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SUMMARY 
 
This paper presents the identification of a time invariant single degree of freedom linear system, acting as 
a shear building subjected to base excitation, using three different methodologies. One is the least squares 
method with two different algorithms. First, the off-line algorithm is used in order to make the system 
identification by means of a modal parameter estimation, and then the recursive algorithm is implemented 
for the observation of the parameter time variation during the excitation. The second and third methods 
are the off-line subspace system identification algorithm and the ERA-OKID identification algorithm, 
which allow to identify the system modal parameters. A comparison of the estimated response is made 
between the three methodologies and a better agreement could be observed with the off-line subspace 
system identification estimated response. However, the off-line subspace system identification algorithm 
and the ERA-OKID identification algorithm are not totally appropriate if a physical parameter estimation 
is required. On the other hand, by means of the least squares recursive algorithm it is possible to observe a 
sudden stiffness variation similar to a structural failure during the peak acceleration of the excitation. An 
example is presented for two earthquake excitations and the influence of the forgetting factor and the 
covariance matrix initial values for the recursive least squares method could be observed. 

 
INTRODUCTION 

 
Health monitoring of civil structures during seismic events is a field of research that has developed at 
recent years. The negative effects that strong motions produce in structures, such as buildings or bridges, 
is well known. For that reason, those kind of structures have been instrumented in order to register the 
accelerations, velocities and displacements produced by earthquakes. This information can be used to 
review the structural safety by means of structural analysis and design tools, that allow to identify 
potentially damaged resistant elements. However, in most cases this work takes several days of continuous 
analysis and the results can not be used in order to give an immediate evaluation of the structure. An 
alternative method is the observation of changes in structural parameters such as stiffness and modal 
values.  
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In any case, several algorithms have been proposed in order to carry out the structural identification. 
Those algorithms can be of two types: a) state-space identification algorithms Juang [1], Juang [2], Van 
Overschee [3], and b) second order systems identification algorithms Worden [4]. Recently, many 
researches, like Bernal [5], Bernal [6] and Smyth [7] have developed and used some of these algorithms.  

In the present paper the Least Squares, ERA-OKID and Subspace Identification algorithms are used to 
obtain the modal parameters of a time invariant single degree of freedom linear system, acting as a shear 
building subjected to base excitation. Two Matlab [8] simulations of the system’s  response are used. One 
of these simulations considers the El Centro earthquake (1940) as the system excitation, while the second 
one considers the SCT Mexico City earthquake (1985) (SCTEO) as the input of the system. For both 
cases, the original system parameters are chosen in order to obtain the maximum responses depending on 
the excitation. Three different noise levels are also considered.  

 
IDENTIFICATION ALGORITHMS 

 
Least Squares Method (LSM) 
The least squares method allows to identify physical parameters of civil structures when they are modeled 
as second order systems. These parameters are basically the mass, stiffness and damping. The formulation 
of the recursive least squares algorithm used in this paper is shown in equations (1) to (3). 
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When the identification algorithm is applied to a second order system it is necessary to have a previous 
knowledge of the system’s structure, i.e., it is not enough to have the time-history inputs and outputs, and 
furthermore, it is required to know the relationship between the different parts of the system. If this 
requirement is accomplished, then the identification algorithm allows to obtain the physical parameters, 
whereas with state-space algorithms, the modal parameters are obtained directly. 

ERA-OKID algorithm 
The first state-space algorithm presented is the ERA-OKID Juang [1], Juang[2]. This methodology is a 
two-step procedure. First the OKID algorithm Juang [1] is used to obtain the Markov parameters from the 
input and output signal records in accordance with equation (4). 
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The matrix y is an mxl output data matrix where m is the number of outputs and l is the number of data 
samples. The matrix u is an rxl input matrix where r is the number of inputs. The matrix Y , of 

dimensions mx[(r+m)p+r] with p an integer, sufficiently large, such that 0kCA B ≈  for k p≥ , contains all 

the system and observer Markov parameters. G is an nxm arbitrary matrix chosen to make the matrix A  as 
stable as desired. 

 Once the Markov parameters are calculated, it is possible to use them in the ERA algorithm Juang [1] to 
obtain the system state-space matrices, in agreement with equations (7) and (8).  
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Equation (8) is the Hankel matrix, Rn and Sn  are the matrices formed by the first n columns of R and S 
respectively,  and R and S are orthonormal such that 
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Oi is defined as a null matrix of order i and Ii is an identity matrix of order i.  

From the minimum order realization ˆ ˆˆ,  ,  A B C⎡ ⎤⎣ ⎦ , it is possible to find the eigensolution of the realized state 

matrix and transform the realized model to modal coordinates. From equation (11), then calculate the 
system’s damping and frequencies. 
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Subspace Identification algorithm 
The robust combined subspace algorithm proposed by Van Overschee [3] was used. This method required 
different oblique and orthogonal projections of the row space of the output block Hankel matrices on the 
row space of the block Hankel matrices consisting of inputs and outputs, see equation  (12). The order of 
the system is obtained from the singular value decomposition of the weighted oblique projection and the 
state-space system matrices can be obtained using equations (13) and (14). 
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IDENTIFICATION RESULTS 
 
Modal parameters identification 
The time invariant single degree of freedom linear system’s properties, such as mass, stiffness and 
damping, are chosen in order to obtain the maximum responses when the El Centro and SCTEO 
earthquakes are respectively applied.  

The system’s properties for the El Centro earthquake are shown in equation (16). 
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On the other hand, the system’s properties when the SCTEO earthquake is applied are shown in equation 
(17). 
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When the three algorithms are applied to the time-invariant single degree of freedom linear system, the 
following results, showed in Table 1, are obtained for the natural period of the system T. 

 
Table 1. Identified natural period of the system T 

Earthquake Algorithm 0% Noise 
Level 
[rad/s] 

2% Noise 
Level 
[rad/s] 

5% Noise 
Level 
[rad/s] 

El Centro LSM 0.1877 0.1877 0.1878 
El Centro ERA-OKID 0.1880 0.1880 0.1880 
El Centro Subspace 0.1880 0.1880 0.1880 
SCTEO LSM 2.00 2.01 2.00 
SCTEO ERA-OKID 2.01 1.99 0.04 
SCTEO Subspace 2.01 2.01 2.01 

 



The results for the damping factor, when the identification algorithms are applied to the system, are 
showed in Table 2. 

 

Table 2. Identified damping factor ζ 

Earthquake Algorithm 0% Noise 
Level 

2% Noise 
Level 

5% Noise 
Level 

El Centro LSM 0.0500 0.0506 0.0514 
El Centro ERA-OKID 0.0491 0.0492 0.0493 
El Centro Subspace 0.0499 0.0502 0.0504 
SCTEO LSM 0.0500 0.0516 0.0584 
SCTEO ERA-OKID 0.0494 0.0210 0.0282 
SCTEO Subspace 0.0501 0.0501 0.0503 

 
Estimated system response 
Once the modal parameters are identified, the estimated system response was obtained in order to compare 
the effectiveness of the three algorithms. The estimated accelerations, velocities and displacements were 
calculated, and used to obtain the error defined by equation (18) 
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In Tables 3, 4 and 5 are the error values for the estimated accelerations, velocities and displacements 
respectively. 
 

Table 3. Calculated error for estimated accelerations 
Earthquake Algorithm 0% Noise 

Level 
2% Noise 

Level 
5% Noise 

Level 
El Centro LSM 1.2404 1.2478 1.2601 
El Centro ERA-OKID 0.0371 0.0639 0.1203 
El Centro Subspace 0.0080 0.0518 0.1138 
SCTEO LSM 0.0661 0.0717 0.1598 
SCTEO ERA-OKID 0.0171 1.4531 2.1719 
SCTEO Subspace 0.0005 0.0299 0.0676 

 
Table 4. Calculated error for estimated velocities 

Earthquake Algorithm 0% Noise 
Level 

2% Noise 
Level 

5% Noise 
Level 

El Centro LSM 0.0356 0.0355 0.0355 
El Centro ERA-OKID 0.0044 0.0048 0.0058 
El Centro Subspace 0.0022 0.0028 0.0042 
SCTEO LSM 0.0210 0.0268 0.0609 
SCTEO ERA-OKID 0.0046 0.4758 0.6644 
SCTEO Subspace 0.0002 0.0096 0.0217 

 
 



 
 
 

Table 5. Calculated error for estimated displacements 
Earthquake Algorithm 0% Noise 

Level 
2% Noise 

Level 
5% Noise 

Level 
El Centro LSM 0.0000 0.0001 0.0001 
El Centro ERA-OKID 3.5520x10-5 5.9398x10-5 1.1221x10-4 
El Centro Subspace 5.5146x10-6 4.7749x10-5 1.0657x10-4 
SCTEO LSM 5.4963x10-14 4.5957x10-3 1.7379x10-2 
SCTEO ERA-OKID 1.7195x10-3 1.4747x10-1 2.1942x10-1 
SCTEO Subspace 4.5946x10-5 3.0803x10-3 6.8926x10-3 

 
On-line parameter identification 
Figures 1, 2 and 3 show the time variation of the identified structural parameters for the SDOF system 
using El Centro earthquake. Three different noise levels and four combinations of the forgetting factor (λ), 
and covariance matrix initial values (V), for the recursive least squares method were used. The theoretical 
values are shown in dashed red line, while the identified values are shown in continuous blue line. 
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d) 

Figure 1. Structural parameters time variation for 0% noise level. a)λ = 0.95, V = 10. b)λ = 0.95, V = 
1000. c)λ = 0.99, V = 10. d)λ = 0.99, V = 1000. 
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d) 
Figure 2. Structural parameters time variation for 2% noise level. a)λ = 0.95, V = 10. b)λ = 0.95, V = 

1000. c)λ = 0.99, V = 10. d)λ = 0.99, V = 1000. 
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d) 

Figure 3. Structural parameters time variation for 5% noise level. a)λ = 0.95, V = 10. b)λ = 0.95, V = 
1000. c)λ = 0.99, V = 10. d)λ = 0.99, V = 1000. 



Figures 4, 5 and 6 show the time variation of the identified structural parameters for the SDOF system 
using SCTEO earthquake. Three different noise levels and four combinations of the forgetting factor (λ), 
and covariance matrix initial values (V), for the recursive least squares method were used. The theoretical 
values are shown in dashed red line, while the identified values are shown in continuous blue line. 
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d) 

Figure 4. Structural parameters time variation for 0% noise level. a)λ = 0.95, V = 10. b)λ = 0.95, V = 
1000. c)λ = 0.99, V = 10. d)λ = 0.99, V = 1000. 
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d) 
Figure 5. Structural parameters time variation for 2% noise level. a)λ = 0.95, V = 10. b)λ = 0.95, V = 

1000. c)λ = 0.99, V = 10. d)λ = 0.99, V = 1000. 
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d) 

Figure 6. Structural parameters time variation for 5% noise level. a)λ = 0.95, V = 10. b)λ = 0.95, V = 
1000. c)λ = 0.99, V = 10. d)λ = 0.99, V = 1000. 



 
It is of special interest to observe the time variation of the structural parameters when an abrupt stiffness 
degradation is present, during the high intensity acceleration record. For both earthquakes, it is assumed 
that a stiffness degradation of 50% has occurred. Figures 7, 8 and 9 show the time variation of the 
identified structural parameters for the SDOF system using El Cetro and SCTEO earthquakes. Again, 
three different noise levels with λ = 0.99 and V =1000 were used. The theoretical values are shown in 
dashed red line, while the identified values are shown in continuous blue line. 
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b) 

Figure 7. Structural parameters time variation for 0% noise level and stiffness degradation. a)EL 
Centro. b)SCTEO. 
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b) 

Figure 8. Structural parameters time variation for 2% noise level and stiffness degradation. a)EL 
Centro. b)SCTEO. 
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b) 

Figure 9. Structural parameters time variation for 5% noise level and stiffness degradation. a)EL 
Centro. b)SCTEO. 



 
RESULT ANALYSIS 

 
From the simulations it could be observed that the identification of modal parameters could be done with 
any of the three algorithms if the input excitation has a broad frequency range, such as the El Centro 
earthquake, however, with an excitation of the kind of the SCTEO earthquake, with a narrow frequency 
range, the identification for this parameters is poor with noise levels from 2% and higher.  
 
When the estimated system responses are compared among the three algorithms, it is clear that the 
subspace algorithm allows to obtain the smallest error for almost every case. In that sense, even with the 
highest noise level, the subspace algorithm represents a good option in order to estimate the system 
response.  
 
On the other hand, the ERA-OKID algorithm gives a higher error when used with the SCTEO earthquake 
as the base excitation. This might probably be due to the harmonic nature of the earthquake signal. 
 
From Figures 1 to 9, it can be observed that the best combination for the forgetting factor λ and the 
covariance matrix initial value V was λ = 0.99 and V=1000. However, it is important to note  that the 
smaller the λ value, the faster the algorithm can respond to changes. Yet, if it is chosen too small, the 
results become very sensitive to noise.  

 
CONCLUSIONS 

 
The present research shows that good results can be obtained with the three identification algorithms 
when applied to a noisy system and the excitation has a high frequency content. On the other hand, when 
the excitation is a harmonic signal, the subspace algorithm gives better estimations. This kind of state-
space identification algorithm could allow to obtain reliable modal parameters, in order to establish a fault 
detection criteria through the variation of the fundamental natural periods with very harmonic 
earthquakes, as is the case in Mexico City. 

Nevertheless, it is important to consider the possibility to improve the implementation of the recursive 
Least Squares Method algorithm in civil structures to obtain the structural parameters, such as stiffness 
and damping, that would allow to evaluate the structures behavior or fault detection. 
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