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SUMMARY 
 
Dynamic rupture process of earthquake fault and its near-field strong ground motions are simulated by 
time-space-decoupled, explicit finite element method with multi-transmitting formula (MTF) of artificial 
boundary in this paper. This decoupled, explicit method has advantage to easily incorporate into time-step 
simulation of dynamic rupture process on earthquake fault, as well as wave motions. The MTF approach 
for artificial boundary allows of performing simulation in a smaller computational model. Consequently, 
simulation can be implemented conveniently, say by microcomputer, resulted from substantially reduction 
of computational storage and time. It is meaningful for simulation of dynamic rupture of earthquake fault 
and its near-field motions, especially for high frequency motions, which is interested in earthquake 
engineering. Further, we use this method and slip-weakening frictional model to study the effect of 
different slip weakening distance dc on the source time function, near filed ground motion and their 
Fourier spectra. It is found that dc have little effect on the source time function and near filed ground 
motion for low frequency components (<1Hz). 
 

INTRODUCTION 
 

In recent earthquakes, such as the 1994 Northridge, 1995 Kobe, 1999 Chi-Chi earthquake, severe damage 
along the fault and some interesting phenomena related to fault rupture process remind us that near-field 
ground motion, especially near-fault ground motion need further study. Near-field ground motion depends 
on various factors, including site conditions, surface topography, crystal structure, and earthquake source 
etc. However, for sites close to a fault, ground motion strongly depends on the rupture process of fault.  
Earthquake fault rupture process is usually modeled as a propagating stress relaxtion over a finite fault 
and it is controlled by the heterogeneous distribution of the initial tectonic stress, yield stress, and 
dynamic frictional stress etc. Such earthquake models generally lead to nonlinear, mixed boundary value 
problems, and close-form theoretical solutions are only available for few idealized problems [5, 9]. For 
most cases, especially three-dimensional problems, numerical methods have to be adopted to solve them. 
Three methods, such as the boundary integral equation method [1, 11], the finite difference method [2, 
10], and the finite element method [3, 4], have been widely used for numerical simulation of the fault 
rupture process.  
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Since an earthquake fault is usually of large dimensions, and near-field ground motions always include 
many high frequency components, the discrete grids of numerical computation should be very small 
compared to the fault dimension in order to satisfy the stability condition and accuracy of numerical 
simulation. Therefore, the numerical simulation always involves hundreds to millions of degrees of 
freedom requiring parallel computation. We can reduce the computational cost and decrease the 
computational time by two approaches. One is the high efficiency algorithm that can save the computer 
storage, and the other is the appropriate artificial boundary that can minimize whole computational area. 
In this paper, we present a time-space-decoupled, explicit finite element method, incorporating multi-
transmitting formula (MTF) dealing with artificial boundary, to simulate the rupture process and near-field 
ground motions. Using this numerical scheme, dynamic rupture and near-field motions of a vertical fault 
is simulated to show its efficiency. The effect of slip weakening distance dc on source function and ground 
motion is also discussed. 
 

FINITE ELEMENT METHOD 
 
1 Fault model, basic equation and boundary condition 
A fault model of this study is shown in Figure 1, where the plane ABCD is the ground surface, the 
quadrangle abcd located in plane ADEH is the earthquake fault plane, which may or may not intersect the 
ground surface. The plane DCGH, BCGF, ABFE, and EHGF are the artificial boundaries of numerical 
simulation. Here, we take axis X parallel to the initial tectonic stress and axis Y perpendicular to the fault 
plane.  
 
 
 
 
 
 
 
 
 
 

Figure 1 Geometry sketch of computational model with a fault embedded within a half-space. 
It is well known, in elastic, isotropic, continuum medium, the displacement vector at any point should 
satisfy the following equation of motion, 
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where λ and µ are Lame’s constants, u denotes displacement, and ρ  denotes mass density. The boundary 
condition on plane ADEH may be described in the following form, 
On the fault plane (y=0), we have: 

τττ +−= 0yx                                                                                                                                           (2) 

0=yzτ                                                                                                                                                      (3) 

0=yyτ                                                                                                                                                      (4)  

where τ is the actual stress at time t, which depends on the friction model. 
at y=0 outside the fault plane, we have: 

0=u                                                                                                                                                        (5) 
0=w                                                                                                                                                        (6) 
0=yyτ                                                                                                                                                      (7) 

On the ground surface (free surface), we have: 
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0=zxτ                                                                                                                                                      (8) 

0=zyτ                                                                                                                                                      (9) 

0=zzτ                                                                                                                                                    (10)  

2 The finite element method 
Using lumped mass finite element and central difference, Liao Z P [12, 13] has presented a time-space-
decoupled, explicit finite element method to simulate wave motion. The key idea is to simulate wave 
motion locally, following actual wave traveling process. It does not need to consider stiffness of whole 
element in calculation at each step. Based on this idea, we can apply this explicit, decoupled technique to 
simulate dynamic rupture of earthquake source. For our problem, omitting the damping effect, to all nodes 
except nodes on the artificial boundary or at y=0, we have: 
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Where iu  is the node displacement, im  is the lumped mass to the node i, t∆ is the computational time 

step, e is the number of element which include node i, and e
ik  is the stiffness matrix of an element which 

include node i. The superscript p-1, p, and p+1 represent three time steps during calculation, respectively. 
From formula (11), we notice that it needs not to use the displacement of whole nodes, when computing 
the displacement of node i at time p+1. The displacement of node i can be acquired through few elements 
stiffness and their nodes displacement at time p and p-1.  
We use the multi-transmitting boundary formula [13] to obtain displacements of artificial boundary, as 
shown in formula (12), 
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where 1+p
Bu  is displacement of node XB at artificial boundary at p+1 time step,  Ca is artificial velocity, Cj

N 
is the binomial coefficient: 
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N is order taking in MTF. Formula (12) means displacements at artificial boundary can be obtained by 
those of inner nodes at pass time steps easily. The details of this scheme can be found in Ref. [12, 13]. 
On the fault plane and outside the plane (plane ADHE in Figure 1), we use the same method as given in 
formula 2.5 of Miyatake [10]. 
3 Validation of the method 
In order to validate our finite element and multi-transmitting boundary technique, we compare numerical 
results with the Kostrov’s (1964) [5] self-similar problem of a rupture initiate at a point and expanding 
with a constant speed as a circle over a plane in a full space. In Figure 1, we presume the rupture initiate at 
point O ( in this case, we put the coordinate origin O far from the ground surface, in order to ensure the 
free surface reflect wave can not attain the fault upper boundary), and take the initial tectonic stress as 
20Mpa and parallel to axis X, the dynamic frictional stress as 10Mpa. The density of the rock is 
2.75*103kg/m3, the shear velocity is 3200m/s, and the medium is Poisson solid. The Kostrov’s self-similar 
solution is  
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where )/( βvc  is a constant computed by Dahlen[6], v is rupture velocity, β is the S-wave velocity, r is 

the distance to the initial rupture point, H(t) is the Heaviside step function, and eσ  is the stress drop. For 

this example, taking a rupture velocity such that β9.0=v , )/( βvc  should be 0.81 according to Dahlen. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 the solution of this paper (black line) and that of the Kostrov’s self-similar solution (red 
line). The left top one is of the point [0,0,0], The left middle one is of the point [5,0,0], The left down 
one is of the point [10,0,0],The right top one is of the point [0,5,0], The right middle one is of the 
point [0,10,0], The right top one is of the point [0,15,0]. 
 
Figure 2 shows the analytical and numerical simulation results for six points at position (0,0,0),  (5,0,0), 
(10,0,0), (15,0,5), (0,0,5)and (0,0,10) on the fault plane. The numerical results (black lines) agree quite 
well with the analytical results (red lines), which indicate that our finite element method can be used to 
simulate fault rupture accurately. Here, we take the rupture radius is 15 km. we have selected the 
computation area as x=[-20,20],x=[-25,25],y=[0,-5], y=[0,-10] y=[0,-15], z=[-20,20],z=[-25,25] in order to 
clarify the efficiency of multi-transmitting boundary method. Those curves of all computational model are 
the superposition completely in Figure 2 (black line), which indicate that the multi-transmitting boundary 
works well in this problem. 
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Some previous studies have shown that the friction properties between two sides of the fault controls 
earthquake rupture propagation. Some friction models have been proposed to describe friction law of 
earthquake fault [7, 8]. Here, we want to use our method to study the effect of slip weakening distance dc 
on low frequency source function and near-field ground motion. The slip-weakening model used here is 
present firstly by Andrews (1976) and shown in Figure 1 of reference [8]. 
We take a vertical fault with length of 20km and width of 10km embedded within a half space, and the 
fault intersects the ground surface. The uniform initial tectonic stress is 20Mpa and parallel to axis X, and 
the dynamic frictional stress is 10Mpa. The density of the rock is 2.7*103kg/m3, the shear velocity is 
3460m/s, and the medium is a Poisson solid. Assuming the rupture initiate from the fault center, and using 
finite stress strength criteria [1], we simulate a spontaneous rupture process and the low frequency near-
field ground motion up to 1 Hz in this paper. Such low frequency strong ground motions are important 
because most structures are sensitive to stress period longer than 1 sec.  
In order to study the effect of dc to the source time function and near-field ground motion, we tested four 
models with constant strength excess and different dc , the parameters of the models are list in table 1.  

 
                  Table 1 the parameters of model with constant yield strength and different dc 

Model 0τ /mpa yτ /mpa fτ /mpa S dc/m GC/J/m2 

I 20 25 10 0.5 0 0 
II 20 25 10 0.5 0.2 1.5*106 

III 20 25 10 0.5 0.5 3.75*106 

IV 20 25 10 0.5 1.0 7.5*106 
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Figure 3 shows the source dislocation function, the slip velocity function and its Fourier spectra of point 
on the upper and central line of the fault. Due to the symmetry of the problem (see Ref. 4), we only give 
the results of  points of (0,0,-5) , (2,0, -5), (4,0, -5), (6,0, -5), (8,0, -5) on the fault upper line and points of 
(0,0,0), (2,0, 0), (4,0, 0), (6,0, 0), (8,0, 0) on the fault center line. In these Figures, the black line is the 
result with slip weakening distance 0.1mm, the red line is the same with slip weakening distance 0.1mm, 
and the green line is the same with slip weakening distance 0.1mm.  
Here, we noticed: 
At the same point, while dc is lager, the rupture will start later. Since the three models have the same yield 
stress, the fracture energy Gc will increase as dc increases, and the rupture velocity will decrease as the slip 
weakening distance dc increase.  
(1) Once dc is larger than a certain value, the rupture can not extend (in this particular case, we found the 

rupture can not extend if dc is larger than 1.2m).   
(2) The dislocation will decrease little as dc increase. While dc is smaller, the slip velocity pulse will be 

higher and the pulse width will be narrower. 
(3) For different dc, although the fracture energy is very different, the Fourier spectra of slip velocity are      

very similar in this frequency range (0-1Hz), which means the low frequency (<1Hz) source time 
function is not sensitive to the rupture process. 

Figure 4 and 5 shows the displacement, velocity histories and its velocity Fourier spectra for X and Y 
components at points 500m and 5km distance to the fault on the ground surface, respectively. Here, we 
noticed: 
(1) The ground residual displacements are almost identical for the entire four models, which mean the 

ground residual displacement is not affected by slip weakening distance dc. It only depends on the 
stress drop and the medium parameters, not on the rupture process. 

THE EFFECT OF SLIP WEAKENING DISTANCE  dC  ON SOURCE TIME FUNCTION AND 
NEAR FAULT GROUND MOTION 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 the dislocation (left column), the slip velocity (middle column) and the Fourier spectra of 
the slip velocity (right column) of points on the fault central line and on the fault upper line. From  
top to  bottom row, the points coordinate are (0,0,0) , (2,0, 0), (4,0, 0), (6,0, 0), (8,0, 0), (0,0,0) , (2,0, 
0), (4,0, 0), (6,0, 0), (8,0, 0), respectively. In this figure, the unit of dislocation is m, the unit of slip 
velocity is m/s, and the unit of slip velocity Fourier spectra is m. 
 



Figure 4 the displacement (left column), velocity (middle column) and the velocity Fourier spectra  
(right column) of X component of points 500m  and 5km distance to the fault on ground surface. 
From top to bottom row, the points coordinate is (0,-0.5,-5), (2,-0.5,-5),  (4,-0.5,-5),  (6,-0.5,-5),  (8,-
0.5,-5), (0,-5,-5), (2,-5,-5),  (4,-5,-5),  (6,-5,-5),  (8,-5,-5), respectively. In this figure, the unit of 
displacement is m, the unit of velocity is m/s, and the unit of velocity Fourier spectra is m. 

 



 
Figure 5 the same as Figure 4 except that of y component. 

 
 
 



 
(2) The slip velocity decreases as the slip weakening distance dc increases. 
(3) For the displacement of X comments, the Fourier spectra of slip velocity are very similar, except in 

some points when dc is very large, while to Y component, the difference is a little lager.  
Guatteri et al [14] have simulated two models with different dc and strength excess, and their results are 
similar to ours in this low frequency range.  
 

CONCLUTIONS AND DISCUSSIONS 
 
We present a time-space-decoupled, explicit finite element method with multi-transmitting formula to 
simulate dynamic rupture process and its near-field ground motions. High efficiency can be obtained from 
this method by reducing computational storage and discrete model size in simulation. 
By this method, we simulate a spontaneous rupture with different slip weakening distance dc to study its 
effect on source function and velocity Fourier spectra. Interestingly, the results show both the low 
frequency source time function and the near field ground motions are not sensitive to dc.  The results are 
similar with that of Guatteri et al. 
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