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SUMMARY 
 

This paper describes the minimum weight design problem of steel frames considering the 
philosophy of strong column-weak beam and cumulative damage index. Following three 
constraints are considered in this approach. The first is the strong column-weak beam 
requirement under the earthquake load determined by response spectrum method. The second is 
the condition to form the plastic hinges in each story simultaneously to prevent the local 
concentration of the damage.  The final is the prescribed cumulative damage level of each 
plastic hinge. The optimization procedure is the sequential linear programming (SLP) using the 
sensitive analysis and the simplex method. This approach is applied to 5-story, 3-bay and 8-
story, 5-bay steel frames, and the optimum sections are obtained.  The dynamic elastic plastic 
analyses of minimum weight frames are performed and the achievement of the prescribed 
cumulative damage of each plastic hinge is checked. 
 

INTRODUCTION 
 

In the seismic design of building structures, it is desirable to prevent the damage 
concentration at the specific member and story. The reason is that the damage concentration 
often causes the local collapse of the story and degradation of the member. This paper presents 
the minimum weight building design method, which prevents the local collapse of the specific 
story and the local damage concentration of the specific member.  Following three constraints 
are considered in this approach. The first is the strong column-weak beam requirement under the 
earthquake load determined by response spectrum method. The philosophy of strong column-
weak beam is generally recommended in the seismic design, and many studies on this 
philosophy have been presented [1,2,3,4].  Here, the sufficient condition to form the desirable 

                                                 
1 Research Associate, Hiroshima University, Higashi-hiroshima, Japan, E-mail : kich@hiroshima-u.ac.jp 
2 Professor, Hiroshima University, Higashi-hiroshima, Japan, E-mail : matu12@hiroshima-u.ac.jp 
3 Head, Nakamura Research Institute, Yokohama, Japan, E-mail : ynakam@do3.enjoy.ne.jp 
4 Nihon Sekkei, Shinjuku, Japan, E-mail : shimizu-k@nihonsekkei.co.jp 



collapse mechanism [7] is used.  The second is the condition to form the plastic hinges in each 
story simultaneously. It is expected that this constraint approximately equally distribute the 
damage of each member for earthquakes.  The final is the member cumulative damage level of 
each plastic hinge. The cumulative damage is the important index that shows the limit state 
condition of the frame. However there are few researches on the minimum weight design 
considering this index as a constraint, although there are some researches on the ductility-
constrained design [4].   

The optimization problems considering above-mentioned three constraints are solved by the 
SLP method, and the effectiveness of this design approach is verified by time history analysis.   
 

FORMULATION 
 
Seismic Design Spectrum and Earthquake Loadings for Buildings 

The following seismic design spectrum is employed for multi-story buildings in this study. 
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where T is natural period of the building, h is damping ratio, SA is the acceleration design spectrum.  This 
design spectrum is the simplified version of that shown in “Recommendations for Loads on Buildings” of 
Architectural Institute of Japan [5]. 
  )(hα  is the response reduction factor caused by damping, which is shown in the following equation [6]. 
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where τ is the ratio of earthquake duration time to natural period of the building. In this paper, τ =10.  
The lateral design shear force at the i-th story Qi is determined by SRSS method. Qi is computed from 

the following equation. 
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where n is the number of stories, kβ  is the participation factor for the k-th mode, mj is the mass of the j-th 
story, ujk is the j-th mode shape, Tk is the k-th mode period, hk is the k-th mode damping ratio.  
 
The First Constraints (Strong Column-Weak Beam Requirement) 

The sufficient condition to form the desirable strong column-weak beam mechanism is that the function 
VE shown in the following equation is positive at all the column-ends except for the base of columns on 
the first story [7].  
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where Zpi and syi are the plastic section modulus and the yield strength for the i-th prescribed column-end, 
NE is the number of the prescribed column-ends, mXi is the maximum bending moment, which can be 
computed from the push over analysis assuming that the prescribed column-ends are elastic.  



 
The Second Constraints (Simultaneous Yielding) 

It is expected that the earthquake damages are approximately equal in all stories in case of the structures 
whose shear-yield-strength distribution is equal to that of story-shear-force response for elastic system [8]. 
Here, the following constraints are employed for the beams on all stories to be yielding simultaneously 
under the proportional loading based on Eq.(5).   
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where mPBi is the plastic moment of the i-th beam group of equal cross section, mmaxBi is the maximum 
bending moment of the i-th beam group under the static load based on Eq.(5), NDB is the number of beam 
groups, 001.0=Bε . 
(mPB/mmaxB)M is defined by the following equation. 
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In addition to the above-mentioned constraints, the following constraints are employed to avoid the 

damage concentration of the bottom of the first story columns. 
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where mPCi is the plastic moment of the i-th column group of equal cross section, mmaxCi is the maximum 
bending moment of i-th column group under the static load based on Eq.(5), NDC is the number of column 
groups. mmaxBi and mmaxCi can be computed from elastic structural analysis. It is expected that these 
constraints equalize the earthquake damage in each story. 
 
The Third Constraint (Cumulative Damage Level) 

Here, Sη , the cumulative damage index for the strong column-weak beam structures is defined as the 
following equation. 
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where NHB , NHC are the number of all beam ends and the number of all column bases respectively, 

jyBθ  ,
kyCθ are the elastic limit of the member-end rotation for the j-th beam ends and the k-th column-

base respectively.  Sη  defined by Eq.(10) represents approximately the average of cumulative damage of 
column-ends and beam-ends.  Ep in Eq.(10) denotes the plastic energy dissipation of the building 
structures. Housner [9] predicted the energy input responsible for the damage in the elastic-plastic system 
by using the velocity response spectra in the elastic system. Ep is computed approximately from the 
following equation. 
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where M is the mass of the building, SVMAX is the maximum value of the velocity design spectrum. 



 
The cumulative damage constraint is shown in the following equation. 

0ηη ≤S  (12) 

where 0η  is the constraint value. 
 
Optimum Design Problem  

Assuming that the member cross-sections are similar in shape, the plastic section modulus Zp and the 
moment of inertia I can be described as the following equations. 

25.1 , AIAZ IZPp ⋅=⋅= αα  (13),(14) 

The optimum design problem can be stated as follows :  
Find the design variables A1,A2,...,AND which minimize 
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subjected to 
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where Li is the total length of the members corresponding to the design variable Ai, ρ  is the specific 
gravity of their materials, ND is the number of design variables, NM is the number of constraints, Gj is the 
constraint function computed from Eq.(6),(7),(9),(12), ALi,AUi are the upper and lower bounds, 
respectively, for design variable Ai. 
 

OPTIMIZATION ALGORITHM 
 

The above-mentioned optimum design problem can be solved by the sequential linear programming 
method (SLP)[10]. The optimization algorithm is shown as follows. 
[Step1] Input the constraint value 0η  and the initial design variables {AI }. 

[Step2] {Aa}={AI}, 1.0=Mα . 
[Step3] Compute the natural periods and mode shapes from the eigen analysis, and compute the 
earthquake load from Eq.(5). 

[Step4] Calculate the design sensitivities for the design variable {Aa}, [ ]aG∇  by finite differences. 
[Step5] Set up the approximate linear programming problem shown as follows :  
Find {A}=(A1,A2,…,AND)T which minimize the structural weight W subjected to 
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[Step6] Solve the linear programming problem with the simplex method, and get the solution {ALP}. 
[Step7] Check the convergence for the structural weight. If the convergence condition is satisfied, 
{Aa}={ALP} and go to Step8, otherwise {Aa}={ALP} and go to Step4. 
[Step8] Check the convergence for the natural periods. If the convergence condition is satisfied, the 
calculation shall be finished, otherwise {Aa}={ALP} and go to Step3. 
 

DESIGN EXAMPLES 
 

5-story,3-bay and 8-story,5-bay steel frames shown in Fig.1(A),(B) are designed by this presented 
method.  35 members of the 5-story structure are categorized into 7 design variable groups as indicated in 



Fig.1(A).  88 members of the 8-story structure are categorized into 11 design variable groups as indicated 
in Fig.1(B).  The design constants are shown in Table 1.  The design conditions are shown in Table 2.  
The optimum solutions are shown in Table 3(A),(B). A,Mp,W,T1 and NL in Table3(A),(B) are the cross 
sectional areas of members, the plastic moments of members, the structural weight, the first mode period 
and the number of iterations of SLP, respectively.  The initial section areas for column members are 200 
cm2, and those of beam members are 100 cm2 in these examples.  It is confirmed that this SLP algorithm 
provides good convergence within 20 iterations. Table 4 shows the solutions for frame I-C obtained from 
20 initial design points based on random numbers.  It is observed that there are few differences among 
these solutions except for one solution. 
 

TIME HISTORY ANALYSISES 
 

  The time history analyses of minimum weight frames obtained by the prescribed optimization 
algorithm are performed. Input earthquake motions are 10 different artificial acceleration records 
compatible with the prescribed seismic design spectrum shown in Eqs.(1),(2),(3). These earthquake 
records are non-stationary waves based on the envelope curve given by the following equations according 
to Jennings model. 
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where t is the time, E(t) is the envelope function, Tb=3.8(sec.),Tc=19.4(sec.),Td=40.96(sec.), a =0.11. 
One of these acceleration records is shown in Fig.2.  The time history analysis program [11] uses 
Newmark-Beta method (Beta=1/4) for the time integration. The time interval for numerical integration is 
0.005 second. The plastic stiffness matrix is generated by generalized plastic hinge theory considering 
Prager’s strain hardening rule. It is assumed that the stress-strain relationship is bilinear and the post-
yielding stiffness is 0.01E. This analysis uses the damping matrix proportional to the stiffness matrix.  
     The cumulative damages shown in Fig.3(A),(B) are the ratios of cumulative rotations of plastic hinges 
to the elastic limits of member-ends rotations. The response values are averages for prescribed 10 
earthquakes. It is confirmed from Fig.3(A),(B) that cumulative damages are quite small at column-ends 
except for the bottom of the first story columns.  These results show that Eqs.(6) function well not only 
under static loadings but also under seismic loadings.  It is also confirmed that cumulative damages for 
frames I-B,I-C,I-D,II-B,II-C and II-D with constraints(7),(9) are approximately equal in each story 
although those for frames I-A,II-A without constraints(7),(9) vary greatly in each story.  These results 
show that Eqs.(7) and (9) equalize the earthquake damages in each story.  It is also confirmed that 
cumulative damages for frames I-B,I-C,I-D,II-B,II-C and II-D are close to the limiting value 0η . 
 

CONCLUSIONS 
 

Minimum weight aseismic design of steel frames considering the collapse mechanism and cumulative 
damage constraints has been presented. The optimum solutions considering three constraints on the 
collapse mechanism and cumulative damage constraints have been obtained by the SLP method. It has 
been confirmed that the optimization algorithm based on the SLP method provides good convergence. It 
has been confirmed from the time history analysis of optimum frames that three constraints presented in 
this paper function well not only under static loadings but also under seismic loadings.  
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Fig.1(A) Frame I Fig.1(B) Frame II 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 I-A I-B I-C I-D 
 A Mp A Mp A Mp A Mp 

C1 432.4 2759.7 478.2 3210.5 252.8 1233.8 207.2 915.7 
C2 375.8 2236.4 378.9 2264.8 207.5 917.7 189.5 800.9 
B1 264.7 2483.3 252.2 2309.9 127.2 827.7 100.2 578.4 
B2 256.9 2375.5 257.4 2381.4 131.7 871.5 105.1 621.5 
B3 207.7 1725.8 224.6 1941.4 113.7 698.8 88.7 481.9 
B4 210.7 1763.0 189.2 1500.4 86.1 460.6 75.5 378.4 
B5 75.5 378.4 75.5 378.3 75.5 378.4 75.5 378.4 
Unit cm2 kNm cm2 kNm cm2 kNm cm2 kNm 
W(t) 40.3 41.2 22.0 19.0 

T1(sec.) 0.651 0.638 1.201 1.453 
NL 15 13 13 13 

 
 
 

 II-A II-B II-C II-D 
 A Mp A Mp A Mp A Mp 
    C1 467.1 3098.8 537.2 3822.0 325.9 1806.1 278.6 1427.9 
    C2 436.9 2803.8 442.0 2852.8 267.6 1343.6 224.8 1034.9 
    C3 329.8 1839.5 325.4 1802.2 217.0 982.0 219.4 997.6 

B1 275.9 2643.1 248.8 2263.8 126.6 821.0 80.6 416.9 
B2 273.9 2614.6 281.3 2720.5 157.1 1135.8 128.3 837.9 
B3 251.4 2299.1 261.4 2437.3 143.9 995.7 107.2 639.9 
B4 267.2 2519.6 237.8 2114.8 130.6 860.4 102.2 595.9 
B5 195.4 1574.9 215.0 1817.9 118.8 746.7 89.0 483.8 
B6 172.4 1305.4 194.7 1567.0 104.8 619.0 75.7 380.0 
B7 172.3 1304.4 148.1 1039.8 75.7 380.0 75.7 380.0 
B8 75.7 380.0 75.5 378.2 75.7 380.0 75.7 380.0 
Unit cm2 kNm cm2 kNm cm2 kNm cm2 kNm 
W(t) 107.3 110.7 64.8 54.0 

T1(sec.) 1.076 1.051 1.833 2.304 
NL 18 16 15 19 

 
 
 

ZPα (box column)          0.949  

ZPα  (H-beam)               1.783  

Iα  (box column)           1.076 

Iα  (H-beam)                 3.648 

Yield Strength Fy           323(N/mm2) 
Young’s Modulus E       205800(N/mm2) 

0η                                  3.0,6.0,9.0 

 

Table1 Design constants 

 story,bay 0η  contraints 

I-A 5-story 3-bay 3.0 Eqs.(6),(12) 
I-B 5-story 3-bay 3.0 Eqs.(6),(7),(9),(12) 
I-C 5-story 3-bay 6.0 Eqs.(6),(7),(9),(12) 
I-D 5-story 3-bay 9.0 Eqs.(6),(7),(9),(12) 
II-A 8-story 5-bay 3.0 Eqs.(6),(12) 
II-B 8-story 5-bay 3.0 Eqs.(6),(7),(9),(12) 
II-C 8-story 5-bay 6.0 Eqs.(6),(7),(9),(12) 
II-D 8-story 5-bay 9.0 Eqs.(6),(7),(9),(12) 

 

Table2 Design conditions 

Table3(A) Optimum solutions (Frame I) 

Table3(B) Optimum solutions (Frame II) 
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Fig.3(A) Cumulative damage(Frame I) Fig.3(B) Cumulative damage(Frame II) 

I-A column 
I-A beam 
I-B column 
I-B beam 
I-C column 
I-C beam 
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Story 

II-A column 
II-A beam 
II-B column 
II-B beam 
II-C column 
II-C beam 
II-D column 
II-D beam 

Table 4 Solutions from 20 initial design points based on random numbers(Frame I-C) 
No. Weight C1 C2 B1 B2 B3 B4 B5 
1     22.019 252.781 207.508 127.228 131.678 113.653  86.071 75.498 
2     22.019 252.781 207.508 127.228 131.678 113.653  86.071 75.498 
3     22.019 252.781 207.508 127.228 131.678 113.653  86.070 75.498 
4     22.019 252.782 207.509 127.228 131.678 113.653  86.070 75.498 
5     22.019 252.781 207.506 127.227 131.677 113.653  86.072 75.498 
6     22.019 252.781 207.507 127.228 131.677 113.653  86.071 75.498 
7     22.019 252.780 207.505 127.227 131.676 113.653  86.074 75.498 
8     22.019 252.782 207.509 127.228 131.678 113.653  86.070 75.498 
9     49.260 640.231 640.231 115.951 282.899  75.537 207.091 75.537 
10     22.017 252.744 207.457 127.206 131.658 113.654  86.126 75.498 
11     22.019 252.780 207.505 127.227 131.676 113.653  86.074 75.498 
12     22.019 252.781 207.507 127.228 131.677 113.653  86.072 75.498 
13     22.019 252.781 207.508 127.228 131.678 113.653  86.071 75.498 
14     22.019 252.781 207.508 127.228 131.678 113.653  86.071 75.498 
15     22.019 252.781 207.508 127.228 131.678 113.653  86.071 75.498 
16     22.019 252.782 207.509 127.228 131.678 113.653  86.070 75.498 
17     22.019 252.784 207.512 127.229 131.679 113.654  86.067 75.498 
18     22.019 252.781 207.508 127.228 131.677 113.653  86.071 75.498 
19     22.019 252.781 207.508 127.228 131.678 113.653  86.070 75.498 
20     22.019 252.781 207.508 127.228 131.678 113.653  86.071 75.498 
unit t cm2 cm2 cm2 cm2 cm2 cm2 cm2 

 

Fig.2 One of the artificial earthquake acceleration records 
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