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SUMMARY 

 

The numerical solutions for dynamic impedance matrix of embedded rectangular rigid foundation are 

presented based on Scaled Boundary Finite-Element Method (SBFM). The results fit well at lower 

frequency band with the boundary element method solutions. As an engineering application, Dynamic 

response of a shaking table foundation is calculated in the frequency domain based on dynamic impedance 

matrix solutions obtained in this paper. According to Code for Design of Dynamic Machine Foundation in 

China, the frequency-independent mass-spring-damping model is employed to calculate dynamic machine 

foundation response. The dynamic impedance matrix represented by this kind of model is constant in the 

whole frequency band. Dynamic impedance coefficients of rigid foundation, however, are 

frequency-dependent. Analysis method presented in this paper improves the precision of dynamic 

foundation response in the frequency domain. 

 

INTRODUCTION 

Analytical solutions for dynamic impedance matrix of embedded rectangular foundation do not exist for 

its geometrical complicacy. Generally, analytical solutions are only available for quite geometrical regular 

foundations. Aprel and Luco[1] have formulated the series solution for the torsion impedance of 

semi-circular foundation on the elastic half-space. Rectangular foundations, however, only numerical 

solutions are available and most of works are based on boundary element method at present.  

 

Veletsos and Wei[2] presented the numerical solutions for dynamic impedance of rigid circular foundation 

in the frequency domain in 1971. Because the dynamic response of circular and strip foundations 

embedded in the soil involving mixed-value problems which can be solved numerically based on 
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Fredholm equation, an approximate approach for rectangular foundation is translating it into an equivalent 

circular foundation or postulating the stress distribution between the foundation and the soil, which 

converts the boundary integral equation into a Fredholm equation. Thomason and Kobori[3] obtained the 

dynamic flexibility solutions of the rectangular foundations based on this idea.  

 

Wong and Luco[4], follows Lysmer’s initial idea[5], adopted the following method to solve the dynamic 

impedance of arbitrary surface foundations: the dynamic flexibility matrix for the ground is obtained 

through discretization of integral equations by dividing the contact region between the ground and the 

foundation into small rectangular sub-regions and by assuming that the contact stresses are uniformly 

distributed within each sub-region. The dynamic stiffness matrix for the foundation, defined at the 

intersections of the sub-regions, is obtained by inversion of the dynamic flexibility matrix. Combining the 

stiffness matrices of the foundation and ground leads to a set of linear algebraic equations for the 

soil-foundation system in terms of the nodal displacements. Once the nodal displacements are obtained, 

the contact stresses for each sub-region may be easily evaluated. Uniting all of the stresses leads to the 

dynamic impedance functions. Wong presented the dynamic impedance matrix of the surface rectangular 

foundations[6].  Another representative work is Dominguez[7] obtained the dynamic stiffness matrix of the 

embedded rectangular foundations based on direct boundary-element method, as well as Mita and Luco[8] 

obtained the embedded square foundations based on mixed method. 

 

A new approach, scaled boundary finite-element method[9], is a general procedure to solve linear partial 

differential equations semi-analytically applied to hyperbolic problems for unbounded media and obtains 

the dynamic stiffness matrix numerically. The method combines the advantages of the finite-element 

method and the boundary-element method: Reduction of spatial dimension by one; No fundamental 

solution required; Radiation condition satisfied exactly for unbounded medium; No singular integrals to be 

evaluated.  

 

As an engineering application of the SBFM solutions, dynamic response of a shaking table foundation is 

calculated in the frequency domain based on dynamic impedance matrix solutions obtained in this paper. 

 
DYNAMIC IMPEDANCE MATRIX OF RIGID EMBEDDED RECTANGULAR FOUNDATIONS 
 

Fig1. illustrates the rectangular foundation embedded in elastic half-space. Only a quarter of the 

foundation is given considering the geometric symmetry. Supposing the length of the foundation are 2a 

and 2b (a > b), the embedded depth is e. Also, defining the material density of the half-space is ρ, shear 

modulus is G and the Poisson’s ration is υ. And assuming the harmonica responses of the foundation are 

(u1, u2, u3)e
iωt and (Φ1, Φ2, Φ3) eiωt  under steady-state loads  (F1, F2, F3) eiωt and (M1, M2, M3) eiω

t, where ωis the angle-frequency of the loads. 

 

Defining the general force vector and general displacement vector as: 

{ }TbMFbMFbMF /,,/,,/, 331221=F                        (1) 



{ }TbUbUbU 331221 ,,,,, ΦΦΦ=U                            (2) 

Where b is the characteristic length of the foundation. 

 

The force-displacement relationship with the corresponding amplitudes formulated in the degree of the 

rigid foundation is written as 

                    ( ) ( ) ( )ωωω USF =                               (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S(ω) represents the dynamic impedance matrix of the unbounded medium, which is a 6×6 matrix based 

on the space-symmetry and the definition of the load and displacement above. S(ω) can be formulated as 
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Where S11 is the horizontal impedance coefficient along x-axis, S22 is the rocking coefficient around y-axis, 

S12 is the coupled dynamic impedance coefficients between the translation alone x-axis and the rotation of 

y-axis. And analogously we can define S33, S34 and S44. S55 and S66 are the translation stiffness and torsion 

stiffness around z-axis respectively. 

 

Each element of the matrix can be written as the following uniform expression; 

( ) SKS =ω                                  (5) 
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Fig. 1  Rectangular foundation embedded in the half-space 
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Where K is the static impedance and ir SiSS ω+=  is the corresponding dimensionless stiffness 

coefficient. 

 

The dynamic impedance matrix of arbitrary foundation can be derived based on scaled boundary 

finite-element method, which is a full matrix with respect to the degrees of freedom on the 

foundation-medium interface. From which, the corresponding dynamic impedance of the rigid foundation 

can be derived according to its definition: Fourier amplitude of the steady-state load exerts on the rigid 

foundation if a unit amplitude steady-state displacement occurs along any degree-of-freedom direction at a 

special frequency[10, 11]. 

 

The displacement-force relationship of the boundary nodes is 

( )uSf ω∞=                                  (6) 

Where, 

  ( )T
nnn fffffffff 321232221131211 ,,,,,,,,, L=f               (7) 

  ( )T
nnn uuuuuuuuu 321232221131211 ,,,,,,,,, L=u               (8) 

n is the total number of boundary nodes, pqf  and pqu  is the force and the displacement component of the 

pth ( np ,,2,1 L= ) node along the qx -direction. qx ( 3,2,1=q ) is the Cartesian coordinate defined in 

Fig. 1. 

    Introducing displacement transfer matrix A : 

AUu =                                   (9) 

Where u defined in Equation (8) and U in (2). 
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A  is a 3n×6 matrix and 

( )T
qqqq xxx 321 ,,, L=x ， 3,2,1=q                     (11) 



( )T1,,1,1 L=I                               (12) 

( )T0,,0,0 L=0                              (13) 

Also introducing the force transfer matrix B  

BfF =                                   (14) 
B  is a 6×3n  matrix and can be expressed as 
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Substituting Equation (6) and Equation (9) in Equation (14), the dynamic impedance matrix S is 

formulated: 

( )ABSS ω∞=                                (15) 

 

NUMERICAL SOLUTIONS OF EMBEDDED RECTANGULAR FOUNDATION 
 

The frequency-domain solutions for dynamic impedance matrix of the embedded rectangular foundation 

are the function of foundation shape, material property and the load frequency property. It has no 

analytical expression and only numerical solutions can be obtained. 

 

Numerical solutions based on scaled boundary finite-element method are presented in this section. The 

interface of the rectangular foundation and the soil is divided by finite elements (Fig.2). Four 8-node 

elements are introduced on each surface considering the shape symmetry of the foundation. To ensure the 

accuracy, for large aspect ration or depth ratio, appropriate more elements are introduced. 

 

 

 

 

 

 

 

 

 

 
Fig.2  Finite-element model for embedded rectangular foundation 
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An example is presented to verify the accuracy of the method. Defining the lengths of the foundation are 

both 2 meters, that is, a=b=1m. The shear modulus of the soil is 2/1 mNG = , density 3/1 mkg=ρ  

and the embedded depth is 1m also. Dimensionless frequency 10 ==
sc

b
a

ω
. Additionally, Gb  is 

chosen as the dimensionless coefficient but not the static impedance coefficient. Comparisons between the 

scaled boundary finite-element method and the mixed-method are shown in Fig.3, in which the depth ratio 

is respectively 0.5, 1.0 and 1.5 and the Poisson’s ration is 1/3. Only vertical, horizontal, rocking and 

torsion impedance coefficients are compared. All of the solutions consider the material-damping ration in 

Mita’s mixed method. Correspondence principle is introduced to eliminate the difference between scaled 

boundary finite-element method and the mixed method. Results show that the two methods fit well at 

lower frequency band. Errors still exist, especially for the torsion and rocking impedance when the depth 

ration is larger. As a fact, errors between the two methods are inevitable because the idea and 

finite-element discretization differences. 
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DYNAMIC RESPONSE ANALYSIS OF A SHAKING TABLE FOUNDATION  
 
A foundation of 6×6m three-dimensional earthquake simulation shaking table is RC entity with size of 24

×15×6m, and its mass is about 4,960.5 ton. The simulation table is about 40 ton. So the total mass is 

about 5,000 ton. The acceleration values of some selected points at some selected frequency are measured 

(see next section) [11, 12].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adopting the mass-spring-damping model prescribed in the Code for Design of Dynamic Machine 

Foundation, we calculated the dynamic response of the shaking table foundation under horizontal and 
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Fig. 4  The comparison of foundation dynamic response with difference methods 
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Fig.3 Comparison between scaled boundary finite-element method and mixed method 
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vertical loads. The amplitude of the harmonica force is about 120 ton. The dynamic acceleration responses 

of the shaking table foundation are shown in Figure 4, where the dots are the measured value to the 

corresponding harmonic input load at the same frequency. It is worth mentioning that the dimension of the 

frequency-axis is 1/s, but not rad/s.  

 

Figure 4 shows that the SBFM solutions are closer with the measured values than the 

frequency-independent spring and damping model.  

 

CONCLUSIONS 
 

The numerical solutions for dynamic impedance matrix of embedded rectangular rigid foundation are 

presented based on Scaled Boundary Finite-Element Method (SBFM). The results fit well at lower 

frequency band with the boundary element method solutions. The dynamic response of the shaking table 

foundation in frequency domain is analysed using the numerical solution of the dynamic stiffness matrix 

in this paper. Traditionally, the dynamic design of the dynamic machine foundation is based on the 

frequency-independent mass-spring-damping model. The dynamic impedance represented by this kind of 

model is constant in the whole frequency band. The real dynamic impedance of the rigid foundation, 

however, is frequency-dependent. This kind of model may introduce error in the foundation design, and in 

some frequency band, the error maybe very large.  
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