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SUMMARY 
 
Reinforced concrete R/C stack-like structures such as chimneys are often analyzed using elastic analyses 
as fixed base cantilever beams ignoring the effect of soil-structure interaction. To investigate the effect of 
foundation flexibility on the response of structures deforming into their inelastic range, a method is 
presented to quantify the inelastic seismic response of flexible-supported R/C stack-like structures by non-
linear earthquake analysis. The deformed configuration of stack-like structure is idealized as an 
assemblage of beam elements, while a linear sway-rocking model is implemented to model the supporting 
soil. The effect of concrete cracking and reinforcement yielding on the stiffness is taken into account using 
a non-linear moment-curvature (M-φ ) relation. Using a practical stack-like structure and an actual ground 
motion as excitation, the elastic and inelastic response of structure supporting on flexible soil are 
calculated and compared. It is shown that indiscriminate use of presently popular ductility capacity factors 
may lead to erroneous conclusions in the predictions seismic performance of flexibly-supported chimneys.  
 

INTRODUCTION 
 
Foundation flexibility is recognized to have a significant effect on the dynamic behavior of the structures. 
Many researchers have taken into account the effect of soil-structure interaction on the dynamic behavior 
of structures where the structure exhibits linear behavior. However, in the structural dynamics field, a few 
researches have been conducted to investigate the effect of foundation flexibility on the response of 
structures such as R/C buildings deforming into their inelastic range. Darbre [1] performed the seismic 
analysis of a non-linearly base-isolated reactor building. In this study, the influence of the frequency 
dependence of the foundation stiffness coefficients on the nonlinear seismic response of the base-isolated 
reactor building was found to be negligible for all practical purposes. The applications of this study were 
limited to the seismic soil-structure interaction systems with a single nonlinearity. To address the 
limitation of this study, Darbre [2] examined the effect of dynamic SSI on the seismic behaviour of a 6-
storey shear building with hysteretic elasto-plastic storey characteristics at each floor to extend the area of 
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application of nonlinear SSI, so as to encompass dynamic soil-structure interacting systems with multiple 
nonlinearities. These studies and the results of the other analyses by Miranda & Bertero [3] and Priestley 
and Park [4] showed that the additional flexibility of an elastoplastic structure due to the foundation 
compliance may decrease or increase the ductility capacity of the system that in the former case would be 
an apparently detrimental consequence of SSI. 
Lack of research on ductile behavior of flexible-base reinforced concrete stack-like structures, such as 
towers and chimneys, and on the collapse threshold for such structures subjected to strong motions, 
precludes reliable evaluation of their actual seismic resistance. The objective of the present study is to 
investigate the seismic response of R/C stack-like structures interacting with the supporting soil where the 
structure exhibits nonlinear behavior. The study is highlighting the effect of foundation flexibility on the 
seismic linear and non-linear behavior of these types of structures, which is addressed in the design codes. 
In the current study, a shear beam moment-curvature relation in MDOF structures has been considered in 
the analysis of the seismic response of chimneys interacting with the soil. The effects of changes in the 
stiffness of concrete members due to cracking and yielding, as well as the foundation flexibility for a 
practical stack-like structure are examined. As a stack-like structure, an existing model of chimney is used 
to illustrate the SSI and cracking effects in reducing or increasing the response to earthquake loading. 
 

SYSTEM MODEL AND EQUATIONS MOTION 
 
The system considered in this study consists of a tapered reinforced concrete chimney with hollow circular 
cross-section supporting on flexible soil. In practice, the response of stack-like structures is commonly 
analyzed using the stick modeling concept. In the lumped mass (stick) model, the structure investigated is 
idealized as an assemblage of sufficiently large number of beam elements and the mass of the system is 
considered to be concentrated at the different levels as shown in Fig. 1.  The centroidal axis of beam 
elements has been selected as reference axis in the finite element formulation as described below. The 
base chimney is assumed to be rigid circular disc footing with no embedment attached to the surface of 
linearly elastic halfspace. To account for SSI, the substructure system could be represented by a sway-
rocking foundation system with mass and mass moment of inertia equal to m0 and I0, respectively. This 
representation leads to a system of n+2 DOF’s (n=the number of lumped masses of the superstructure): 
one horizontal translation (relative to the foundation) for each mass, xi, where i=1,….,n; the horizontal 
translation of the foundation, x0, and the rotation of the system, θ . Assuming small displacements, the 
equations of motion for the structure-foundation model illustrated in Fig. 1 can be expressed as  
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where gx&&  is the free field ground motion, RRRHHRHH kkkk ,,,  are stiffness coefficients of the foundation 

and RRRHHRHH cccc ,,,  are its damping coefficients. Equation 1 describes the dynamic equilibrium of the 
horizontal forces acting on the structural masses, whereas Eqs.2 and 3 express the equilibrium for the 
whole structure-foundation system in translation and rotation, respectively. In a matrix format Eqs.1 to 3 
can be further written as   
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Figure 1. Typical reinforced concrete stack-like structure:  a) chimney b)structural model 
 
in which:  
{I} is the unit vector and: 
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and the displacement vector { } [ ]Tn xxxxX θ021 ....... M=  is the vector of structural and foundation 
displacements relative to foundation. In Eqs.5 [m] is a diagonal mass matrix listing lumped masses mi at 
each foundation-to-mass heights, hi, [k] is the stiffness matrix and [c] is the viscous damping matrix of the 

superstructure; and { } { } { } { }nn
T

n hmhmhmmhmmmm .........;........ 221121 == . 
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 is the total moment of inertia of the structure and foundation with respect to the 

central axis of the foundation.                  
The determination of proper values for the dynamic stiffness and damping of the foundation plays an 
important role in obtaining an accurate seismic response of the structures. The variation of these values 
with dynamic soil properties is usually remarkable and consequently their effect on the superstructure 
behavior is important. The foundation impedance functions can be obtained from the analytical and 
numerical approaches of the solution of mixed boundary-value problem in elastodynamics and are 
generally functions of soil properties, foundation type and size, and exciting frequency. For linear footing-
soil systems with two planes of symmetry, the foundation vibration problem uncouples into two SDOF 
problems for vertical and torsional motions and a two DOF problem for swaying and rocking and steady-
state harmonic vibration at frequency ω the interaction forces acting on the footing can be expressed as  
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where z0, x0 are the complex amplitudes of vertical and horizontal displacements, respectively and θ, φ are 
the rocking and torsional rotation amplitudes. V, H, M, T are the corresponding vertical and horizontal 
force, moment and torque amplitudes with which the footing acts on the ground. A number of analytical 
and numerical approaches are available to calculate the impedance functions for both shallow and deep 
foundation systems that are mostly based on the assumption of elastic or viscoelastic soil continuum. For a 
circular foundation on the surface of a viscoelastic halfspace, the frequency-dependent impedance 
functions as complex values have been tabulated by Veletsos and Wei [5], Verbic and Veletsos [6] and 
Veletsos and Verbic [7]. These complex stiffness functions can be expressed as  
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in which ssk  and ssc are dimensionless coefficients depending on poisson,s ratio ν and the dimensionless  

frequency parameter a0=ω r/Vs , where r is the radius of the footing, and Vs is the shear wave velocity in 

the halfspace. The parameters of VVK , HHK , RRK , TTK  are the static stiffnesses corresponding to 
vertical, horizontal displacements and rocking , torsional rotations, respectively.  
Frequency-dependent foundation impedance functions may be used. But for the horizontal and rocking 
response of shear building-foundation-soil systems, the frequency dependence of foundation compliance 
is not profound. This may be due to the fact that the first mode frequencies of most fixed-base buildings 
are often fairly low. In the lower frequency range, the foundation impedances are less frequency 
dependent than in a much higher frequency range. Thus the frequency-dependent nature of the foundation 
compliance in this case can usually be accounted for by evaluating the foundation compliance at the 
fundamental frequency of the SS system (Wolf [8]; Zhao [9], Darbre [1], [2]). The higher modes of the 
fixed-base building would be influenced by the frequency dependence of foundation compliance, but their 
contributions to the total response of the SS system are small because of their small participation factors. 
Therefore, in this investigation the foundation stiffnesses were calculated at the frequency equal to the 
first fundamental frequency of the structure obtained from the analysis of the fixed base case. 
 

NONLINEAR MODELLING OF CONCRETE 
 
A concrete structure softens when deformed to somewhere near its limit state of resistance so that the 
forces created are considerably weaker than what would be expected for a more elastic system. This effect 
starts with the development of cracks in the portions of the structure, which are exposed to elongation in 
the tension steel and by cracking and spalling of concrete. During the earthquake damages in the 
reinforced concrete structures are occurred at localized levels which are deformed into non-linear zone in 
form of microcracking and crushing of concrete, yielding of the reinforcement bars, bond deterioration, 
etc. The moment-curvature relation method is one of the specialty approaches used to express the real 
behavior of concrete structures in the non-linear zone. This method could widely served all non-standard 
shapes of the cross-sections such as hollow circular sections for chimneys.  
Recalling the concepts of the rational method in analysis of concrete sections, the plane section theory can 
be used to predict the behavior of beam elements in combined axial load and flexure. The longitudinal 
concrete stresses are found from the longitudinal concrete strains by using the appropriate concrete stress-
strain relationship in compression. Thus for a particular axial load, the values of M can be calculated for 
different strain distributions, φ . Having the calculations for a range of values of φ  leads to the M-φ  
diagram for the specific section and the corresponding axial load (Response 2000 [10]). In a non-linear 
analysis the M-φ  relations can be simplified by different backbone curves such as bi-linear, tri-linear and 
etc. In the current study the M-φ  relations in monotonic loading (backbone curve) are taken tri-linear (Fig. 
2a), with a post-yield hardening ratios computed by Response-2000 [10]. The ultimate moment Mu is also 
computed on the basis of principles of limit state of resistance theory. 
Principally, the moment-curvature relation model is used in non-linear analysis of frame element models. 
Moment-curvature relation model can also consider distributed non-linearity as well. In this investigation 
as the gravity loads are constant at different level of stack-like structures, by specifying the relation of 
moment and curvature at critical sections, no interaction among bending and axial forces is taken into 
account. Therefore, the flexibility matrix at element-end sections can be expressed by: 
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where j
yyf  , j

xxf  and j
of  are the flexibilities of the element at the corresponding element-end cross-

section related to two rotational degrees of freedom and one axial deformation, respectively. Assuming the 
linear-distributed flexibility then the element flexural flexibility matrix is expressed as 
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in which i and j represents the element cross-sections. Having this assumption that there is no interaction 
between axial force as well as shear forces and biaxial bending moments, the uniaxial models can be used 
to simulate the inelastic behavior of uniaxial bending deformations. All essential characteristics of the 
hysteretic behavior of reinforced concrete members including stiffness degradation, pinching and strength 
deterioration, are explicitly taken into account. The cyclic unloading-reloading relation is assumed to be 
degrading tri-linear, as shown in Fig. 3b. The element was implemented in the non-linear finite element 
program CANNY [11]. The hysteretic rules are shown in Fig. 3b and can be found in detailed in Ref. [11].  
 

 
 

a)                                                                        b) 
 
Figure 2. Non-linear behavior of R/C structural elements:  a) backbone curve b) Hysteretic loop 
 
 

NON-LINEAR EARTHQUAKE ANALYSIS 
 

For non-linear analysis, the beam element can be idealized by elastoplastic uniaxial spring, two rotational 
spring at each end of element and shear and axial springs located in mid span. The properties of rotational 
spring and the axial torsional spring are described by the moment-rotation relationship, while the shear 
and axial spring are specified by the force-displacement relation. A numerical integration procedure 
known as  Newmark’ β method implemented in CANNY program is used to solve the equations of 
motion. In the this method, the linearized equations of motions (Eq. 4) at the end of each time step is 
solved for incremental displacements, velocities and accelerations by direct time integration using 

 
 



Newmark’s average acceleration scheme with β =0.25 and γ =0.5 (The parameters β and γ define the 
variation of acceleration over a time step (Chopra [12]). To satisfy the equilibrium at each time step, the 
iterations are performed using the Newton-Raphson scheme within each time step. The time increment is 
assumed 0.002 sec. The Rayliegh’s damping is used to model the structural damping and having taken 
into account the other type of damping such as soil dapmers the total damping including non-classical 
damping is expressed by:   

 
                                                    [ ] [ ] [ ] [ ] [ ]vkm CKaKaMaC +++= 00                                            (10) 

                    
The coefficients ma , 0a and ka are damping factor proportional to mass matrix, initial stiffness and time-
varying stiffness matrix computed from first two modes. [Cv] is also damping matrix contributed by 
damping elements resulted from soil impedance functions which includes soil radiation damping and soil 
material damping as well. Geometrical non-linearity is not taken into account. Therefore, the analysis is 
limited to small deformations. Masses that cause inertia loads is considered to be concentrated at 
structural joints.  
 

NUMERICAL EXAMPLE 
 
As an illustrative example of stack-like structures, a chimney located in west of Iran, whose geometrical 
and geological data were made available to the authors, is used in this investigation. The chimney is 194 
m height with varying hollow circular sections along the height. It has a flexible shallow foundation with 
29 m diameter. For the purpose of the analysis, the soil is assumed to be homogenous viscoelastic 
halfspace. The shear wave velocity of the soil was assumed to be 200 m/sec in the analysis to represent the 
supporting soil. The other material properties of the supporting soil are: mass density = 1850 kg/m3, 
Poisson’s ratio = 1/3. The E-W component of the 1940 El-Centro earthquake ground motion is selected as 
the excitation. The maximum amplitude of this ground motion is 0.2 g. 
To calculate the moment-curvature relationships the stack cross sections are assumed to have two rings of 
longitudinal reinforcements and cages of circumferential reinforcement placed near both the internal and 
external faces of the section (Fig. 3). It is assumed that the bar sizes and spacing of circumferential bars 
are appropriate to prevent premature buckling of the longitudinal reinforcement and to provide sufficient 
shear strength so that the crushing of concrete due to stresses rising from axial and bending loads could be 
cause of the collapse of the stack. The axial forces induced into the chimneys’s cross-sections are assumed   

                                             
                                        Figure 3. Typical cross section of chimney 
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to be mainly gravitational loads, as the variation in the axial force level at a section due to horizontal 
ground excitation is usually small.  Using Response-2000, the moment-curvature for all different sections 
of the stack are obtained. Figure 4 shows M-ϕ  diagrams for several cross-sections of the stack. It can be 
seen quite clearly that the flexural stiffness of the sections manifested by the slope of the M-ϕ  curve stays 
virtually unchanged for a certain range of bending, due to the action of axial compression, only to 
dramatically drop to a fraction of its base value when bending moments exceed the values necessary to 
cause cracking of concrete.   
 

 
                     a) Base cross section                                                     b) Cross section at El. 40 m 
 

 
                      
                    c) Cross section at El. 110 m                                        d) Cross section at El. 135 m 
 

Figure 4. Moment-curvature relation for different cross sections 
 
The seismic response of the chimney is determined assuming supporting soil behaves linearly and also 
structure itself experiences inelastic deformation during the excitation. The displacement time history at 
the top of the chimney is shown in Fig. 5. Response time histories for the fixed base and the flexible base 
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chimney, assuming elastic and inelastic behavior of the structure, have also been plotted. It can be noted 
from Fig. 5 that the non-linear behavior of structure resulted in an increase in the top displacement of the 
chimney and also changed the frequency content of the response.       

 
Figure 5.  Top displacement time histories 

 
 
Fig. 6 shows the base shear time histories of the chimney for the fixed base and the flexible base cases, 
assuming linear and nonlinear behavior of the structure. Fig. 6 shows that, in general, the foundation 
flexibility decreases the base shear induced at the base of the tower.  However, the SSI alters the 
frequency content of the base shear time history when the structure deformed into inelastic zone. The 
calculated time histories of the base bending moment of the chimney for the fixed-base and the flexible 
base models, assuming linear and non-linear behavior of the structure are also shown in Fig. 7. It can be 
noted from Fig. 7 that, in general foundation flexibility decreases the bending moment induced at the base 
of the structure. It can also be noted that the base bending moment for the case that the structure behaves 
non-linearly is different than for the linear case. These results indicate the importance of the foundation 
flexibility on non-linear seismic behavior of the stack-like structures.  
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Figure 6.  Base shear force time histories 

 
Figure 7.  Base bending moment time histories 
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CONCLUSIONS 

 
To gain further insight on the importance of SSI on the performance of the stack-like systems an analytical 
method is presented. The inelastic seismic resistance of reinforced concrete stack-like structures 
supporting on flexible soils by non-linear seismic analyses is evaluated. The seismic response of a 
practical chimney as an example of R/C stack-like chimney subjected to an earthquake excitation is 
calculated including soil- the linear and nonlinear structure interaction using the proposed method in this 
study. The following conclusions are drawn: 
- The inelastic behavior of structure caused an increase in the lateral displacements of the structure. 

Therefore, this increase should be considered in the analysis of this type of structures, especially 
when the P-∆ effect is taken into account.  

- The inelastic behavior of structure altered the base bending moment as well as base shear compared 
to that obtained from the linear structure fixed-base and also non-linear structure fixed base models. 
This shows that the soil-structure interaction when considered in the real case, could reduce or 
increase the base forces as it is implied in most design codes. 
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