): zmin=5 
IMM; zmax=12 IMM; β=1.123; ν=0.361 earthquakes/year. 
The fragility curve has been obtained by comparing the available and required ductilities with varying 
peak ground acceleration (pga); the available ductility has been found to have a lognormal distribution 
with mean equal to 3.39 and coefficient of variation equal to 0.25.  
For each value of the pga, the required ductility has been modeled with a Type 1, Largest Value, 
distribution. The mean value of the distribution has been obtained with the equal displacement 
assumption (the elastic period of the bridge is 1.5 s) using the EC8, medium soil response spectrum 
[19]; its coefficient of variation has been found equal to 0.30, following [14]. 
Convolution of hazard and fragility (equations (2) and (3)) has provided the value of the mean annual 
rate of failure λu of the bridge in its present state. This is equal to 3.2⋅10-3 (see Figure 6, bridge 30). 
The assumed upgrading consists of a concrete jacket at the base, with thickness equal to 0.20 m and 
with 100 cm2 steel rebars. This causes the mean value of the available ductility to increase to about 5 
and, hence, the mean annual rate of failures Λu decreases to 1.7⋅10-4. These values are shown in Figure 
2(a) (point A). For the viaduct Ru_max is equal to about 0.15. Considering that this value has been 
obtained with concrete jacketing on two piers only and that, on the other hand, failure of the bridge 
would be a major cost, convenience of retrofitting is almost assured. 

CONCLUSIONS 

The method presented allows to give clear answers in a simple way to the question of whether seismic 
retrofitting is convenient. Input to the method are the pre and post intervention mean annual rates of 
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exceedance of limit states, λl and Λl; rather reasonable assumptions are then made, to derive the final 
results, i.e. the relationship, expressed in an algebraic formula, between the main problem variables: 
λl, Λl, interest rate and maximum amount of money to spend for retrofitting to be profitable. 
The approximating formulas presented allow a fast estimation of the economic convenience of seismic 
structural retrofitting. The range of applicability of the formulas is such that it should be useful for 
many a structure. We have also shown a table and a formula which can be alternatively used to 
compute the maxima of the estimation errors so as to have an upper and lower bound for the maximum 
amount of money which should be allocated for seismic structural upgrading. 
We sum up here the main conclusion of this paper: when we are wondering whether seismic structural 
retrofitting of a structure is too expensive or not, the answer is that we should do it only if the cost of 
upgrading S is lower than the cost of failure C multiplied by the structure economic life L and the pre-
upgrading mean annual rate of failures λ, i.e.: 

maxS S CLλ< ≈  (21) 

For instance, if C=10 million €€ , L=50 years, λ=0.004 (the return period of failures is 250 years), the 
retrofitting is efficient and the owner of the structure is a European public institution, a first estimate 
of Smax is (10 million €€ )×(50 years)×(0.004 failures/year)=2 million €€ . A better estimate of Smax can be 
obtained using Table 3 or equation (19) which give the maximum percentage error in the first 
estimation. Using the latter, we compute the error as L⋅(0.4+75⋅i)=50⋅(0.4+75⋅0.001)≈24. The real 
(non approximated) value of Smax lies within [2/(1+0.24)=1.6; 2] million €€ . 
We think that this simple formulas will be useful for decision making and will help to introduce 
speedy economic reasoning in the rational choice between competing designs. 
The procedure should also apply to problems different from earthquake structural upgrading, as far as 
they can be cast in a form similar to the assumed one: an undesired event, distributed in time as a 
constant Poisson process, with mean rate which decreases at a discrete instant because of man-made 
investment. Such diverse problems as flooding protection and hurricane prevention should fall in this 
category. 
The procedure is then applied to an example case: bridges on an Italian highway stretch, considering 
ultimate limit state. For many of the highway bridges, upgrading is likely to be highly convenient. 
We would finally like to highlight that the current state of knowledge allows to assess the safety of 
existing structures and the economic convenience of upgrading in a precise way. The major obstacle to 
the widespread use of this knowledge is model complexity. Studies aiming at giving simple answers to 
the problem of the economic convenience of retrofitting are therefore much needed and should be 
central in bridging the gap between research and application. 
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