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SUMMARY

Local buckling of concrete filled steel tube column (CFT column) is analyzed on the upper bound theorem 
of the limit analysis. The collapse mechanism of the analysis is assumed on the basis of CFT column test 
under monotonic and repeated load. The load deformation relations of many CFT columns designed under 
quite different conditions are calculated by the proposed analysis method. The plastic deformation capacity 
until the local buckling of CFT column which is closely related to the crack of steel tube is also obtained by 
it. From the calculated results it is shown that the local buckling of CFT column is significantly effected not 
only by the well known diameter to thickness ratio of steel tube but also by the axial force ratio, the aspect 
ratio and the strength ratio of filled-concrete to steel tube. 

1. INTRODUCTION

The concrete filled steel tube column (CFT column) is useful as the earthquake resistant element because 
of its high strength and ductility. But in some cases under strong seismic load the CFT column fractures by 
the crack of steel tube1)-3). The fracture of CFT column is brittle and works to collapse the whole CFT frame 
under strong ground motion4)-6). 
The local buckling of CFT column under strong seismic load is not only related to degrade the restoring 
force of it but also to the steel tube crack of CFT column. Accordingly the effect of local buckling can not 
be neglected in the earthquake resistant design of CFT frame. In this study the analysis method of local 
buckling of CFT column is obtained on the upper bound theorem of the limit analysis. From the calculated 
results by the proposed method, the design factors and the design conditions of CFT column in the earth-
quake resistant design of CFT frame are investigated.
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2. CFT COLUMN TEST

2.1 Specimens and loading conditions
Local buckling of CFT columns under axial load (N) and lateral load (H) have tested by the use of the 
cross-formed specimens with CFT column and H-section beam as shown in Fig.1. The CFT columns of 
specimen are explained in Table 2. In the table there are also the axial force ratio (N/Nu), the column length 
(Lc) and the compression strength of filled concrete (σc). The plastic deformation of CFT column (φlb/φu)T, 
(φlb/φu)A until the local buckling of steel tube obtained by the test and the proposed analysis method 
explained later are also in the table. The material properties of steel tube are in Table.1.

Fig.1 CFT Loading conditions of CFT column specimen

Axial Load(N)

φ-139.8x2.4 
or φ-139.8x2.8 
or φ-101.6x3.2

H-200x100x5.5x8 
or H-150x75x5x7.5 

Lateral Load(H)

Pin-support

Roller-support
Lc

Lc  Ring Stiffener (PL-9)

CFT-column

H-steel beam

Table.1 Material properties of steel tube
Circular steel tube σy    σu    εu

φ-101.6x3.2
φ-139.8x2.8
φ-139.8x2.4 

378  455  23.8
341  443  28.8 
463  549  22.6 

Notations :
σy : yield stress (N/mm2)
σu : tensile strength (N/mm2),

εu  : (%)

                   Table-2(A) Specimens and test results (φ139.8x2.4)

Specimen Load N/Nu Lc D/t σc r (φlb/φu)T (φlb/φu)A
  SCTDI-S-60.10
  SCTDI-H-60.20
  SCTDI-L-60.45
  SCTDI-L-60.25
  SCTDR-H-60.20
  SCTDR-L-60.20
  SCTSM-H-60.30

  SCTSC-S-60.20
  SCTSC-S-60.10
  SCTSC-H-60.20
  SCTSC-L-60.45
  SCTSC-L-60.20

  LCTDI-S-60.20
  LCTDI-L-60.25
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2.2 Local buckling of CFT column specimen
In the CFT column test the axial strain (Aεi, i: number of strain) and the circumferential strain (Tεi) of steel 
tube in every 5mm distance from the column end were measured. By the use of the measured strains the 
local buckling of specimen is investigated. 
Fig.2 shows the relation between the axial strain and the deformation of CFT column (φc). In the axial strains 
in the sections distant 15mm-60mm from the column end, only Aε6 and Aε7 change extremely the ratio of 
incremental strain to incremental deformation near the point B in the figure. This behavior expressed by the 
strain-deformation relation shows the local buckling of CFT column. The deformation of CFT column (φlb) 
when the steel tube buckled locally was obtained by this behavior and shown in Table.2(A)-Table.2(C). 

                   Table-2(B) Specimens and test results (φ139.8x2.8)

Specimen Load N/Nu Lc D/t σc r (φlb/φu)T (φlb/φu)A
  SCTDI-S-50.25
  SCTDI-H-50.20
  SCTDI-L-50.45
  SCTDC-H-50.25
  SCTSM-L-50.15

  LCTDI-S-50.20
  LCTDI-L-50.25

D  I
“  “
“  “
D  C
S  M

D  I
“  “

0.227
0.191
0.449
0.250
0.149

0.200
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 117
  57
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  71
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  5.4
  3.5
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  4.4
  2.7
  5.7

  2.5
  3.9

                   Table-2(C) Specimens and test results (φ101.6x3.2)

Specimen Load N/Nu Lc D/t σc r (φlb/φu)T (φlb/φu)A
  SCTDI-S-30.25
  SCTDI-S-30.10
  SCTDI-H-30.20
  SCTDI-L-30.25

  SCTSI-S-30.25
  SCTSI-S-30.10
  SCTSI-L-30.25

  LCTDI-S-30.25

D  I
“  “
“  “
“  “

S  I
“  “
“  “

D  I

0.247
0.108
0.196
0.264

0.248
0.108
0.264
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 249
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34.2
34.2
34.0
34.0

34.2
34.2
34.0

34.2

 136
 128
  44
  18

 136
 128
  18

 131

2.33
2.20
0.75
0.30

2.33
2.20
0.30

2.25

  9.9
  8.4
  9.4
 17.1

  9.1
 13.7
 10.4

  7.7

  3.0
  7.1
  7.9
 10.9

  3.0
  7.1
 10.9

  2.5

Name of specimen:
S CT D I-S-60.20
1  2    3 4-5- 6 .7

Notations: 
Lc    : Column length (mm)
D/t   : Diameter to thickness ratio
σc    : Compression strength of concrete (N/mm2)
r      : Strength ratio of concrete to steel tube (=σcAc/σuAs)
(φlb/φu)T: Plastic deformation of test 
                 until local buckling of steel tube 
(φlb/φu)A:Plastic deformation of calculation 
                 until local buckling of steel tube 
 φu           : Upper bound of elastic deformation

1:  Column length (S: Lc/D=2.5, L: Lc/D=5.0)
2:  Concrete filled steel tube (CT)
3:  Static loading (S), Dynamic loading (D)
4:  Deformation wave
        I:  Incremental amplitude deformation,

       C: Constant amplitude deformation,
       R: Random wave
       M: Monotonic loading
5:  Compression strength of concrete (S, H, L)
6:  Diameter to thickness ratio (D/t=60, 50, 30)
7:  Axial force ratio(N/Nu, Nu=σcAc+σuAs)



2.3 Strain distribution of steel tube
Fig.3 shows the relations between the circumferential strain (Tεi) and the axial strain (Aεi) in the sections 
distant 15mm-60mm from the column end. In the figure the strains in the compression stress side and the 
tension stress side of the CFT column are explained. The compression side strains and the tension side 
strains appear only in the second quadrant and the fourth quadrant in the figure respectively. These results 
show that the circumferential strains in the compression side are quite different from the tension side strains 
of CFT column. The circumferential strains in the compression stress side are tension strain and the circum-
ferential strains in the tension stress side are compression strain. The strain distribution obtained here is 
applied to assume the collapse mechanism of local buckling analysis. 
The axial strain distribution in every loading step is shown in Fig.4. The strains in the figure are in the com-
pression stress side strains. The axial strain are constant along the column axis (Z) in the small deformation 
of CFT column and after that the strain distribution along the column axis changes suddenly at some loading 
step. The change of the axial strain distribution means the steel tube buckled locally at this point.
The change of the axial strain distribution also shows the steel tube deformation by the local buckling. We 
can see that the local buckling deformation of specimen appeared in the range of the calculated local buck-
ling length (Lb) as shown in Fig.4. The steel tube deformation by the local buckling obtained here was also 
used to assume the collapse mechanism of local buckling analysis.
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3. LOCAL BUCKLING ANALYSIS CFT COLUMN

3.1 Collapse mechanism of local buckling
Local buckling of concrete filled steel tube column is analyzed on the upper bound theorem of the limit anal-
ysis. The collapse mechanism of the limit analysis, shown in Fig.5, is assumed as follows on the basis of 
CFT column test mentioned above.
    a) Collapse mechanism of local buckling is expressed by the yield surfaces CPQ, CPR and the yield lines 
CQ, CP, CR as shown in Fig.5. In the surfaces the steel tube deforms in the circumferential direction but it 
does not deform in the axial direction. The deformation of steel tube is expressed by ξ(z, ϕ) which is the 
parabolic function of ϕ as shown in Fig.6.
    b) In the tension stress side of CFT column, there is the yield surface ABC in which only axial plastic 
strain is generated.
    c) Except the yield surfaces CPQ, CPR, ABC and the yield lines CQ, CP,CR, the steel tube is assumed to 
be rigid. It is also assumed that there is not the slip between the filled concrete and steel tube. 
    d) The concrete strain surrounded by the yield surfaces CPQ, CPR is compression strain and the concrete 
strain surrounded by the yield surfaces ABC is tension strain.
    e) The stress-strain relation of steel tube is assumed to be rigid-plastic relation. The stress-plastic strain 
relation of filled concrete is also approximated by the rigid-plastic relation which degrades linearly with 
plastic strain.
    f) Ly, Lb, Ln are the length of plastic zone, the local buckling length and the distance of neutral axis from 
the center of section.

3.2 Load deformation relation of CFT column
By the use of the collapse mechanism mentioned above, the equation to express the load-deformation rela-
tion of locally buckled CFT column is derived on the basis of the upper bound theorem of the limit analysis. 
The equation of load-deformation relation is derived from the virtual work equation of the assumed collapse 
mechanism. Each component of the internal work and the external work in the virtual work equation are 
explained in the following equations.

Fig.4 Distribution of axial strain in the compression stress side
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   i) Internal work in the yield surface on the compression stress side (WIC)
In the yield surface CPQ, CPR (Fig.5), there are only circumferential stress (σt) (Assumption-a)) and the 
internal work in this yield surface is given by Eq.(1). 

in which ∆εt: the increment of circumferential strain, σt= σu (Assumption-e)) and : the integration with 

the yield surface CPQ, CPR (Fig.5). 
According to the Assumption-a), the local buckling deformation of steel tube can be expressed by ξ(z,ϕ) (z: 
axial coordinate, ϕ: polar coordinate) in Eq.(2).

In Eq.(2), θ(z) and X(z) show the range that the steel tube deforms and the deformation at ϕ=0 as shown in 
Fig.6.
The circumferential strain of steel tube (εt), which is generated by the deformation ξ(z,ϕ) in the range 
-θ(z)<ϕ<θ(z), is given by Eq.(3). 

in which r=(D-t)/2, D: diameter of steel tube, t: thickness of steel tube.
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Fig.5 Collapse mechanism to express local buckling of steel tube
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X(z)-Xp relation can be obtained by the condition that RP, PQ (Fig.5) are straight because the steel tube does 
not deform in the axial direction (Assumption-a)). Except the yield surfaces and yield lines CFT column is 
assumed rigid (Assumption-c)). From this condition Xp-φ relation (φ: deformation angle of column (Fig.5)) 
is decided. By the use of X(z)-Xp relation and Xp-φ relation, X(z) is expressed by the column deformation 
(φ) and εt in Eq.(3) is also expressed by the function of φ as shown in Eq.(4).

The incremental strain (∆εt) is derived from Eq.(4) and expressed by Eq.(5) by introducing Φc.
            ∆εt = Φc ∆φ                                                                                                             (5)
Substituting σt(= σu) and ∆εt into Eq.(1), WIC becomes to be the function of ∆φ as Eq(6).

   ii) Internal work in the yield lines (WIL)
The internal work (WIL) in the yield lines CQ, CP, CR (Fig.5) is expressed by Eq.(7) in which m: the bend-
ing moment per length about the yield lines, ∆Ψ: the incremental rotation about yield line.

The bending moment (m) is approximated by Eq.(8) neglecting the effects of the axial stress and the cir-
cumferential stress of steel tube on it.

The rotation about yield line (Ψ) varies along the yield line because the deformation of steel tube (ξ(z,ϕ)) 
is expressed by the function of the polar coordinate (ϕ) as Eq.(2). But the change of rotation along the yield 
lines is small. From this reason the rotation (Ψ) is approximated by the rotation in the section of  ϕ=0 as 
shown in Eq.(9).

The values of m, Ψ in Eq.(8) and Eq.(9) are constant along the yield lines and the integration in Eq.(7) can 
be carried out simply as shown in Eq.(10).

In Eq.(10), mean the integration along the yield lines CQ, CR, CP (Fig.5) respectively.

   iii) Internal work in the yield surface on the tension stress side (WIT)
The work in the tension-side yield surface (WIT) is given by the axial stress (σa) and the incremental axial 
strain (∆εa) as shown in Eq.(11).

In Eq.(11) σa=σu from Assumption-b), Assumption-e) and  means the integration in the yield surface 
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(ABoC).
When the CFT column deforms as shown in Fig.5, the steel tube section BoC moves to BC as explained in 
Fig.7 and the axial strain εa is given by δa/Lx in which Lx, δa are the initial length (DEo) and the extension 
(EEo) of steel tube.

The incremental axial strain ∆εa becomes to be the function of ∆φ as shown in Eq.(12).

in which γt is the angle to define the tension-side yield surface (Fig.7).
Substituting σa and ∆εa, the internal work in the yield surface (WIT) is expressed by the function of ∆φ as 
Eq.(13).

   iv) Internal work in the filled concrete (WICO)
According to the Assumptions-d) and Assumption-e), the internal work in the filled concrete (WICO) is 
decided by the concrete stress surrounded by the local buckling area of steel tube CQRo (Fig.5).

In Eq.(14) σco and ∆εco are the compression strength and the incremental compression strain of filled con-
crete respectively.  means the integration in the filled concrete surrounded by the steel tube CQRo. The 

filled concrete except that surrounded by the yield surface of steel tube is approximated to be rigid (Assump-
tion-c)). From this reason the compression strain of concrete (εco) generated by the column deformation (φ) 
is constant and expressed by Eq.(15).

Fig.7 Yield surface and tension deformation in the tension stress side
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The incremental compression strain of concrete (∆εco) is given by Eq.(16)

The incremental compression strain of concrete (∆εco) expressed by Eq.(16) is substituted in Eq.(14), we 
get Eq.(17) as the internal work in the filled concrete (WICO) expressed by ∆φ.

   v) External work (WO)
When the CFT column deforms by ∆φ, the external work done by the horizontal load (H) and the axial load 
(N) is given by Eq.(18).

By equating the sum of the internal works (WIC, WIL, WIT, WICO) to the external work (WO) on the basis 
of the virtual work law, the equilibrium equation of CFT column under the horizontal force (H) and the axial 
force (N) is obtained as shown in Eq.(19).

According to Eq.(19), the horizontal force H under the axial force N is decided. By the use of the obtained 
horizontal force (H), the fixed end moment (M) of CFT column is expressed by Eq.(20).

3.3 Stress strain relation of filled concrete
The stress of filled concrete (σco) in Eq.17 is effected by the confinement of steel tube. The stress strain 
relation of filled concrete which is subjected to the confinement of steel tube is derived from the stub column 
test of CFT member.
According to the stress analysis of steel tube based on the yield function of von Mises, the axial stress of 
steel tube can be approximated by σu/ . From this result the filled concrete axial stress (σco) of CFT stub 
column can be expressed by subtracting the steel tube axial stress from the compression load of CFT stub 
column (P) and shown in Eq.(21).

           σco=(P-Asσu/ )/Ac                                                                                           (21)
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in which As: the sectional area of steel tube, Ac: the sectional area of filled concrete.
Applying Eq.(21) to the test result of CFT stub column, σco/σce-εco relations are obtained and shown in 
Fig.8. In the figure εco: compression strain of filled concrete, σce: compression strength of confined concrete 
shown by Eq.(22) which was proposed by one of the authors. 
           σce=σc(0.76/ρ+0.76)                                                                                           (22)
in which ρ (=σcAc/σuAs, σc: compression strength of concrete) is the strength ratio of filled concrete to steel 
tube.

Although the CFT column specimens are designed under the quite different conditions, the maximum com-
pression stress of filled concrete is well predicted by the proposed confined concrete strength (σce). We can 
also see all  σco/σce-εco relations are approximated by straight lines as shown in Fig.8 with the dashed lines.
By expressing the gradients of σco/σce-εco relations in the degrading state by Kc, the relation between the 
gradients (Kc) and the strength ratio (ρ) is obtained as shown in Fig.9. From the straight distribution of the 
test results of ρ-Kc relation, Kc is approximated by Eq.(23). 
            Kc= 20.7ρ                                                                                                      (23)
By the use of Eq.(23), the equation to express the compression strength of filled concrete is given by 
Eq.(24).
           σco=σce(1.0-Kcεco)                                                                                         (24)

   Steel tube:
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Fig.8 Compression stress-plastic strain relation of confined concrete and its model
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3.4 Load-deformation relation and local buckling
The load-deformation relation of locally buckled CFT column, which is subjected to the constant axial force 
(N) and the horizontal force (H) at the free end, calculated by Eq.(19) and Eq.(20) is shown in Fig.10. By 
the calculation of the variable diameter to thickness ratio (D/t) of steel tube and the variable axial force ratio 
(N/Nu), the effect of them on the load-deformation relation is investigated. The material properties (σc, σu) 
and the aspect ratio of CFT column (2Lc/D) of the calculated CFT column are explained in the figure. 
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Fig.10 Load-deformation relation of locally buckled CFT column
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All load-deformation relations in Fig.10 show only the post-buckling behaviors and the relation before local 
buckling of steel tube is not calculated. The load-deformation relation of CFT column before local buckling 
of steel tube is given by the equation M=Mue as shown in Fig.11. From this reason the load-deformation 
relation of CFT column is expressed by the thick line in Fig.11 and the CFT column deformation (φlb) when 
the steel tube buckles locally is decided by the intersection of the two load-deformation relations as 
explained in Fig.11.

4. PLASTIC DEFORMATION CAPACITY ON THE BASIS OF LOCAL BUCKLING

4.1 CFT column deformation (φlb) 
The plastic deformations of CFT column (φlb) when the steel tube buckles locally are calculated systemat-
ically by the proposed method mentioned above and the results are shown in Fig.12(A)-Fig12(C). In the fig-
ures N/Nu and 2Lc/D are the axial force ratio and the aspect ratio of CFT column respectively. The chain 
lines in the figures show the criteria of the diameter to thickness ratio in the Japanese design code of CFT 
structure.
It is clearly shown that the plastic deformation capacity defined by φlb/φu (φu=Mue/Ko, Ko: elastic bending 
stiffness) changes with the well known diameter to thickness ratio of steel tube (D/t). But not only by D/t, 
the value of φlb/φu is extremely effected by the axial force ratio (N/Nu), the aspect ratio (2Lc/D) and the 
material properties (σc, σu) of CFT column. Fig.12(A)-Fig.12(C) also show that the ductile CFT columns 
with excellent plastic deformation capacity are in the criteria of the diameter to thickness ratio shown by the 
chain lines.
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4.2 Plastic deformation capacity of experiment
The plastic deformation capacity calculated by the proposed method (φlb/φu)A is compared with test result 
(φlb/φu)T which is obtained by the use of steel tube strain as mentioned in the section 1.2. They are shown 
in Table.2(A)-2(C) and Fig.13. In the figure the plastic deformation capacities under monotonic load and 
repeated load are expressed. 
The plastic deformation capacity under repeated load is decided by the plastic deformation between the 
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deformation reverse point (R) and the strain reverse point (B) as explained in Fig.14. Strictly speaking, the 
strain reverse point (B) in Fig.14 shows the deformation after the local buckling and it does not give the 
plastic deformation when steel tube buckles locally. From this reason the test results are larger than the cal-
culated plastic deformation capacity by the proposed method. But we can say the test results under mono-
tonic load and repeated load are approximated by the calculated plastic deformations of CFT column. 
From these results it is also ascertained that CFT column ductility defined by local buckling of steel tube is 
effected not only by the well known D/t but also effected by the axial force ratio (N/Nu), the aspect ratio 
(2Lc/D) and the material properties (σc, σu) of CFT column.

5. CONCLUSIONS

Local buckling of concrete filled steel tube column (CFT column) is analyzed on the upper bound theorem 
of the limit analysis. The collapse mechanism of the analysis is assumed on the basis of CFT column test 
under monotonic and repeated load. The load deformation relations of many CFT columns designed under 
quite different conditions are calculated by the proposed analysis method and the plastic deformations until 
the local buckling of steel tube are also obtained. 
From the calculated results it is shown that the local buckling of CFT column is closely related not only to 
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the well known D/t but also to the axial force ratio (N/Nu), the aspect ratio (2Lc/D) and the material prop-
erties (σc, σu) of CFT column.
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