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SUMMARY 
 
The paper is devoted on the problem of strong motion waves classification and real-time prognoses with 
neural network. As input information for the neural network are given the parameters of recorded part of 
accelerogram, principle axis transform and spectral characteristics of the wave. With the help of stochastic 
long-range dependence time series analyses are determined the separated phases of strong motion 
acceleration. The boundaries between separated phases of seismic waves are determined with scene-
oriented model. Determining the scene boundaries are based on the coefficient of variation for a sequence 
of consecutive accelerogram values. We add values to current scene until its weighted coefficient of 
variation is changing more than a preset value. The last added value is defined as the beginning of a new 
scene. 
 
Developed approach for classification gives possibility to determine the method for real time prognoses. 
For different king of classified waves we suggest different kind prognoses models. The prognoses are 
realized with the help of neural network, build on the principle of vector quantization. A new approach for 
adjusting the boundaries of selected classes during the process of vector quantization is used. The 
determined statistical function of density distribution of recorded data from accelerogram can be 
generating in real time. The received prognoses of destructive phase of strong motion waves can be used 
in devices for structural control. Examples of received prognoses are compared with real data of strong 
motion waves. Simulation and numerical results are shown. 
 

INTRODUCTION 
 
A very promising method in earthquake engineering for protection of height – risk and very important 
structures against destructive influence of seismic waves is anti-seismic structural control. One of the 
critical problems there is the problem of forecasting in real-time of the behavior of seismic waves. 
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Prognoses for further development of the waves can be made from recorded in real-time data for certain 
part of destructive seismic waves registrated in three directions. These prognoses are based on 
classification of strong motion seismic waves made on general, tectonic, seismic and site parameters. 
During these prognoses is supposed that waves can be classified as destructive or non-destructive and can 
be taken decision for switching on the devices for structural control, Radeva [1]. 
 
Another application of classification and real-time prognoses of development of seismic waves is 
prognoses of further seismic activity after primary ones. For making such prognoses it is necessary to 
develop different kind of models. Modeling gives possibility to study the behavior of seismic waves and 
relationships between their parameters during their spread in soil layers, where for each point the 
parameters of her displacement are presented with three components in three directions of the orthogonal 
axes. For practical purposes of possible records for displacements, velocities and accelerations as time 
history, most often accelerograms are used, which are characterized with certain duration, frequency and 
peak ground acceleration. They are involved in models and systems for estimation of elasticity response 
spectrum. The most practical usage in structural engineering and design has their peak values, 
independently of their sign and direction. That’s why the modeling of the behavior of seismic waves is 
used as input information in the process of calculation of the structural response spectrum. 
 
In this research is accepted the approach for separating of seismic waves into three phases, Scherer [2], 
where each has different spreading velocity of longitudinal or primary (P- waves), transversal or secondary 
(S- waves) and resonance C/G phase. To each phase correspond certain model of the waves behavior. 
Determining of the boundaries between the phases has significant influence on the application of non-
stationary seismic models. From the other side, the method of dividing of seismic waves into three phases 
gives possibility instead chaotic time series analyses, for analyze and prognoses to be used stochastic 
models of time series with Long Range Dependant (LRD) correlation, autoregressive models, moving 
average models, scene-oriented model etc. 
 
Nowadays increase implementation of artificial intelligence methods for describing the behavior of 
seismic waves. Most of them are based on neural networks for analyzing of earthquake records, which are 
trained, with real strong motion seismic records, Radeva [3]. Other models are based on the fact that crisp 
values as earthquake parameters can be successful described with the help of fuzzy logic models. One of 
the very promising trends is creating models, which combines different approaches like Neuro-Fuzzy 
models, models combining stochastic and artificial intelligence approach etc. Such hybrid models uses the 
machine learning capabilities of neural networks and combines it with transparency and representation 
power of fuzzy logic and stochastic models. 
 
The main purpose of the work is to develop a method for classification of strong motion seismic waves for 
quick estimation of characteristics of their destructive phase, with the help of evolutionary power 
spectrum models, stochastic models of time series with LRD correlation and neural networks. This 
method can be used for classification, real time analyses and prognoses of strong motion waves. 
 

PROGNOSES AND CLASSIFICATION OF SEISMIC WAVES 
 
The prognoses of earthquake occurrence can be classified according to the prognoses time duration. The 
most popular is their dividing into long-term (for next ten years), intermediate-term (for next few years), 
short-term (for next months-weeks) and real-time. Other kind of prognoses is prognoses of the area of 
occurrence of earthquake excitation of certain magnitude. Both approaches for prognoses are connected 
with difficult problems, when are applied the traditional stochastic time series analyses instead of 
applying methods for crash prognoses, where is dealing with reaching of certain critical threshold, 
Kossobokov [4]. Concerning the gap stretch of expected earthquake GLe it is necessary to take the space 



localization in more wide diapasons. The classification of kind of earthquake prognoses is presented on 
Table1. 
 

Table 1. Classification of earthquake prognoses according to time and place determination 

Temporal, in years Spatial in sources zone GLe 

Long-term 10 Long duration up to 100 
Intermediate-term 1 Middle duration 5-10 
Short-term 0.01-0.1 Short duration 2-3 
Real-time 0.0001 Exact 1 

 
In this paper we fix our attention on real-time prognoses of earthquake excitation, which is very important, 
because we have to receive very precise estimation of the development of the process. The suggested 
method for classification is developed for fast estimation of strong motion seismic waves on the base of 
their main characteristics. This fast estimation of seismic waves is necessary for real-time prognoses, 
which is based on belonging of prognoses waves to certain class and subclass. 
 
According to the stochastic model, presented in Scherer [5], each wave is dividing into three separated 
phases and has different spreading velocity. First come the longitudinal or primary (P- waves) and after 
that the transversal or secondary (S- waves), causing an S-wave of the same origin to arrive later than the 
corresponding P-wave. The third phase (C-/G- waves) is connected with converted and guided waves. 
Waves with three separated phases were classified as “classic”. Waves with two phases (where presents S- 
waves and C-/G- waves) are belonged to second class and chaotic waves are separated into third class. 
According to separated phases recorded waves were classified into three main classes: classic (with three 
separated phases), chaotic, and with two phases. This classification can be made with neural network, 
based on multy layer perceptron with error back propagation. From recorded part of seismic record in 
three directions was provided real-time analyses of the type of the wave and her belonging to one of 
separated classes, which is realizing on the first layer of neural network. On the base of evolutionary 
power spectrum characteristics of the recorded part of the wave is making decision that the wave belongs 
to one of separated subclasses, according to provided seismic waves classification in the second layer of 
the neural network. 
 
A database for strong motion records was created after classifying the main parameters of stochastic 
seismic waves. The records in database was sorted according to their belonging to one of separated classes 
and subclasses and the most important parameters characterized each subclass, like resonance frequency, 
damping ratio, peak value, density distribution etc. The process of wave classification is parallel with the 
real time recording. For each subclass was developed different prognoses model. 
 
The prognoses models are realized with the help of several basic models: autoregressive model, simple 
Markov chain model and scene oriented model, Radeva [1,6]. The boundaries between separated phases 
of seismic waves are determining with scene-oriented model. Determining the scene boundaries are based 
on the coefficient of variation for a sequence of consecutive accelerogram values. We add values to 
current scene until its weighted coefficient of variation is changing more than a preset value. The last 
added value is defined as the beginning of a new scene. After making a decision that the wave belongs to 
certain class on the base of principle axes transformation and to certain subclass on the base of 
evolutionary spectrum estimation, the prognoses model for this subclass is starting with the input wave 
characteristics. For example, the prognoses models for all subclasses of the class “classic” are based on 
scene-oriented model. The process of classification is shown on Figure 1. The prognoses model starts and 



determines the target classes for multy layered error back propagation perceptron neural network, 
presented on Figure 1, right.  
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Figure 1. Classification with neural network 

 
PHASES AND PARAMETERS OF CLASSIFICATION WITH NEURAL NETWORK 

 
Principle axes transformation for classes determination 
According to implemented stochastic model, each wave is dividing into three separated phases: primary 
(P- waves), transversal or secondary (S- waves) – on the second phase, and converted and guided waves 



(C-/G- waves) on the third phase. Recorded waves were classified with neural network into three main 
classes according to different characteristics, like peak values, damping ratio and spectral characteristics 
of the wave. For receiving this classification were analyzed 4300 strong motion seismic records, 
registrated in Europe and North America. For defining the three phases (P-, S- and C-/G-) were used 
window parameters and principal axes transformation, for searching the most dominant and energetic 
component for every phase, Scherer [7]. For a certain given time t0 time delay τ and window length L the 
cross-covariances are presented in equation (1) and would consist of components, which are statistically 
independent within selected intervals. 
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Principle axes transformed accelerograms can be visualized in the coordinate system of the original 
record. For the covariance matrix of the three components of an acceleration record, its eigenvalues are the 
squared variances of the respective components and transformation of the 3D accelerogram into the 
coordinate system of the eigenvectors of the covariance matrix yields an accelerogram with statistically 
independent components. Composing the components corresponding to the maximum, medium and 
minimum eigenvalue from all time windows will result in accelerogram time histories that are ordered by 
seismic energy for every chosen time interval. These transformed component are called the stochastic 
principal axis accelerogram T1, T2 and T3, presented after the original ones in three directions on Fig. 2.  
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Figure 2. Time-series transformation 

This process of time-series transformation gives possibility to use for empirical seismic hazard analyses 
the stochastic principal axis accelerogram T1. It can be thought of as a projection of the 3D acceleration 
onto a rotating principal plane following the strongest acceleration. That’s why the received accelerogram 
T1 is used on second layer of the neural network for separating subclasses. 
 
The three phases and three selected basic classes, received on the first layer of the neural network, are 
presented on Figure 3. Provided analyses show that there are a big differences between significant 



parameters for each subclass. That’s why it would be necessary to separate subclasses and to develop 
different prognoses models for each subclass. For the separated subclasses can be made further 
classification and selection of new subclasses according to their specific parameters. 
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Figure 3. The three basic classes of seismic waves 

 
Evolutionary power spectrum for subclasses determination 
On the second layer of the neural network is making classification according to parameters of evolutionary 
power spectrum for each of separated classes. For receiving the stable estimation of the evolutionary 
power spectrum of stochastic principal axis accelerogram T1, was used a multy-filter technique Kameda-
Sugito, presented in Kameda [8], which was adapted in order to propose the evolutionary power spectrum 
as a non-stationary seismic load model. 
 
The evolutionary power spectrum of each phase of accelerogram T1 was modeled as a product of two 
form function, as is presented on Figure 4. For the form function f for frequency slice was chosen Kanai-
Tajimi-spectrum, because there are several more than one resonance frequencies due to more layers of 
sediments. The amplitude modulation function of choice is a product of a polynomial for the increasing 
and an exponential function for the decreasing, or damping part. The model assumed that most of the 
relevant energy of every wave field is concentrated at the maximum peak of the evolutionary spectrum in 
every phase. This is in most cases a distinct point clearly locatable in the time and frequency domain as 
well. The form functions are adapted onto extracted and slightly modified slices of the evolutionary 
spectrum along the frequency and time coordinates of this point by appropriate nonlinear least squares 
methods. Let the stochastic process X(t) has corresponding evolutionary power spectrum S(f, t) with form 
functions p, presented on (2), 
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where dZ(f) is differential of the orthogonal stochastic processes Z(f), A(t, f) is the amplitude-modulation 
function, and E{…} is the expected value of deviation presented on (3). 
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For determining the power spectra were used a form of inverse discrete Fourier transform. The Fourier 
coefficients are estimated by the absolute value of the 2D evolutionary power spectrum S(f, t) according to 
(4), 
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for i = 1,…,n discrete time coordinates ti, k = 1,…,m discrete frequency ordinates fk of the evolutionary 
power spectrum, ωk = 2π⋅fk, and αk are uniformly distributed random phase angles in the interval [0,2π]. 
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Figure 4. The evolutionary power spectrum of the destructive S-phase 

The parameter dff is necessary to resample the frequency axis and is an artificial high amplitude frequency 
into the accelerogram A(t). Determination of the load is based on the principle of superposition for each 
type of the waves w=P, S, C/G as is shown in (5), 

),(),(),( 21 ptApfStfELM www ⋅=  (5) 

where ELM is the used evolutionary load model and (p1, p2) are used form functions. 
On the base of evolutionary load model analyses the neural network classify the waves to certain subclass 
and the prognoses model of destructive phase for this subclass is starting with the input wave 
characteristics. 
 

NEURO MODEL OF DESTRUCTIVE PHASE 
 



For each subclass is suggesting different prognoses model of destructive phase because of variety of 
characteristics of evolutionary load model between classes and subclasses. The prognoses are realized 
with neuro model, which is based on Learning Vector Quantization (LVQ). The model includes a neural 
network with standard LVQ, and the principle of it functionality is presented on Figure 5, where is shown 
an example for prognoses model for S-phase of class1 – classic. For this class the best fitting is the scene-
oriented model, because of more clear determination between separated phases (Figure 5 –left). On the 
base of the registrated input part of time series {xk,p-n,…,xk,p} are making prognoses of the next values 
{xk,p+1,…,xk} of time series {xk}. The neural network has two layers: a first competitive and a second 
linear. The competitive layer learns to classify the input vector. It learns all subclasses that belongs to the 
linear target layer SM = SM1, SM2,…,SMM. The module of vector quantization (VQ) gives density 
distribution between classes in such a manner that in each class we have the same number of target 
values. The linear layer transforms the competitive layer’s classes into target classifications defined by the 
user. The competitive neurons of the vector i will have weights of 1 to one neuron in the linear layer, and 
weights of 0 to all other linear neurons. 
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Figure 5. Neuro modeling of strong motion waves 

LVQ learning in the competitive layer is based on a set of input/target pairs. Each target vector has a 
single 1 and the rest of its elements are 0. The 1 tells the proper classification of the associated input. With 
LVQ we determine the function of density distribution with amplitudes, received from the real 
accelerograms. The vector quantization gives density distribution for each class and redistributes the 
target values in such a manner to have the same number of target values in each class. The density 
distribution of the values of time series was received via approximation of the linear target layer SM of the 
vector quantization. For the proper determining of the function of density distribution is necessary to 
optimize the approximation of the target layer. The network was trained to classify the input space 
according to parameters of scene-oriented model. 
 
The scene-oriented model, suggested for destructive phase (S-waves) for Class 1 is a modification of 
simple Markov chain model, where the time series { }tx  was transformed into discrete states { }ty , where 



the number of states Ì, is the same as the number of target classes, and the size of the model yi for each 
state is determined. At the scene-oriented model as three scenes are separated the three phases of the 
seismic waves. As a second scene is consider the S-phase. The target values in the classes of the second 
scene are determined with (6). 
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With the help of learning vector quantization is determining, that the values for the second scene are 
distributed into five target classes. On Figure 6 is presented the received second scene of destructive 
phase, with five target classes of the LVQ model. 
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Figure 6. Prognoses model of S- phase with LVQ 

 
CONCLUSIONS 

 
An approach for classification and real-time analyses for estimation of strong motion seismic waves with 
stochastic modeling and neural network is presented. From recorded part of accelerograms is making 
classification of the waves according to their principle characteristics, with the help of two-layered neural 
network. At the first layer of neural network is making classification into separated basic classes and at the 
second layer is making further classification into subclasses. For different king of classified waves are 
suggested different kind prognoses models. 
 
The prognoses of destructive phase of strong motion seismic waves are realized with the help of stochastic 
models and neural network, build on the principle of learning vector quantization. In real time are 



generating the statistical function of density distribution of recorded data from accelerogram. The received 
prognoses values are compared with real ones. 
 
The received prognoses of destructive phase of strong motion waves can be used in devices for structural 
control. Examples of received prognoses are compared with real data of strong motion waves. Simulation 
and numerical results are shown. 
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