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SUMMARY 
 
A practical method to evaluate seismic load considering soil-structure interaction (SSI) effects is 
presented. The contents are : 1) to obtain seismic loads of MDOF system from equivalent SDOF by using 
fixed base eigen modes , 2)  to calculate sway and rocking springs and dashpots for flat, embedded and 
pile foundations in which multi-layered soil effects are taken into account, 3) to obtain foundation input 
motions of embedded foundation. These practical methods are examined on validity in comparison with 
numerical  calculations by the more rigorous method. 
 
 

INTRODUCTION 
 
Architectural Institute of Japan (AIJ) has now prepared the draft for revision of AIJ recommendations of 
seismic load on buildings in 2004.  The overview is presented in this WCEE [Ishiyama et al. 2004]. The 
draft includes the soil-structure interaction (SSI) effects on kinematic and inertial SSI problems. The basic 
procedure to evaluate seismic load in this draft is based on the SRSS method. In the draft the practical 
methods on SSI are proposed together with analytical methods such as FEM. This paper presents the 
practical methods. One is to obtain seismic loads of MDOF system of buildings from equivalent SDOF 
system connecting with SSI springs and dashpots by applying eigen modes of fixed base structures. The 
method can be applied for the capacity spectrum method proposed in revised Japanese national code. 
Next, practical formula to calculate sway and rocking springs and dashpots are proposed on directly 
settled, embedded and pile foundations. In those formula, the effects of multi-layered soil deposits are 
taken into account for determination of soil parameters on rigidity, shear wave velocity for radiation 
damping and hysteretic damping of soil. The formula for pile foundation are expressed on the basis of the 
concept of beam on elastic media and consider pile-group effect. The last proposal is on the foundation 
input motion for kinematic problem. The input motions of buildings subjected to Hyogoken Nanbu 
earthquake in 1995 had been  investigated by a special project group of AIJ using observed earthquake 
motions. Based on this investigation, the AIJ's draft proposes a formulae on input motions of embedded 
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foundations with the parameters of non-dimensional embedded depth and frequency in terms of ground 
predominant frequency. These practical methods are examined by numerical examples using  the Thin 
Layer method and so on, and then the differences are discussed in this paper. 
 

GENERAL EXPRESSION OF SEISMIC LOADS 
 
The seismic loads that are story shear force of  the i-th level of a n-story structure are expressed by          
[Ishiyama et al. 2004] 
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where Dik  is the structural factor to be specified according to ductility and overstrength,  Fik   the shape 

factor determined from vertical rigidity distribution and eccentricity in plane. The ijV  indicates the story 

shear force derived from the j-th eigen mode of vibration in the method of square root of sum of squares 
(SRSS), that is  
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where ),T(S jja ζ  is the design acceleration response spectra in the j-th mode with natural period jT and 

damping ratio jζ ,  im  the mass of i-th story. The mode shapes ijφ  and participation factor jβ  together 

with  jT  and jζ  are determined from the eigenvalue problem analysis of the following dynamic equations  

of motion of the sway and rocking model shown in Fig.1. 
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Using the ijφ  defined as Fig.2, the jβ and jζ  are calculated in the followings. 
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where jM , jC  and jK  are the generalized mass, damping and stiffness of j-th mode, respectively. 
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    Fig.1 Sway-rocking model of MDOF                           Fig.2 Definition of mode shapes 



EXPRESSION BY EQUIVALENT SDOF MODEL 
 
Proposed method 
The replacement of a MDOF super-structure system into the equivalent SDOF model shown in Fig.3 is 
expressed using the equivalent mass, stiffness and height obtained by 
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where fijφ  is the j-th mode shape of vibration in the condition of fixed base, fjβ  is obtained by the same 

way in  Eq.(3) using fijφ  and fjω  is a natural  circular frequency of the super-structure.  

The story  shear force with the SSI effect corresponding to Eq.(1) is expressed by : 
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The 1iV  is  the 1st mode contribution and iV∆  the higher mode. 
They are obtained by Eqs.(7) and (8), respectively. 
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in which ),T(S jja ζ  is an acceleration response spectrum in the j-

th mode. The jT and jζ  are obtained considering the SSI effect in 

the followings. Since super-sturcture, sway and rocking springs 
shown in Fig.3 are connected with each others in a series, jT becomes  
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The damping ratio jζ  is approximately obtained by 
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The relationship of Eq.(10) is derived from the following expression for a damping ratio. 
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The jW  and jW∆  are strain and absorbing energy during a cycle obtained from 

     { } { }2
jr

2
sjs

2
bjfjj

2
jr

2
sjs

2
bjfjj CCCW,KKK

2

1
W θφφπω∆θφφ ++=++=  

where  

2

j

rj
2

j

sj
2

fj
rsb T

T
:

T

T
:

Tj

T
::

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=φφφ  

     

 

fM

fh

rr C,K
ss C,K

ff C,K

     
 
 Fig.3 Equivalent SDOF  model  
         of super-structure  



The 1st mode shapes 1iφ  in Eqs.(7) and (8) with SSI effect based on the fixed base mode are 
approximated as follows. 
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Examination for validity 
The accuracy of the proposed method is examined here. The conditions to calculate examples are shown 
in Table 1. The relationship between 1fT  with fixed base and the story number n is average for reinforced 

concrete frame structures in Japan. Spring and dashpot constants for sway and rocking are calculated by 
Eqs.(13) and (14). Figure 4 shows the results on natural periods in which the approximate are obtained by 
Eq.(9) and the exact by eigenvalue analysis of undamped MDOF in Fig.1. Figure 5 shows the results on 
modal damping ratios in which the approximate are obtained by Eq.(10) and the exact by Eq.(4) using 
undamped mode shapes. Figure 6 shows the results on effective masses at the 1st floor of the 1st mode in 
which the approximate are calculated applying the approximate mode by Eq.(11) and the exact by using 
eigenvalue analysis of MDOF. From these comparisons it is recognized that the proposed method using 

   Table 1 Conditions for calculation 
 
Super-stucture (n-story shear model) 
• Weight distribution : 11,500kN constatnt          
• Stiffness distribution : linear 1:2k:k n1 =  
• Story height : 3.5m 
• 1st natural period : .)(secn07.0T 1f =  

• Damping ratio: 1ffjfj /03.0 ωωζ =  

 
Foundation and soil 
• Foundation settled on surface : 30m squares 
• Soil : Uniform with Vs of 100m/sec. 
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the equivalent SDOF model can evaluate almost same story shear forces with the general expression. 
 

SPRING AND DASHPOT CONSTANTS FOR SSI 
 
Evaluation from Impedance functions 
 Of flat, embedded and pile foundations the spring and dashpot constants for sway and rocking motions 
shown in Fig. 1 or 3 can be obtained from the relationship between force and displacement at the base of 

super-structure , that is, when a force is ti
oePP ω=  and the displacement ti

oeUU ω= at the base such as 

the pile  top, the impedance function )(Kimp ω  is expressed : 

     )('iK)(KU/P)(Kimp ωωω +==  

where )(K ω  and )('K ω  are the real and imaginary parts of a complex impedance function, respectively. 

In this practical method, the spring and dashpot constants, dK  and dC , are defined in Eq.(12)  derived 
from a impedance function as shown in Fig.7. 
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where 1ω  is the 1st natural circular frequency of the interaction model. The definitions in eq.(12) indicate 

that dK  is calculated statically and dC  is determined as the damped force by a dashpot at 1ω  becomes 

the same one using an impedance function. 
 
The impedance function or the constant are evaluated applying the method based on the wave propagation 
theory such as Thin Layer method, finite element method with viscous boundary or discrete spring type 
method [AIJ 1996].  The draft recommends an practical method to evaluate  impedance functions for 
applying Eq.(12) as follows. The subscripts of (s) and (r)  in the following indicate sway and rocking 
motion, respectively. The soil property is  represented by shear modulus G , mass density ρ , shear wave 

velocity sV and intrisic hysteresis damping ratio gζ , which for earthquake motion levels are converged 

into each value against strain dependency  by equivalent linearlization. 
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           Fig.7 Definition of spring and dashpot constants from an impedance function 



Flat foundation on ground surface 
Proposed method 
The spring constants for flat foundation are obtained by  
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where fA  and fI  are the area  and  the second moment of cross-section of a flat foundation, respectively. 

The ν is Poisson's ratio of soil. The imaginary part, )('K ω  can be approximated as [Iiba et al, 2000] 
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where 1gω  is the predominant circular frequency of  a layered soil as shown in Fig.8 and LV  is the 

apparent velocity of )1/(/V4.3 s νπ −  defined by 

Lysmer. 
The G  in Eq.(13) in a layered soil is represented by the 
modification in Eq.(15) [Tajimi 1968]. 
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The gζ  in Eq.(14) is modified by  Eq.(16). 
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       Fig.8 Definition of layered Soil 
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                                  Fig.10 Example of impedance functions  
                Fig.9 Soil profile for an example                          of a flat foundation 
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Examination for validity 
An example of flat foundation with 30m squares on soil ground shown in Fig.9 ( Hz9.0f g = ) is compared 

for the sway impedance function with the result by 3-D Thin Layer method(TLM)  [Tajimi 1980].  As 
shown in Fig.10 in which the denominator TLMoK  is the real part value by the TLM at 0.01Hz, the 

comparison shows that bsK  by Eq.(13a) is good agreement with the TLM result at near 0=ω  and 

)(K '
bs ω  by Eq.(14a) has a similar tendency in terms of frequency with the TLM result. 

 
Embedded foundations 
Proposed method 
The impedance functions for embedded foundations with  section area of fA  and embedded depth of 

d are obtained by the sum of impedances of the side wall, wK  and the bottom plane, bK  by Eqs.(13) and 

(14). The spring constants for side wall are given by Eq.(17) of the product of bK  and some coefficients 
which were proposed using the investigation by rigorous Green's function method [Tohdo et al. 1986]. 
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where 
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The imaginary part of side wall for sway is obtained by Eq.(18) [Fukuwa et al. 1987]. 
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where 1A  and 2A  are the area of parallel and perpendicular side wall against the direction of motion, 
respectively. It is noted here that the average soil property of surface ground i.e. soil supporting side-wall  
is applied to calculate bK  in Eqs.(17) and (18). 

 
Examination for validity 
The accuracy of the proposed formula of Eqs.(17a) and (18) for sway is investigated in comparison with 
the results by TLM. The condition of examples are that a foundation plane is square and soils with no 
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intrisic damping are uniform or 2-layered medium, bed rock beneath foundation base of which has the 

twice shear wave velocity of surface one. The wsK  and '
wsK by TLM shown in Fig.11 are calculated by 

subtracting flat foundation impedances on surface of bed-rock from the total and by averaging the 

impedances between 0 and 2 of sf V/Aω . The proposed formula in Fig.11 agree well with the results 

by TLM. 
 
Pile foundations 
Basic formulation 
Let us consider a beam for  a pile of  a pile-group supported by visco-elastic medium as shown in Fig.12. 
The equation of the beam in terms of motion, U can be written as : 
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in which PP IE  is the flexural rigidity of pile, PP Aρ  mass per unit 

length and gNk  and gNc  are stiffness and radiation damping 

coefficients per unit length derived from supporting soil respectively, 
for which we assume to be a function of pile-group factor, Pγ  
defined later as follows. 
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gNk  is the complex stiffness including hysteresis damping effect, 
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boundary conditions. Therefore, the dynamic complex spring at the pile top *K  is obtained from the 
relationship between pile top force oP  and displacement oU  under the assumption of long pile based on 
the Chan's solution as follows. 
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where α is the pile top condition. Here assuming PP Aρ  is small,  the *K  is approximated using the static 

spring constant, oK with the pile characteristic value, β in Eq.(23) : 
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   Fig.12 Pile foundation 



Proposed method 
Following the basic formulation, the spring constant, psK  for sway motion  at the top of a pile-group with 

the number of PN  is expressed as 

     4

PP

gP
3

PP
Pps IE4

k
,

2

IE4
NK

γ
β

α
β

=
−

=                                                                                         (23) 

where α is 1 for fixed support and 0 for pin support at the pile top. The pile-group factor, Pγ , we assume, 
is given by Eq.(24) in a mean sense considering parameters due to actual foundations on the basis of 
investigations associated with PN , pile diameter and spacing [Hasegawa et al. 1990, Hijikata et al. 1997]. 
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 The exponent of 1/4 in Eq.(20b) has a similar meanings. The imaginary part of impedance function is 
given by Eq.(25) based on Eq.(22) and taking into account the cut-off effect due to the predominant 
circular frequency of  a layered soil, 1gω . 
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The stiffness and radiation damping coefficients due to soil for single pile are obtained by Eq.(26a) 
[Francis 1964] and Eq.(26b), respectively. 
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where sE  is the Young's modulus of soil and PD  the diameter of a pile. 
The application of Eq.(23) for the spring constant of a pile-group in a layered soil shown in Fig.8 can be 
performed as follows [Tohdo 2003]. The characteristic value, β  in Eq.(23) is determined by 
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in which 4
PPglPl IE4/kγβ =  for each soil layer and the function for the depth, z in Fig.8 which 

indicates a shape factor is defined as: 
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The coefficients, gk  and gc  in Eq.(25) are determined from : (1) inversely calculate gk  by Eq.(23b) from 

β  in Eq.(27), (2) obtain gc  in Eq,(26b) using sV  from sE inversely calculated in Eq.(26a). 

 
Examination for validity 
The validity of the proposed method for pile foundations is examined here. At first,  we examine on the 
modification method of spring constants, psK  for a multi-layered soil effect mainly described in Eq.(27). 

The conditions for numerical examples are 36 cases in each pile top condition of fixed or pinned support : 
6 kinds of soil deposit shown in Fig.13, pile foundations with PD  of  1m or 2m and PN  of 1, 9 or 16. 

Results by the proposed approximate method are shown in Fig.14 in comparison with psK  obtained by 

the exact method for which the solution under the pile condition buried in 2m into base-rock is obtained 
by applying Eq.(21) in each layer and considering boundary conditions on displacements and stresses. The 

denominator oK  is 3
14 βPPP IEN  in fixed support using the characteristic value, 1β  at the 1st soil layer. 

Figure 14 shows that the proposed method can estimate the exact solution within errors of 15%. 
Next, impedance functions are examined under the condition of pile foundations with PD  of 2m and 

single or PN  of 2*2 or 4*4 in a soil deposit shown in Fig.9. Results on real and imaginary parts of 
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          Fig.15 Examples of impedance functions of piles 
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       Fig.13 examples of soil             Fig.14 Sway spring constants of piles 



'
psps iKK +  are compared in Fig.15 with results by TLM in which pile spacing is 6m. Any impedance 

values are normalized by the real part of single pile impedance at 0.2Hz due to TLM. It may be recognized 
that the proposed method is practically applied although spring constants is a little lower at low frequency 
and damping coefficients a little lower at high frequency. 

 
FOUNDATION INPUT MOTIONS 

 
As for the kinematic problem of SSI, the basic concept for foundation input motions of a massless 
embedded foundation, fhU  shown in Fig.16 is derived from averaging free field motions, )z(U g  with 

weighting by soil stiffness, that is, releasing the driving force due to the restriction by the existence of 
foundation: 
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1
U . Therefore it is recognized from the relationship between bsK  and wsK  in 

Eq.(17a) that fA/d=η  is a key parameter  [Tohdo et al. 1986]. Here, parametric studies for fhU  are 
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    Fig.16  Schematic view            Fig.17 examples of 
        for foundation input motion          foundation input motion 

 

0

200

400

600

800

0 200 400 600 800

Amax at free GL(gal)

A
m

a
x
 i
n
 f

o
u
n

da
ti
o
n
 (

g
a
l)

○ NS　□ EW　△ UD

    

0

30

60

90

120

0 30 60 90 120

Vmax at free GL (cm/ s)

V
m

ax
 i
n
 f

o
u
n
d
a
ti
o
n
 (

c
m

/
s
)

● A,B buildings                 LSM

   
a) Peak acceleration            b) Peak velocity 

     Fig.18 The relationship between motions in building foundations and 
 free field motions observed during the Kobe earthquake in 1995 



carried out using the Thin Layer method (TLM), which have the η  of 1/4 or 1/2 and the supporting soil of 

sbs VV =  or sbs V.V 50= .The results of  GLfh U/U  are shown in Fig.17 in which the circular frequency 

ω of the horizontal axis is normalized by the ground circular frequency of  d/Vsd 2πω = . It is found 

from Fig.17 that fhU  decreases as ω  is higher and has the nodal frequency at dω  to be 0=)d(U g . 

The input motions of buildings subjected to Hyogoken Nanbu earthquake in 1995 had been  investigated 
by a special project group of AIJ using observed earthquake motions  [Yasui 1997].  Figure 18 shows the 
comparison of peak accelerations, maxA  and peak velocities, maxV  of observed motions between 
foundations and free surface ground in each site. The η  of A and B buildings are about 0.3 and 0.5, 

respectively. The average ratios of input motions in foundations against GLU  from the least square 

method (LSM) had been obtained to be 0.7 for maxA  and 0.9 for  maxV . 
Based on these investigations, the AIJ's draft proposes the following formulae for the modification factor 
on input motions into embedded foundations. 
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in which  fA/d=η ,  dd / ωωδ 1=  and d/Vsd 2πω =  where sV  is the average shear wave velocity 

in soil surrounding side-wall. 
 

CONCLUSIONS 
 
A practical method to evaluate seismic loads in the draft of AIJ recommendations is proposed, which 
considers herein soil-structure interaction (SSI) effects. The contents are summarized as follows. 
One is to obtain story shear forces using an equivalent SDOF model for a super-structure connecting with 
sway-rocking spring and dashpot. In numerical examples, natural periods, modal dampings and effective 
masses by the proposed formula are estimated well the exact ones based on MDOF model. 
Next, we propose the formula to evaluate spring and dashpot constants for flat, embedded and pile 
foundations, the later of  which are based on impedance functions in terms of frequency. These formula 
include multi-layered soil effects, in addition pile-group effects.  The validity to estimate is verified 
through numerical examples by the more rigorous method such as the 3D-Thin Layer method. 
In the last, a semi-empirical formulae to evaluate foundation input motions into embedded foundations is 
recommended on the basis of analytical considerations and actual phenomena in observed earthquake 
motions during the 1995 Kobe earthquake. 
We conclude this paper that the proposals are available for the evaluation of seismic loads taking into 
account SSI effects in a sense of practical seismic design. 
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