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SUMMARY 
 
This paper proposes a hybrid controller-design technique, which consists of designing optimal controllers 
and a fuzzy tuner. For an improved seismic performance of the vibration control system, the tuner 
modulates the pre-designed static gain at every moment according to the contribution of the modal 
responses to the structural response. Numerical results for a six-floor building structure show the validity 
and effectiveness of the proposed independent modal space fuzzy control (IMSFC) method. 
 
 

INTRODUCTION 
 
Civil structures are susceptible to the exposure to excessive levels of vibration caused by strong winds or 
earthquakes. Especially, when large structures such as high-rise buildings and towers are subjected to this 
kind of earthquake excitation, their seismic responses mainly depend on a few lower structural modes. On 
the other hand, earthquake load includes different frequency contents that can be considered as wide-band 
and usually covers the structural dominant frequencies, which means that the seismic response varies with 
the frequency content of the earthquake load. The adaptability of conventional fixed gain approach may be 
insufficient to consider diversity or uncertainty of an earthquake load. Occasionally, desired performance 
could not be achieved. For earthquake-excited structures, an appropriate time-varying controller makes it 
possible to achieve optimum efficiency even though operating conditions could change with various 
earthquakes.  
To effectively address this vibration control problem, an independent modal-space fuzzy control method is 
presented in this paper. For the active control of earthquake-excited structures, even though a structure has 
a large number of vibration modes, control performance can be efficiently achieved by controlling selected 
critical modes. Control algorithms based on modal synthesis [1], also known as modal space control, can 
be effectively used when only a few critical modes need to be controlled. In the proposed approach, each 
modal controller for a selected mode is separately designed first. Fuzzy logic [2-4] is then introduced to 
appropriately tune the pre-designed modal feedback gains according to the various operating conditions. 
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Unlike conventional fuzzy control [5], control forces are not directly determined by fuzzy logic. Instead, 
modal control gains are modified by a fuzzy tuning process. This can simplify the construction of a fuzzy 
rule table and avoid the need to fine adjustments of the corresponding membership functions. It also 
alleviates the shortcomings of the conventional fuzzy logic controller, in which the characteristics cannot 
be pre-specified. A fuzzy tuner reassigns the most effective gain at every moment by converting simply 
designed static gain into a real-time variable dynamic gain via a fuzzy inference mechanism.  
In this paper, example designs and numerical simulations were performed with a six-story building to 
prove the validity of the proposed control method. For the numerical simulations, historically recorded 
ground accelerations, i.e., the El Centro (1940) and Kobe (1995) earthquakes were considered as external 
disturbances. Finally, comparative results and discussions of other control methods are also presented. 
 
 

SYSTEM MODELING 
 
The equation of motion for a building structure with n-degrees of freedom subject to earthquake ground 
acceleration ( )gx t&&  and control forces ( )tu  can be expressed as,  

        ( ) ( ) ( ) ( ) [ ] ( )1 gt t t t x t+ + = −Mz Cz Kz E u M 1&& & &&      (1) 

where, ( ) [ ]T

1 2,  ,  ,  nt z z z=z L  is a displacement vector of order n relative to the ground motion, 

( ) T

1 2,  ,  ,  
cnt u u u⎡ ⎤= ⎣ ⎦u L  is a control force vector of nc actuators and ( )gx t&&  is a ground acceleration. M, 

C and K are n×n mass, damping and stiffness matrices of the building, respectively. E1 represents an n×nc 

matrix denoting the location of actuators and [ ] [ ]T
1 1 1=1 L  has n×1 dimension. 

When the state space variable ( ) T T T[ ( ) ( ) ]t t t=x z z& , Eq. (1) can be transformed into the standard state 

space equation as follows, 

( ) ( ) ( ) ( )u w gt t t x t= + +x Ax B u B& &&            (2) 

where, A is a 2n×2n system matrix, Bu is a 2n×nc control matrix and Bw is a 2n×1 disturbance matrix. 
They can be expressed as follows: 
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Considering state feedback, the control force vector ( )tu  becomes 

( ) ( ) [ ] TT T( ) ( )z zt t t t⎡ ⎤= − = − ⋅ ⎣ ⎦u Gx G G z z
&

&           (4) 

where, G is the feedback gain matrix and zG  and zG
&

 are the displacement and velocity parts of G, 
respectively. 
To obtain the state space equation in the modal space, we assume the coordinate transformation as 

=z Φq            (5) 

where [ ]T
1 2, , . nq q q=q L  is a modal displacement vector, Φ  is an n×n eigenvector matrix of the system, 

which satisfies the following relations 
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where iω  and iζ  are the natural frequency and the modal damping ratio of the i-th mode, respectively. 
By using Eqs. (1), (5) and (6), we obtain 
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1m gx+ + = −q C q Ω q Φ E u Φ M 1&& & &&              (7) 



When the modal state vector 
TT T⎡ ⎤= ⎣ ⎦y q q&  and the modal control force vector ( ) ( )T

1m t t=u Φ E u  are 

introduced, Eq. (7) can be transformed into the state space equation in modal space as follows. 
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DESIGN OF CONTROL SYSTEM IN MODAL SPACE 
 
For control algorithms based on a modal synthesis [1], a control system can be designed in the reduced 
modal space. Considering that Eq. (8) is a set of n decoupled modal state equations, and adopting only nmc 

( )mcn n<  modal equations from Eq. (8), we can obtain nmc independent state space equations as in the 

following form. 

i mi i mi miu= +y A y B&                 (9) 

where, iy , miA  and miB  are 2×1 state vector, 2×2 system matrix and 2×1 control matrix of the i-th mode 
selected for control, respectively. They are expressed as 
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Let Gmi denote the 1×2 i-th modal control gain matrix, the i-th modal control force can then be rewritten as 
Eq. (11) considering feedback control law. 
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The modal control gain Gmi can be determined by using LQR control theory [6]. In this study, the modal 
control gain was obtained by minimizing a quadratic modal performance index Ji of the form 

{ }  
T T

  0
i i i i mi i miJ u R u

∞
= +∫ y Q y                 (12) 

where, Qi and Ri are weighting matrices for the i-th modal state vector and the modal control force, 
respectively. The i-th modal control gain Gmi can then be determined as, 

1 T
mi i mi iR−=G B P        (13) 

where Pi is 2×2 semi-positive definite matrix obtained from Riccati equation [7] taking the form of 
T 1 T
mi i i mi i mi i mi i iR−+ − + =A P P A P B B P Q 0              (14) 

By substituting a solution of Eq. (14) into Eq. (13), the modal control gains are obtained as 
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From Eq. (16), determination of Ri leads to the corresponding modal control gain. 
If the first nmc modes are selected, the modal control gain matrix Gm and mu  can be expressed as  
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mcΦ  is an n×nmc matrix of the selected nmc eigenvectors. 

By substituting Eq. (4) into Eq. (18) the modal gain matrix Gm can be expressed as follows, 
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where, T
1mc=L Φ E  is a modal participation matrix and 
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, respectively. 

Note that the dimension of the modal participation matrix L is nmc×nc, where nmc is the number of 
controlled modes and nc the number of controllers. If nmc≠ nc, the inverse of L does not exist but the 
physical gain matrix G can be approximated as follows by performing a pseudo-inverse of L. 
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DESIGN OF FUZZY TUNER 
 
The next stage of IMSFC is to obtain a fuzzy tuner, which identifies the current behavior of the structural 
system from measured responses and determines the way to modify the pre-designed controllers. Once the 
fuzzy tuner is obtained, it continuously modulates the modal gains in real-time in order to enhance the 
control performance. In the proposed approach, the modified modal control forces or fuzzy-tuned modal 

control force, tuned
miu , is defined by Eq. (21) by introducing ( )i tα , the i-th modal gain’s contribution factor, 

which is a positive real number and varies with time. 

      ( ) ( ) ( ) ( ) ( )tuned
mi i mi i mi iu t t u t t tα α= = − G y               (21) 

As shown in Figure 1, a fuzzy tuner is composed of four elements, i.e., fuzzification, an inference 
mechanism, a rule-base and defuzzification. The fuzzy tuning mechanism including determination process 
of the contribution factor iα  is described later in this chapter. 
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Figure 1. Fuzzy operation procedure 

 
In the fuzzification or defuzzification process, an interface of some form is required to relate the infinite 
number of crisp values to the finite number of linguistic values or fuzzy variables. This is accomplished 
by membership functions. The input membership function converts modal responses into fuzzy numbers 
so that the inference mechanism can easily exploit them to activate and to apply pre-assigned rules. In 
addition, the output membership function converts the conclusions of the inference mechanism into the 
contribution factor which is the actual input into the control system. Membership functions are specified 
in a heuristic manner, based on the designer’s experience or intuition, and as a result, it is possible to 
obtain wider choices for the shape of the membership function. In this paper, triangular input and output 
membership functions were used, as shown in Figures 2 and 3, respectively. The set of linguistic values 
defined over the universe of discourse is listed as follows:   

Set of Input Linguistic Values; orq q
Ω Ω =

%
%

&

{NL, NS, Zero, PS, PL}  

Set of Output Linguistic Values; αΩ =
%

{VS, S, M, L, VL}    
where N(negative), P(positive), S(small), M(medium), L(large), V(very) and Zero are used as 
abbreviations to represent each qualitative meaning. The universe of discourse of each input membership 



function is defined according to the level of modal response, and that of the output membership function 
is chosen to maintain a reasonable operation. 
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Figure 2. Input membership function      Figure 3. Output membership function 

 
The fuzzification module quantifies the modal responses to the fuzzy numbers with membership functions 
as follows 
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where, ,q q&  are modal displacement and velocity, and ( ) ( ),i i
q qq qµ µ

&

&  are i-th input membership 

functions, min max min max,i i i iq q q q⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦& & are ranges in which the i-th membership functions are defined. 

The rule base module is constructed by specifying a set of ‘If-Then’ statements that captures the expert’s 
knowledge of the way to modify the contribution factor. In this study, we consider a linguistic rule with 
the following form. 
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where ,  i iq q%% &  are the input fuzzy variables corresponding the modal displacement and velocity, iα%  the 

output fuzzy variable for the contribution factor, and 
i
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 the linguistic values of the 

respective fuzzy variables, respectively. As an example, when 
i
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qΩ
%

= “PL,” 
i
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q

Ω
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&

= “PL” and 
i

j
αΩ
%

= “VL,” 

the If-Then statement represents a rule as: 
If modal displacement is positive large and modal velocity is positive large then the contribution factor 
is very large. 
The tabular representation of one possible set of rules is shown in Table 1, although we can establish 
some of valid and reasonable rule bases considering system dynamics. 
 

Table 1. Fuzzy rule table 
q%  

α%  
NL NS Zero PS PL 

NL VL L M L VL 
NS L M S M L 

Zero M S VS S M 
PS L M S M L 

q%& 

PL VL L M L VL 
 
The inference mechanism determines the extent to which each rule is relevant to the current situation 
characterized by the fuzzy input variables, and it draws conclusions using the current inputs and the 
information in the rule-base. The current situation means the structural response that varies with the 



earthquake load. Therefore, the conclusions drawn by fuzzy inference reflect the diversity and uncertainty 
of earthquake loads. The conclusion implied by the rule, that is, the aggregation of the implied fuzzy sets 
are defined by the min method and the aggregation of the implied fuzzy sets is combined by means of the 
max method. 
Defuzzification operates on the implied fuzzy sets produced by the inference mechanism and combines 
their effects in order to tune the modal gains. In this study, we adopted the “center of gravity” (COG) 
defuzzification method for combining the recommendations represented by the implied fuzzy sets from all 

the rules. For example, let ( )j
ib  denote the center of the output membership function of the consequent of 

j-th rule for i-th modal responses and NR denote the number of rules applied to the given input. Then, the 
COG method computes iα  to be 

             ( ) ( )( ) ( )( )1 1

R RN Nj j j
i i i ij j

bα µ µ
= =

= ∑ ∑∫ ∫          (23) 

The schematic organization of the IMSFC is shown in Figure 4. The state vector is transformed into modal 
responses that can be used to generate appropriate feedback control forces through the fuzzy tuner. From 
the aforementioned feedback control law, control forces transmitted to the structure can be calculated by 
inserting iα  of Eq. (23) into Eq. (21). 
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Then, by replacing miu  in Eq. (9) with tuned
miu  and considering earthquake excitation, the state space 

equation in the modal space for a fuzzy tuned time-varying modal control system can be written as, 
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where, iφ  is an n×1 i-th mode vector.  
Accordingly, the state space equation in physical coordinate can be also expressed as, 

( ) ( )( ) ( ) ( )1 1
u m w gt t t x t+ −⎡ ⎤= − +⎣ ⎦x A B L α G Ψ x B& &&           (26) 

where, ( ) ( )1 2diag ,  ,  ,  
mcnt α α α⎡ ⎤ =⎣ ⎦α L . 
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Figure 4. Schematic block diagram of IMSFC 

 



 
NUMERICAL EXAMPLES 

 
The control performance of the IMSFC was evaluated by comparing dynamic simulation results. Three 
types of controllers, i.e., a conventional LQR, a modal control without fuzzy tuning and the proposed 
method were considered for the purpose of comparison. As an example for illustrating the proposed 
method, a six-story building with an active tendon control system as shown in Figure 5 is considered. 
Each floor has the same mass of 34,560 kg and a stiffness of 12,000 kN/m respectively. The damping 
ratios and natural frequencies of the first three modes are 1.0%, 3.0%, 4.7% and 0.7Hz, 2.1Hz, 3.4Hz, 
respectively.  
In order to evaluate the proposed control strategy for various earthquakes which have distinct frequency 
contents and magnitudes, one far-field and one near-field historical records were selected as input 
excitations: (i) El Centro. The N-S component recorded at the Imperial Valley Irrigation District 
substation in El Centro, California, during the Imperial Valley, California earthquake of May 18, 1940. (ii) 
Kobe. The N-S component recorded at the Kobe JMA station during the Hyogo-ken Nanbu earthquake of 
January 17, 1995. The peak acceleration of the earthquake records are 3.42m/sec2, 8.18m/sec2, 
respectively. 
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Figure 5. A six-story example building 

 
The first step of the proposed approach is to design a control system in modal space. In the design of the 
modal controller, the first three modes were selected for the control in this example. The weighting 
parameters for the 1st, 2nd and 3rd modal control force, i.e., R1, R2 and R3 were chosen using Eq. (27) by 
considering the acceptable maximum force levels of the actuators, 

1 2 30.10,   0.05,   0.05R R R= = =     (27) 
By substituting Ri in Eq. (27) into Eq. (16), we could obtain the modal control gains. 
Note that the weighting matrix Qi of the performance index in Eq. (12) was chosen so that it could weigh 
the modal energy of the i-th mode, 

2 2 2

1 2 3

4.5 0 13.2 0 21.2 0
,  ,  

0 1 0 1 0 1
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= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Q Q Q      (29) 

In order to obtain an appropriate fuzzy tuner, a rule surface that corresponds to the rule bases as presented 
in Table 1 was generated. This rule surface represents the relationship between the input modal responses 
and the output values α  for the fuzzy system. In this example, the input ranges for the modal 
displacement and the velocity have their saturation points at ±3.2, ±9.5 respectively, and the output value 



α  is within the ranges between 0.5 and 1.5 such that each modal gain can be increased or decreased from 
its original value by 50%. 
Numerical simulations were carried out for the example building subject to the two earthquakes. Figure 7 
shows the generation history of α  for each earthquake. For clarity, the first 16 seconds of α  are plotted. 
For the El Centro earthquake, amplification of the first modal gain can be seen to dominate during the 
control action, and the third modal gain is activated to a lesser extent. On the other hand, the second 
modal gain is mainly amplified while the first modal gain is relatively deactivated in the case of the Kobe 
earthquake.  
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Figure 7. Time histories of the contribution factor generated by fuzzy tuning process 
 
Simulation result of the top floor displacement is plotted in Figure 8. An effective reduction of the 
vibrations induced by the El Centro earthquake can be observed in the case of the proposed control 
method compared to the uncontrolled case. This suggests that the modal gains were successfully modified 
in real time according to the modal responses through the fuzzy gain tuner. In the simulation of controlled 
responses, performance degradation of the IMSFC due to spillover effects on residual modes is not 
observed. 
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Figure 8. Controlled and uncontrolled displacement responses of the top floor (El Centro case) 

 
Comparative Results 
To compare the performance of control systems, we also considered a conventional LQR method. The 
feedback gain matrix G in Eq. (4) is determined by minimizing a quadratic performance index 'J  of the 
form 

{ }T T

0
' ' '  J dt

∞
= +∫ x Q x u R u            (30) 



where, 'Q  and 'R  are the weighting matrix and are chosen as 12 12' ×=Q I , 14
6 6' 5 10−
×= × ×R I . Dynamic 

simulations for three controlled cases, i.e., (i) LQR, (ii) IMSC denoting independent modal space control 
without fuzzy tuning and (iii) the proposed IMSFC are performed and the simulation results are presented. 
Figure 9 (a) shows the maximum story drift and maximum acceleration response of each floor when the El 
Centro earthquake is used as input excitation. The 1st floor has the largest story drift and acceleration 
response for the three methods considered in this paper. The IMSC shows similar results with the LQR in 
the case of story drift of the 1~3rd floors, but the responses of the 4~6th floors are reduced substantially. On 
the other hand, the IMSFC reduces the displacement responses of all floors considerably. As a result, the 
maximum story drift for the 1st floor is seen to have decreased by 9.74% compared to the LQR and 8.71% 
compared to IMSC, and the story drift of the top floor are decreased by 21.87% and 8.39%, respectively. 
Though the IMSFC has larger acceleration responses for the 4th and 5th floors than those of IMSC, it 
maintains a lower level of acceleration response than the LQR. 
Figure 9 (b) shows the results when the Kobe earthquake is used, which shows a similar performance to 
that for the El Centro earthquake. The proposed method reduces the top story drift by 22.64% compared to 
the LQR and 11.03% to IMSC, and 3rd floor acceleration is reduced by 23.82% and 8.08%, respectively.  
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Figure 9. Maximum story drift and maximum acceleration response 
 
The control efficiency of the methods was also evaluated by investigating required control efforts, which 
are represented by the maximum instantaneous control force, the maximum instantaneous power and the 
total required power. The maximum instantaneous control force implies the maximum required control 
force during an earthquake. The maximum instantaneous power indicates the maximum required power to 
control the structure when the actuators are in operation. Therefore, the maximum instantaneous power 
can be estimated by taking the maximum value of summations of the instantaneous power required by 
each actuator at every time step. The total work done by actuators or required energy was calculated by 
summing the integrations of the instantaneous powers with time. These values are summarized in Table 2. 
By comparing the IMSFC and IMSC results, we can see that the difference is not large. Compared to 
LQR, however, IMSFC requires smaller control forces and power levels than the LQR for the two 
earthquake excitations. The maximum instantaneous control force, maximum instantaneous power and 
total energy of IMSFC appear to be saved by 7.09%, 15.42% and 6.82%, respectively, in the case of El 
Centro earthquake. We could also observe similar amount of savings are also achieved in Kobe case. 
Based on the foregoing results, we can conclude that the appropriate fuzzy tuning of existing modal 
controllers can enhance the control performance of vibration suppression and, thereby suggesting that the 
proposed IMSFC has improved seismic performance while maintaining smaller or comparable level of 
required control efforts. 
 
 
 
 



 
Table 2. Maximum instantaneous control force, maximum instantaneous power and total work  

 El Centro Kobe 
 LQR IMSC IMSFC 

 
LQR IMSC IMSFC 

Maximum instantaneous control force (kN) 302 282 280  927 850 855 
Maximum instantaneous power (kW) 114 100 96  1034 913 916 
Total work or required control energy (J×103) 135 123 126  809 735 736 

 
 

CONCLUSIONS 
 
An independent modal space fuzzy control method has been developed to improve the seismic 
performance of the active control system. The method is comprised of a fuzzy tuner and several fixed gain 
controllers obtained by a modal synthesis. The state space equation is transformed into modal coordinates, 
and modal feedback gains are obtained by applying the optimal control theory. For an improved seismic 
performance of the vibration control system, a rule-based fuzzy tuner is introduced. The tuner 
continuously tunes the modal gains by evaluating the current situation of the structure according to the 
modal responses. Dynamic simulation results of a six-story building subjected to the El Centro and Kobe 
earthquakes showed that improved seismic control performance can be achieved by the simple fuzzy 
tuning of existing modal control gains.  
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