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SUMMARY 
 
A methodology for seismic safety assessment of r.c. structures is proposed, which is based on the estimate 
of a polynomial relation (response surface) giving the probability of failure of the structure as a function of 
the random variables that affect the response. The seismic fragility or risk is then evaluated through 
numerical integration.  

 
INTRODUCTION 

 
Evaluation of seismic risk to structures (whether in planning or existing) is a difficult but at the same time 
highly important task.  As regards structural behaviour, although fairly reliable models are today available 
in the non-linear field, they tend not to be included in the framework of probabilistic analysis, also 
because of the long computation times involved.  As regards the model of action, the use of  samples of a 
stochastic process underwent severe criticism, since it was considered incapable of reproducing the whole 
complex reality and variability of seismic motion. 
The only approach capable of utilising models, of both structure and action, which are adequately accurate 
and realistic, is simulation. However, as was underlined earlier, the Monte Carlo method, proves to be 
exceedingly onerous from the computational point of view, especially in the case of complex structures 
simulated by refined programmes, whose randomness depends on many variables. 
In order to calibrate the partial safety coefficients used in the FEMA-350 guidelines, an efficient method 
[1] has been developed for evaluating the seismic risk of a structure.  This method is based on a simple 
analytical formulation for the probability of failure, whose parameters are obtained on the basis of a 
limited number of analyses with different earthquakes, scaled to the intensity of the expected value for the 
ordinate of the site response spectrum, corresponding to the fundamental period of the structure.  However 
so much efficiency is achieved only at the cost of restrictive hypotheses, that is by not taking account of 
the randomness of the structure’s mechanical parameters and considering one failure mechanism only. 
An alternative way of reducing the number of structural analyses required by simulation, already proposed 
several years ago by Veneziano [2] and recently taken up again [3], consists of using the statistic 
technique of the response surface.  This method, which will be described hereafter, consists of 
determining, with a limited number of targeted experiments, a simple relation, generally of polynomial 
type, between the random variables and a structural response parameter measuring the performance of the 
structure.  Such measurement, if expressed in terms of ground motion intensity (e.g. peak ground 
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acceleration or spectral acceleration at the fundamental period of the structure), may be directly compared 
with the seismic hazard. The probability that the structural response will exceed a certain limit can be 
estimated by means of convolution with the probability density function of the hazard at the site and of the 
structural random variables, using as a model of structural behaviour the simple polynomial relation 
obtained earlier.  The limit of the Response Surface Method (RSM) lies in the fact that it loses efficiency 
if the number of random factors considered is not sufficiently small (6-8).  In fact the number of 
simulations necessary in order to construct the response surface grows exponentially with the number n of 
variables, so that if n is large, the number of experiments necessary becomes comparable with that 
required by the Monte Carlo method. 
Recently an alternative procedure was proposed, known by the acronym EFA (Effective Fragility 
Analysis) by Giannini et al. [4], by means of which it is possible to achieve a significant reduction in the 
number of variables on which the response surface depends.  In the versions presented earlier, the method 
did not have recourse to the response surface technique; the dependence of the probability of failure on 
the variables considered was expressed by means of a Taylor series expansion truncated after the second 
order.  In the present work the EFA is integrated with the RSM in order to permit a less local estimate of 
probabilities and to further reduce the number of simulations necessary, taking into account seismic 
variability too. 
Hereafter EFA will be briefly presented in its original version, then after a rapid illustration of the RSM, 
we will clarify how the two methods are joined together. 
 

THE EFA METHOD  
 
Assumptions 
The ultimate resistance of a reinforced concrete structure depends on a large number of independent 
random variables: properties of the materials, effective capacity of the structural elements, lack of 
correlation between the effective capacities and the empirical formulae of assessment.  This makes it very 
onerous to use the simulation methods mentioned heretofore.  In fact every simulation requires repetition 
of the dynamic analysis of a non-linear model of the structure which, despite the important advances in 
computation mechanics, takes  quite a considerable time which, multiplied by thousands of simulations, 
makes this approach almost impracticable. 
However it is easy to see that many of these uncertainties have a negligible or even nil influence on the 
dynamic response of the structure. In fact the computation models, even the most refined, generally fail to 
directly foresee the limit state of the structure, but entrust such control to a subsequent comparison 
between certain response parameters (local or global deformation, tension, etc.) with corresponding 
capacities or resistances. The latter are determined by means of empirical formulae, the uncertainty of 
which depends on the degree of correlation with experimental results.  Obviously a variation of these 
capacities has no influence on the structural response. 
The mechanical properties of the materials, concrete and steel, certainly alter, not only the resistance, but 
also the dynamic response.  However, if we separate randomness of the mechanical properties into two 
parts, one, average for the whole structure, and the other which expresses its local fluctuations, we may 
venture the hypothesis that the latter, while affecting the resistance, has only a limited influence on the 
response. 
Therefore the random variables are divided into two groups, the first comprising the variables (defined as 
internal and indicated hereafter by X), which it is assumed do not influence the dynamic response of the 
structure, and the second consisting of what are called the external variables (indicated by Y), responsible 
among other things for the dynamic behaviour. The expedient of separating the random variables makes it 
possible to greatly reduce the number of analyses implied by the simulation process; in fact, after fixing 
the variables of the second group (external) and the action, the structural response proves to be 
deterministic and thus calculation of the probability of failure (conditioned by the values of the external 
variables) may be carried out relatively rapidly.  



 
Calculation of conditioned probability  
With reference to a limit state defined by the equation ( ) 0, =tg X , the condition of survival of the 

structure may be expressed in the form  ( ){ } 0,min >∈ tgTt X   and accordingly  
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Since the function g  has an explicit form and the parameters depending on time are known, the value of 
PS may be obtained in an inexpensive way using the Monte Carlo (MC) method improved, if necessary, 
with importance sampling.  In fact each simulation merely requires computation of function g , which 
often has a fairly simple form. 
Such computation becomes more rapid when the limit state equation can be expressed in the form  

( ) ( ) ( )tdctg −= XX,  (2) 

where ( )Xc   represents the capacity of the structure, not dependent on time t , while ( )td   expresses the 
deterministic demand, obtained from the results of the dynamic analysis.  In such case  obviously: 
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This probability, or its complementary ( )[ ]0Pr max ≤−= dcPF X  , may be computed using the usual 
methods of time-invariant reliability, for example by means of the First Order Reliability Method 
(FORM). 
Obviously in a real structure, account must be taken of many alternative mechanisms, which concern 
different elements or failure modes.  If the structure is treated as a system in series, it fails as a result of the 
failure of the weakest component and therefore the condition for survival is that no limit state has been 
exceeded, that is: 
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and accordingly the probability of failure 
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By applying the MC method, the calculation of FP  could be carried out contemporaneously for all the 
mechanisms.  However if, as often happens, many of the mechanisms are not very well correlated, 
convergence of the procedure could be considerably slowed down.  In this case it is preferable to compute 
separately the probabilities of failure for each mechanism, and for the intersections two by two, that is:  
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and thus estimate the probability of the union using, for example, the bounds of Ditlevsen [5]. In (6) and 
(7)  kX  indicates the appropriate sub-set of  random variables (r.v.) X   involved in the k -th mechanism. 
When the limit state equations can be expressed in form (2), eqs. (6) and (7) can be evaluated by FORM 
using formulation (3). 
The probability of failure computed in the abovementioned way is obviously conditioned to the value y   

of external r.v. Y  and to the particular accelerogram ( )ta  utilised in the analysis. It is therefore necessary 
to make this probability no longer conditional on the external random variables.  This could be achieved 
by using the MC method.  The drastic reduction in the number of external r.v. gathered in Y , speeds up 



convergence of the method and accordingly reduces the number of simulations necessary to estimate FP , 
notwithstanding which this number remains very large, and the cost of their computation high. 
In the first version of the method, the dependence of FP  on Y was approximated by using a quadratic 

expansion of FP  around a design point 0y :  
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The coefficients of the expansion 
y∂

∂ FP   and 2

2

y∂
∂ FP  , were computed using a finite differences scheme 

around the design point. However this approach presents some drawbacks:  it is not coherent, since FP   
may assume values that are either negative or greater than one, and it is reliable only if the Probability 
Density Function (PDF) of Y  diminishes rapidly with 0yy −  . 

In the present work the dependence of  FP   on  y   is estimated using the RSM. This method not only 
provides a rational criterion for obtaining a non-local approximation of the variable sought, but makes it 
possible to estimate the lack-of-fit of the model and to take account of the random effects due to 
earthquake samples with a small number of experiments.   
In the next paragraph a brief description will be given of the RSM, while in the following one an attempt 
will be made to clarify its application to EFA.   
 

THE RESPONSE SURFACE METHOD  
 
The response surface method is a statistic technique for determining the parameters of a function that 
approximate an unknown function ( )xY , in the neighbourhood of a point 0x , on the basis of the values of 
Y  obtained by means of appropriate experiments. 
The approximating function is generally expressed in quadratic form with respect to the variables x : 
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 ε   is a zero-mean  random variable which takes account of the lack of fit of the model.  The (9) may be 
more concisely written in the form: 

( ) ε+= θxvY  (10) 
where  
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and   θ   is a vector  constructed with the parameters  iθ   and  ijθ .  

The model expressed by (10) is linear in the parameters θ : as a result it gives a r.v. whose average is 
( )θxv   while the dispersion is expressed by means of the term .ε   By carrying out n  experiments in 

connection with the values  ix  of the variables, we obtain n   values of response iy , which may be 
gathered in the vector y .   Accordingly we have: 

ε+θ= Vy  (12) 

in which V   is the matrix constructed with ( )ixv  : 
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and ε   is a vector of  n  independent realisations of the r.v. ε , which measures the discrepancy between 
observation and the model.  



The coefficients θ   may be determined on the basis of (12) by applying the criterion of maximum 
likelihood or, more simply, with the method of least square.  Assuming that ε   is a vector of Gaussian 
variables, both methods give the same estimate for θ : 

( ) yVVV TT 1ˆ −
=θ  (14) 

The variance of ε  may be estimated on the basis of the discrepancies between the observed values and 

the forecasts of the model  θ= ˆˆ Vy  .  Given yyr ˆ−=  , an estimate of the variance of ε  without bias is 
the quadratic difference : 
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where n   indicates the number of experiments and  m   the number of parameters gathered in the vector θ  
.  The equation (15) shows that, in order to reduce the dispersion of error, it is necessary to carry out a 
considerably larger number of experiments than that of the parameters. 
 
If in (14) we substitute for the vector of results of the experiments y , a vector of ε+θ= VY ,  the result 

θ̂   is a random vector with average [ ] θθ =ˆE  and covariance 
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since [ ] IY 2Cov εσ= .  It follows that the estimate of response ( )θ= ˆˆ xvy   is in its turn a  r.v. with variance  
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Equation (17) shows that the variance of ŷ   depends, not only on the variance of ε   and of the matrix V , 
but also on point x   where the estimate is made.  The design of experiments which makes the variance of 
ŷ   dependent exclusively on the distance from the central point, is defined as rotatable.  The conditions 

for rotatability may be found in the specialised texts (Box and Draper [6]). 

The minimum number of experiments necessary for determining θ̂   is equal to the number of the 
parameters but, as has been seen, this number must be increased if the estimate of θ   is to be sufficiently 
reliable; accordingly a compromise must be found between the two contrasting requirements of accuracy 
and economy.  The choice of a rational project for the experiments is thus an essential point in the 
procedure. 
A complete factorial project consists of fixing two levels for each of the variables  m   and then carrying 

out  m2  experiments corresponding to all of their possible combinations.  This project does not explore 
the effects of the variations of a single variable at a time and accordingly does not permit an accurate 
estimate of pure quadratic terms of (9).  Therefore it is customary to combine the factorial design with a 

“star” design, forming what is called a central composite design (Fig.1).  Denoting by −
ix   e  +

ix   the two 

levels for each variable in the factorial design, the central point has coordinates  20

+− += ii xx
ix   and thus, 

utilising the coordinate transformation iiii xx ξ∆+= 0  , in which 2

−+−=∆ ii xx
i  , a standardised space is 

obtained in which the points of the factorial experiments are the apices of a hypercube centred on the 
origin located in the points of coordinates 1±=iξ .  The star part of the experiment is represented by 
points of coordinates { }ijmi ji ≠∀==±=  ,0  ;,,1 , ξαξ K  .  The value of α  is established by the conditions 

of rotatability of the design:  in the absence of repetitions  4/2m=α  . 
 



 
Figure 1. Diagram of a central composite design of experiments 

 
When the experiment consists of a simulation with a mathematical model, if the variables in x  completely 
define the model, the response is clearly deterministic and accordingly repetition of the experiment is 
useless.  When on the contrary the experiment is carried out in the field, the result always depends on a 
large number of parameters, many of which cannot be controlled, so that, if the experiment is repeated for 
the same values of x , in general different results are obtained.  This fact may also be considered in the 
case of numerical simulations, by introducing other parameters, not included in vector x , which vary 
randomly between one simulation and another.  Clearly, in order for this procedure to be efficient, random 
effects should not mask the fixed effects depending on x . 
In order to take random effects into account, an additive random term δ  should be added into equation 
(9). One possible way of estimating this term consists of repeating the whole block of experiments, 
varying the random factors.  However this procedure is unattractive because of the large number of 
experiments required.  A more performing method consists of subdividing (the factorial part of) the 
experimental design into as many blocks as there are random factors. 
The division of the experiments into blocks implies a certain loss of information; it could be shown that, 
assuming random effects to be of additive type, block design will mask the interactions between some of 
the variables governing the fixed effects.  The order of effects that are masked depends on the dimensions 
of the blocks and on the way in which the experiments are divided into the blocks. The division of 
experiments into blocks must ensure that only interactions of the of the higher order are masked, as 
illustrated in the specialised literature [6].  In any case, the blocks cannot be too small; therefore, if the 
number of blocks necessary for estimating random effects is large compared to the number of factorial 
experiments, it would be advisable to repeat twice or more the whole programme of experiments, using 
different random factors in the various repetitions. 
 
If y   is the vector of the results of experiments,  ( )xV   is the matrix of the polynomial terms already seen 
in (12) and θ  is the vector of the unknown parameters, the model with random effects could be 
formulated as follows: 
 

( ) ε+δ+θ= BxVy  (18) 

in which B   is a matrix bn ×   which combines the  b   random effects contained in  δ   with the n   
experiments, according to the diagram of division into blocks.  Thus, if  experiment  i   is combined with 

block k  , this gives Bik  =1, otherwise Bik =0.  Matrix B   introduces a correlation between the terms of 

vector y  that does not allow determination of the coefficients θ̂   independently from the variances of δ  

and of ε .  The procedure for estimating θ̂  ,  δσ   and  εσ  , based on the criterion of maximum 



likelihood, becomes more complex, requiring an iterative method, since the problem is non-linear.  More 
details may be found in the specialised literature (Searle et al. [7]). 
In conclusion, for the given the vector of r.v. X , once the dependence of  the response parameter Y on  X  
has been approximately established on the basis of the response surface, it should be possible to express  
Y  in the form:  

 

( ) εδ += +θ̂xvY  (19) 

which clearly shows that Y  is a r.v. depending not only on x  , but also on δ   and ε  which represent the 
random factors introduced by the random effects and by the lack-of-fit of the model, respectively. 
 

APPLICATION OF RSM TO EFA  
 
As we have seen in a previous section, the probability of failure FP  conditional on given values of the 
external variables Y  can be computed for a particular accelerogram according to the EFA method.  In 
order to obtain the unconditional probability of failure, a functional relationship between of FP   and Y  
should be established using the RSM. 
As a first step utilising the RSM in this context, we should ensure that no values of FP   less than zero or 

greater than one are attained.  This will be done by applying to FP  a transformation which projects the 
interval  [0.1] over the whole real axis.  The most obvious of these transformations is the inverse of the 

standard normal Gauss distribution 1−Φ , so that FP   is transformed into the reliability index β :  

( )FP1−Φ−=β  (20) 

The subsequent considerations are accordingly applied to β  instead of FP  directly. 
The result of each simulation obviously depends not only on the values assigned to the external variables, 
but also to the ground motion utilised in the analysis. In order to account for such a dependence, an 
intensity measure of the earthquake, such as a peak ground or an elastic spectral value, should be defined 
and included among the random variables responsible for the fixed effect. However this does not cover 
completely the effect of ground motion variability on randomness of the response, since different profiles 
of ground motion with the same earthquake intensity may produce different outputs giving rise to different 
values of FP . The effect of ground motion profile,  with parity of ground motion intensity, may carry out 
the role of the random effect in the RSM described in the previous paragraph.  As illustrated heretofore, 
account may be taken of this effect  without increasing the number of experiments, that is, of dynamic 
analyses of the structure. The design of numerical simulations to be carried out is divided into as many 
blocks as the number of earthquake samples used. 

 
EARTHQUAKE SAMPLES AND SEISMIC INTENSITY MEASURE  

 
The applicability of the RSM to EFA is conditioned by the fact that the random effect introduced by the 
choice of a ground motion profile should not be too great, so as not to cover the fixed effects due to the 
parameters controlled in the simulation.  The dispersion introduced by the variation of ground motion 
profile from sample to sample, at parity of intensity, depends to a large extent on the chosen intensity 
measure. This problem is not very important if artificially generated accelerograms as samples of a 
random process are employed, since the response scatter is quite low;  however this way of proceeding is 
today generally refused, since it is considered that these samples do not satisfactorily describe the actual 
variability of seismic action. Alternatively, recourse may be had to recorded natural accelerograms, but 
there are some difficulties in ensuring the standardisation of natural accelerograms by adopting a single 
measure of ground motion intensity. Various criteria have been proposed (Kurama and Farrow [8]), but, 
besides its efficiency in reducing the variability in structural response, the chosen intensity, should also 



ensure hazard computability. Nowadays the hazard is normally provided either in terms of peak ground 
acceleration, velocity or displacement, or in terms of the ordinates of the elastic response spectrum. At 
present, the spectral value for the fundamental elastic mode of the structure (Shome et al. [1]), appears to 
provide the lowest scatter. For elastic structures dominated by the first mode, the criterion clearly provides 
almost nil dispersion;  but when the structure becomes non-linear, it modifies its characteristics, and 
efficacy is less guaranteed, especially for structures with a small period (0.2 ÷ 0.4 sec). In this range the 
spectra vary very rapidly with period, and even a slight change in the mechanical properties (either as an 
effect of non-linear behaviour, or as a result of the variation in mechanical properties) may produce a high 
scatter in the response.  

In order to divide the experiments into blocks, in particular as regards its factorial part consisting of  m2   
analyses, the number of random effects must be a power of 2 .  It would seem reasonable that the number 
of natural accelerograms samples to be considered, should be either 8 or 16.  
The design of experiments depends to a large extent on the number of variables contained in the vector  
y .  If this is high, the total number of experiments required is high, and accordingly also a division into 8 
or 16 blocks may be accepted; if not, it would be advisable to divide the experiment into a smaller number 
of blocks and to repeat it integrally, combining this with a further series of accelerograms.  For example, if 

the terms in y  are 6,  the factorial part consists of 6426 =  experiments, which can be subdivided into 8 
blocks, each of which consists of 8 experiments. The star part of the design could combine 6 of the 8 
samples, one for each variable, while at the central point of the design, the analyses for all the samples 

could be repeated.  In this way it would be necessary to carry out 8486226 =+×+   analyses for the 

whole experimental plan.  In the case of 4 variables only, the number of factorial experiments is 1624 = , 
which clearly cannot be divided into 8 blocks without confusing the fixed effects.  It is advisable in that 
case to repeat the whole experimental plan, dividing each one into 4 blocks, so that the total number of 
analyses becomes ( ) 5644222 4 =+×+×  , which is not very different from that of the preceding case.  
 

COMPUTATION OF UNCODITIONAL PROBABILITY  
 
Once the relation between β  and y  has been established in explicit form, the probability of failure FP  is 
obtained by inverting (20): 

( ) ( )[ ]εδεδ +−Φ= +θY)vY (,,FP  (21)  

where δ  and ε   are Gaussian r.v. with zero-mean and known standard deviations δσ   e  εσ .  Vector Y  
collects the variables controlling the fixed effects.   In order to compute unconditional probability, it is 
therefore necessary to carry out a multidimensional convolution between the function (21) and the 
probability density functions of the variables to be saturated ( δ  ,  ε   and the components of Y ).  If the 
variables in Y  include seismic intensity, we are faced with two possible alternatives. Either the 
probability of failure is not saturated with respect to seismic intensity, giving rise to the fragility curve of 
the structure or, a convolution with the hazard curve at the site is performed, giving rise to the seismic 
risk. 
Denoting by Y   the vector, sub-set of Y , of the variables to be saturated, the probability of failure, 

conditional on the remaining Y
~

 ,  is : 
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If  Y~  is reduced to the parameter of seismic intensity alone,   (22)  gives the function of fragility of the 
structure. 
The integral (22) should be computed numerically.  Given the nature of the integrated functions, one 
appropriate method could be the Monte Carlo method itself.   



The fact that, at the end of this complex procedure, we have reverted to the MC method may appear 
circular.  But we should bear in mind that now the integrand function in (22) has a simple explicit form 
and  its evaluation requires only few operations at a limited computational cost.  
 

CONCLUSIONS 
 
In this work a procedure for evaluating the seismic risk of structures is presented, which makes it possible 
to obtain accurate results, using refined models for the structural analysis and natural accelerograms at low 
computational cost. This method is based on a combination of the EFA (Effective Fragility Analysis) 
method and the RSM (Response Surface Method).  Random variables both for the structural model and 
for the action are taken into account. The random variables referring to the structure are divided into two 
groups, one of which contains all of those variables (internal) that, while influencing the resistance, have 
little effect on the dynamic response;  whereas the other collects the remaining structural variables 
(external) that strongly affect the dynamic response.  Once the external variables  have been fixed, and a 
ground motion at the base of the structure selected, the conditioned probability of failure (Pf)  is computed 
using standard reliability methods (FORM).  The response surface method is then used to establish a 
function approximating the dependence of Pf  on external variables and on seismic intensity. Random 
effects, due to the variability between the seismic samples used in the simulations, are taken into account 
by dividing the experimental plan into blocks, without increasing the number of analyses. The fragility 
curve of the structure is finally obtained by convolution with the probability density functions of external 
random variables. 
The procedure is then applied in a companion paper [9] to assess the seismic fragility of  three existing  
r.c. bridges in the Italian highway network. 
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