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SUMMARY 
  
To mitigate the seismic response of partially restrained steel frames, elastomeric materials can be placed at 
the joints. Unfortunately, some inconsistencies affect the available computational methods. In the paper, the 
dynamic stiffness matrix of a flexible beam with viscoelastic hinges at both ends is derived in a consistent 
form. The associated integro-differential equations of motion are turned in a set of differential equations, of 
greater order but easier to solve. The formulation is used to build the state-space model of a SDoF frame 
with viscoelastic connections. A parametric study on the elastic response spectra is also included. 
  
  

INTRODUCTION 
  
In order to simplify the calculations, conventional analysis and design of steel frames are carried out under 
the assumption that beam-to-column joints are either perfectly rigid (fully restrained frames) or ideally 
pinned (flexible or simple frames). For practical purposes: (i) if the amount of moment that can be 
transmitted is negligibly small, the joints are assumed as pinned; (ii) if sufficiently large, the joints are 
assumed as rigid. In real life, however, these idealizations are not meet, since all joints are semi-rigid, in that 
a rotational discontinuity exists between the connected members. 
During the past decade, a number of analytical and experimental researches have been conducted on 
Partially Restrained (PR) steel frames, i.e. steel frames with semi-rigid connections, which demonstrate the 
improved accuracy when the effects of the joint flexibility are taken into account. Among the structural 
properties, the dynamic behaviour of a PR frame may considerably differ from that of a frame made of the 
same members, but in which joints are rigid or pinned. As an example, it is well know that the 
eigenproperties (natural frequencies and modal shapes) may drastically change when the pinned beams are 
converted to fixed beams. If rotational springs are ideally attached at the ends of the beams, then, any 
intermediate configuration can be achieved by varying the spring stiffness from zero (pinned ends) to 
infinity (fixed ends). It follows that a reliable assessment of the joint fixity is required in predicting the 
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seismic response of PR frames. In particular, numerical investigations showed that the joint flexibility tends 
to increase the interstory drifts, and to reduce base shears and base overturning moments [1, 2]. 
Since the actual behaviour of the connections in a steel frame is semi-rigid, Hsu and Fafitis [3] proposed an 
Energy Dissipation Device (EDD) which takes advantage of the rotational discontinuity existing between the 
beam and the column. The connection damper (Fig. 1a) is made of elastomeric pads symmetrically placed 
with respect to a shear pin: so doing, the latter transmits the shear force, and each pad is subjected only to 
axial force. As an alternative, a simpler EDD (Fig. 1b) is considered in [4], by placing elastomeric materials 
between angles and beam flanges: so doing, the classical semi-rigid connection remains unchanged. 
By virtue of its simplicity, the Kelvin-Voigt (KV) model, made of an elastic spring in parallel with a 
viscous dashpot, has been used in modelling these connection dampers, while more refined models, e.g. 
the Generalized Maxwell (GM) model, have been ignored. Kawashima and Fujimoto [5] derived in 
explicit form the dynamic stiffness matrix of a flexible beam with KV hinges at both ends. As the latter is 
a function of the vibration frequency, an expansion was used to obtain frequency-independent inertia, 
damping and stiffness matrices for the system. Recently, Xu and Zhang [4] used this model to investigate 
how stiffness and damping of the connections affect the seismic performances of the frame. Afterwards, 
Cacciola, Colajanni and Muscolino [6] carried out sensitivity analyses with respect to their nominal 
values. The studies elucidated that: (i) there are optimal values of stiffness and damping of the EDDs by 
which the seismic response of a PR frame can be significantly reduced; (ii) special cautions are required 
in the design procedure, as the seismic response may be highly sensitive with respect to stiffness and 
damping of the EDDs. 
Since the KV model is only a crude approximation of the true behaviour of the viscoelastic EDDs, the latter 
findings suggest that a more realistic model has to be used in the dynamic analysis of PR frames with 
connection dampers; otherwise, the inaccuracy in modelling the EDD may affect the design procedure. The 
KV model, in fact, is often inappropriate to describe the dynamic stiffness of elastomeric materials or 
devices in which the nature of the damping is viscoelastic rather than viscous, and the inaccuracy arising 
when a somehow equivalent viscous damping is used may be intolerable for engineering purposes [7]. The 
inappropriateness of the KV model in this circumstance is implicitly confirmed in the work of Hsu and 
Fafitis [3]. In their KV-type model, in fact, the viscosity coefficient of the dashpot varies inversely with the 
vibration frequency: as a consequence, the energy dissipated in a sinusoidal cycle becomes independent of 
the vibration frequency. This dissipation is referred in the literature as linear hysteretic, and it can be viewed 
just as a particular case of the viscoelastic dissipation [8]. Moreover, in the formulation of Kawashima and 
Fujimoto [5] the further inconsistency exists that the matrix of inertia depends on stiffness and damping of 
the joints, being this dependence physically unjustified. 
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Fig. 1 – 3D schemes of alternatives viscoelastic connections 
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To overcome these theoretical and practical shortcomings, in the paper, a consistent viscoelastic model is 
used for the connection dampers, whose parameters can be directly evaluated from the relaxation 
spectrum of the elastomeric materials placed at the joints. In a first stage, the dynamic stiffness matrix of 
a homogeneous beam in bending with viscoelastic hinges at both ends is derived in the frequency domain. 
The proposed formulation leads in the time domain to integro-differential equations of motion, quite 
cumbersome to solve. In order to reduce the computational effort, the state of any viscoelastic system can 
be enlarged with a number of internal variables, that bear the information about the deformation history of 
the viscoelastic components; so doing, the equations of motion can be turned in a set of differential 
equations, easier to solve [9]. In a second stage, then, the latter approach is applied to derive the state-
space model of a Single-Degree-of-Freedom (SDoF) portal frame with viscoelastic joints. In a third stage, 
finally, the proposed model is used to evaluate the elastic response spectra for a recorded ground motion 
(the 1976 Friuli earthquake), and the elastic response spectra consistent with the elastic design spectrum 
proposed for rigid soils in the Italian seismic code [10]. 
  
  

FREQUENCY-DEPENDENT DYNAMIC STIFFNESS MATRIX 
OF A FLEXIBLE BEAM WITH VISCOELASTIC HINGES 

  
Let us considerer the system depicted in Fig. 2a, made of an Euler-Bernoulli beam with connection 
dampers at both ends. The following assumptions are made: (i) the beam is homogeneous and linear, fully 
defined through the elastic modulus E, the moment of inertia bI , and the length ; (ii) the connection 
dampers are rotational springs featuring a linear viscoelastic behaviour, so that the i -th one is fully 
defined through the relaxation functions ( )φi t , i.e. the time history of the moment due to an unit rotation 
suddenly applied for 0≥t . 
  
Modelling the dynamic stiffness of the connection dampers 
By using the Boltzman superposition principle, the moment ( )iM t  experienced by the i -th EDD is given by: 

 
0

( ) ( ) ( ) ( ) dφ τ ϑ τ ϑ τ τ⎡ ⎤′= − −⎢ ⎥⎣ ⎦∫
t

i i i iM t t  (1) 

where ( )ϑi t  and ( )ϑ′i t  are the rotations at the global node i , and at the internal node ′i , respectively. 
The KV model (Fig. 3a), i.e. an elastic spring in parallel with a viscous dashpot, has been widely used in 
the literature by virtue of its simplicity. The relaxation function ( )φi t  takes the expression: 
 KV ( ) ( ) ( )φ δ= + Ui i it c t k t  (2) 
where ic  and ik  are the viscosity coefficient of the dashpot and the elastic stiffness of the spring, 
respectively, ( )δ ⋅  is the Dirac’s delta function, and ( )⋅U  is the unit step function. 
 
 

 
Fig. 2 – Elastic beam with viscoelastic hinges: a) global scheme; b) disassembled components 
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After some algebra, substitution of Eq. (2) into Eq. (1) brings:  

 ( ) ( ) ( ) ( ) ( )ϑ ϑ ϑ ϑ⎡ ⎤⎡ ⎤′ ′= − + −⎢ ⎥⎣ ⎦ ⎣ ⎦i i i i i i iM t k t t c t t   

that is, the EDD is without memory, as the knowledge of rotation and angular velocity of nodes i  and ′i  
at time t  allows computing the moment ( )iM t . 
Since elastomeric materials to be used in practical applications may exhibit a non-negligible viscoelastic 
memory, the latter can be effectively approximated through the GM model (Fig. 3b), made of an elastic 
spring in parallel with a number of Maxwell elements, each one given by an elastic spring in series with a 
viscous dashpot. The relaxation function ( )φi t  takes the expression:  

 ( ),/GM
,0 ,( ) e ( )τφ −= +∑ i rt

i i i rr
t k k tU  (3) 

where the equilibrium modulus ,0ik  is the long-term elastic stiffness, and the pairs , ,( , )τi r i rk  define the 
discrete relaxation spectrum, i.e. relaxation time and stiffness of the Maxwell elements. Usually, few 
Maxwell elements are sufficient to accurately model the true behaviour of viscoelastic materials. When 
only a single Maxwell element is used, the GM model is properly termed Standard Linear Solid (SLS) 
model: the latter is able to capture the viscoelastic behaviour of materials with a predominant relaxation 
time. After some algebra, substitution of Eq. (3) into Eq. (1) brings:  

 ,( ) /
,0 , 0

( ) ( ) ( ) e ( ) ( ) dτ τϑ ϑ ϑ τ ϑ τ τ− − ⎡ ⎤⎡ ⎤′ ′= − + −⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∫ i r
t t

i i i i i r i ir
M t k t t k   

In this case, then, the moment ( )iM t  experienced by the i -th EDD depends in principle on the whole 
time history of the relative rotation between nodes i  and ′i . 
In order to highlight the dependence of the moment ( )iM t  on the vibration frequency ω , Eq. (1) can be 
rewritten in a mixed time-frequency domain as:  

 ( ) j ( ) ( ) ( )ω φ ϑ ϑ⎡ ⎤′= −⎣ ⎦Fi i i iM t t t t  (4) 

in which j= 1−  is the imaginary unit, and ⋅F  stands for the Fourier transform operator. Even if formally 
not rigorous, Eq. (4) expresses that the complex-valued dynamic stiffness of the i -th viscoelastic hinge is: 
 ( ) j ( ) ( ) j ( )ω ω φ ω ω′ ′′= = +Fi i i ik t k k  (5) 

where the real-valued storage modulus [ ]( ) Re ( )ω ω′ =i ik k  and loss modulus [ ]( ) Im ( )ω ω′′ =i ik k  are even 
and odd functions of the vibration frequency, respectively: the former is proportional to the maximum 
energy stored in the hinge during a sinusoidal cycle, while the latter is proportional to the energy 
dissipated. Alternatively, the dynamic stiffness can be written as: 
 [ ]( ) ( ) 1 j ( )ω ω η ω′= +i i ik k    

where the loss factor ( ) ( ) / ( )η ω ω ω′′ ′=i i ik k  measures the damping capability of the i -th hinge as a 
function of the vibration frequency: the equivalent viscous damping ratio at 0ω ω= , in fact, is 

0 0( ) / 2ζ η ω= . 

Fig. 3 – Spring-dashpot models: a) Kelvin-Voigt (KV) model; b) Generalized Maxwell (GM) model 
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For the KV and the GM models the dynamic stiffness is known in closed form: 

 , ,KV GM
,0

,

( ) j ; ( )
j

τ ω
ω ω ω

τ ω
= + = +

−∑ i r i r
i i i i i r

i r

k
k k c k k  (6) 

From the first of Eqs. (6) one can see that in the KV model the dissipation of energy increases proportionally 
with the vibration frequency. This behaviour is not meet in elastomeric materials: as a consequence, the KV 
approximation may fictitiously over-damps high-frequency vibrations. Oppositely, the GM model, with an 
adequate number of Maxwell elements, is able to approximate the actual damping of any viscoelastic EDD.  
  
Modelling the dynamic stiffness matrix of a beam with viscoelastic hinges 
After that an expedient model has been selected for the EDDs, e.g. the GM model with n  Maxwell 
elements, Eq. (4) and (5), for 1,2=i , can be arranged in a matrix form as:  

 d( ) ( ) ( ) ( )ω ⎡ ⎤′= −⎣ ⎦t t tm K ϑ ϑ  (7) 

where the arrays [ ]T1 2( ) ( ) ( )=t M t M tm , [ ]T1 2( ) ( ) ( )ϑ ϑ=t t tϑ , and 
T

1 2( ) ( ) ( )ϑ ϑ⎡ ⎤′ ′ ′= ⎣ ⎦t t tϑ  list 
moments, global rotations and internal rotations at the ends of the beam, respectively, and d ( )ωK  is the 
dynamic stiffness matrix of the viscoelastic dampers: 
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( ) j

0 ( )0 ( )
φω

ω ω
φω

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

F
F

tk
tk

K   

Since no external moments are directly applied to the internal nodes 1′  and 2′ , 1( )M t  and 2 ( )M t  are just 
the moments acting on the beam ends (Fig. 2b). As a consequence, internal rotations and external 
moments are related as: 
 e ( ) ( )′ =t tK mϑ  (8) 
where eK  is the stiffness matrix of the elastic beam for the rotations:  

 b
e

1 1/ 24
1/ 2 1
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

E I
K   

The long term stiffness of the i -th joint, i.e. (0)ik , can be defined in comparison with the rotational 
stiffness of the beam:  

 b4(0)
1
ν
ν

=
−

i
i

i

E Ik   

 
 
where νi  is the associated fixity factor: 

 
b
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The value of this dimensionless quantity, then, varies from 0ν =i  for an ideally pinned joint ( 0≡ik ), to 
1ν =i  for a perfectly rigid joint ( ≡∞ik ). 

Substitution of Eq. (7) into Eq. (8) brings: 

 e d( ) ( ) ( ) ( )ω ⎡ ⎤′ ′= −⎣ ⎦t t tK Kϑ ϑ ϑ   

from which the relationship between global and internal rotations can be derived: 

 [ ] 1
e d d( ) ( ) ( ) ( )ω ω−′ = +t tK K Kϑ ϑ  (9) 

where the matrix [ ]e d ( )ω+K K  is non-singular. Upon substitution of Eq. (9) into Eq. (7), and after some 
algebra, the dynamic stiffness matrix of the beam with viscoelastic hinges is then obtained: 



 [ ]{ }1
b b d 2 e d d( ) ( ) ( ) ; ( ) ( ) ( ) ( )ω ω ω ω ω−= = − +t tm K K K I K K Kϑ  (10) 

in which 2I  stands for the 2 2×  identity matrix. Consistently, in the time domain the first of Eqs. (10) 
becomes: 

 1 b
b b0

( )( ) ( ) ( )d ; ( )
j
ωτ τ τ
ω

−= − =∫
t

t t t K
m FΦ ϑ Φ   

in which 1− ⋅F  is the inverse Fourier transform operator, and b ( )tΦ  is relaxation function matrix of the 
model depicted in Fig. 2a: that is, the i -th column lists the moments 1( )M t  and 2 ( )M t  due to a rotation 

( ) 1ϑ =i t  suddenly applied at the i -th global node for 0≥t . 
  
Some considerations by means of a simple application  
The proposed procedure was implemented in order to investigate the effects of the viscoelastic properties 
of the EDDs on the global response of a realistic semi-rigid beam with elastomeric connections. The 
following parameters were selected for the beam: 2206 kN/mm=E , 4

b 67120 cm=I  (corresponding to 
the Italian “ IPE 550 106× ” section), and 6.00 m= ; the bending stiffness, then, is: b4 / =E I  
92,200kN m . The SLS model was used for the EDDs: in the first end ( 1=i ), fixity factor 1 0.6ν =  (⇒  
equilibrium modulus 1,0 138,300kN m=k ), stiffness and relaxation time of the single Maxwell element 

1,1 1,05 691,300kN m= × =k k  and 1,1 0.10sτ = , respectively; in the second end ( 2=i ), 2 0.4ν =  
( 2,0 61,500kN m⇒ =k ), 2,1 2,015= ×k k  921,800kN m= , and 2,1 0.02sτ = .  

 
Fig. 4 – Relaxation functions of the viscoelastic hinges at the beam ends 
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Fig. 5 – Storage modulus (a), loss modulus (b), and loss factor (c) of the viscoelastic hinges 
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The relaxation functions of the connection dampers are compared in Fig. 4: the dissipation is higher in the second 
hinge (dashed line), as the relaxation modulus is reached more quickly; oppositely, the first hinge (solid line) is 
stiffer, since its relaxation function decades more slowly. Fig. 5 confirms these differences; in fact: (i) the storage 
modulus of the first hinge, which is related to the effective stiffness, takes higher values in the frequency interval 
of interest (Fig. 5a), (ii) the loss modulus of the second hinge, which is related to the dissipation of energy, 
upcrosses the loss modulus of the first one at 18 rad/sω≅  (Fig. 5b), and (iii) the loss factor of the second hinge, 
which is related to the equivalent damping ratio, is much higher for 5 rad/sω>  (Fig. 5c). 
After that the matrices eK  and d ( )ωK  were defined:  

 3 3
e d

69.1138. 0
92.2 46.1 0.1 j

10 kN m ; ( ) 10 kN m
46.1 92.2 18.40 61.5

0.02 j

ω
ω

ω
ω

ω

⎡ ⎤
⎢ ⎥+

⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= × = ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥+⎢ ⎥−⎢ ⎥⎣ ⎦

K K  

the dynamic stiffness matrix of the beam with connection dampers was evaluated through the second of 
Eq. (10). The real part (storage modulus, solid line) and the imaginary part (loss modulus, dashed line) of 
each element b, , ( )ωi jK  are depicted in Fig. 6. Since the EDD at the second end is more dissipative, the 
imaginary part of the element b,2,2 ( )ωK  takes higher values with respect to the element b,1,1( )ωK : that is, 
identical rotations at the ends are associated with different dissipations of energy. 
 
 
 

 
Fig. 6 – Dynamic stiffness matrix of the beam with viscoelastic hinges 
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CONSISTENT STATE-SPACE MODEL OF A SDOF FRAME WITH VISCOELASTIC JOINTS 
  
Let us considerer the single-story single-bay portal frame depicted in Fig. 7, in which the beam-to-column 
joints are viscoelastic. The behaviour of the columns is linear elastic, while the beam with EDDs at the 
ends is modelled in the frequency domain through the dynamic stiffness matrix b ( )ωK , given by the 
second of Eq. (10). Beam and columns are inextensible, and the degrees of freedom of the portal frame 
are the horizontal translation ( )x t  and the rotations 1( )ϑ t  and 2 ( )ϑ t . 
After the assemblage, the dynamic stiffness matrix of the frame can be partitioned as:  

 

c c c
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T
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where f,t,tk  is the translation (shear-type) stiffness of the frame, f,r,r ω( )K  is the 2 2×  dynamic stiffness 
matrix associated with the rotations at nodes 1  and 2 , f,r,tk  is the 2 1×  array of the stiffness coefficients 
that couple rotations and translation, cI  and h  are the moment of inertia and the height of the columns, 
respectively, and b, , ω( )i jK  is the ( , )i j  element of the 2 2×  dynamic stiffness matrix b ( )ωK . Under the 
assumption that the mass is lumped, the dynamic stiffness of the frame can be condensed in the form:  
 T 1

f f,t,t f,r,t f,r,r f,r,t( )ω ω−( )= −k k k K k  (11) 

In a mixed time-frequency domain, the equation of the seismic motion can be written as:  

 0 0 f g
1( ) 2 ( ) ( ) ( )ζ ω ω+ + ( ) =−x t x t k x t x t
m

 (12) 

where m  is the mass of the frame, 0 f (0) /ω = k m  is its undamped natural circular frequency, the 
viscous damping ratio 0ζ  accounts for the dissipation of the frame without EDDs, and g ( )x t  is the time 
history of the ground acceleration. The solution of Eq. (12) can be directly evaluated in the frequency 
domain as: 

 f g f 2
f 0 0

1( ) ( ) ( ) ;
( ) / 2 j

ω ω
ω ω ζ ω ω

=− ( )=
− +

F Fx t H x t H
k m

 (13) 

where f ( )ωH  is the Frequency Response Function (FRF) of the frame. 
In the time domain, the equation of the seismic motion can be properly posed in an integro-differential form:  

 0 0 f g0

1( ) 2 ( ) ( ) ( )d ( )ζ ω φ τ τ τ+ + − =−∫
t

x t x t t x x t
m

 (14) 

where:  

 1 f
f

( )( )
j
ωφ
ω

−= kt F  (15) 

is the relaxation function of the frame, i.e. the time history of the shear force due to a unit displacement 
( ) 1=x t  suddenly applied for 0≥t , from which the impulsive term 0 02 ( )ζ ω δ ×t m  associated with the 

inherent damping has been preventively removed, and separately considered. 
Unfortunately, the solution of Eq. (14) is not an easy task, as standard techniques are not available. The 
computational effort, however, can be reduced by approximating the relaxation function with the GM 
model:  

 /GM
f 0

1

( ) e ( )φ −

=

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎟⎜⎜⎝ ⎠∑ r

n
t t

r
r

t k k tU  (16) 



in which 0 f (0)≡k k  is the equilibrium modulus of the frame, i.e. the stiffness under static loads, and n  
Maxwell elements, of stiffness rk  and relaxation time τr  ( =r 1, , n ), are used to capture the time-
varying portion of the relaxation function.  
Substitution of Eq. (16) into Eq. (14) leads the convolution integral to be replaced with a linear 
combination of the horizontal translation ( )x t  together with n  additional internal variables ( )λr t , 
defined as the internal strains of the n  Maxwell elements: 
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0 1
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=
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r r
i
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where:  
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t
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The time derivative of Eq. (18) brings [9]:  

 ( )( ) ( ) λλ
τ

= − r
r

r

tt x t  (19) 

Eqs. (17) and (19) allow to turn the integro-differential equation of motion (Eq. (14)) in a set of 
differential equation of order 2+n , which governs the evolution of the complete state ( )ty :  
 ( ) ( ) ( )= − gt t x ty D y v  (20) 

where:  
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t
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So doing, the memory of the dynamic system is conveniently accounted for with the state variables ( )λr t , 
and the tools of the linear system theory can be used in the analysis. 
In the frequency domain, the solution of Eq. (20) is:  

 1
2( ) ( ) ( ) ; ( ) jω ω ω −
+⎡ ⎤=− = −⎣ ⎦g nt x ty h h I D vF F   

where the first component of the complex-valued array ( )ωh  is the approximated FRF of the frame.  
 

 
Fig. 7 – Single-story single-bay portal frame with viscoelastic beam-to-column connections 
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Finally, under the assumption that the excitation is piecewise linear, an incremental solution of Eq. (20) 
can be obtained in the time domain through the unconditionally stable step-by-step scheme:  
 0 1( ) ( ) ( ) ( ) ( ) ( ) ( )+∆ = ∆ − ∆ − ∆ +∆g gt t t t t x t t x t ty yΘ γ γ  (22) 

where ∆t  is the time step, ( ) e ∆∆ = tt DΘ  is the transition matrix, [ ] 11
0 ( ) ( ) ( ) −

∆∆ = ∆ − ∆tt t tL D vγ Θ  
and 11

1 2( ) ( ) −
+∆

⎡ ⎤∆ = ∆ −⎣ ⎦ntt tL I D vγ  are the load vectors, being 1
2( ) ( ) −
+⎡ ⎤∆ = ∆ −⎣ ⎦nt tL I DΘ .  

 
Numerical validation 
In order to validate the proposed approach, a SDoF PR portal frame was considered. The following 
parameters were selected for the columns: 4

c 111900 cm=I  (corresponding to the Italian “ HEA 550 166× ” 
section), and  4.00 m=h ; the bending stiffness, then, is: c4 / 230,000 kN m=E I h . The parameters of the 
beam and of the viscoelastic EDDs are known, and are those of the previous section. 
In a first stage, a regression analysis, with 2=n , was used to assess the parameters of the GM model. 
The computed values are: 3

0 33.96 10 kN/m= ×k ; 1 0.168 sτ = , and 3
1 7.75 10 kN/m= ×k ; 2 0.457 sτ = , 

and 3
2 2.08 10 kN/m= ×k . The comparison between the exact dynamic stiffness (Eq. (11), solid line) and 

the corresponding GM approximation (circles) is shown in Fig. 8a (real part) and 8b (imaginary part). The 
good agreement confirms the accuracy of the proposed formulation. In Fig. 8c the loss factor of the portal 
frame due to the viscoelastic joints is depicted: it is worth noting that the damping capability of the 
assembled frame is only a small portion of the damping capability of the EDDs. This reduction of the 
damping, from the viscoelastic connections to the frame, is similar to the reduction of ductility in 
elastoplastic structures. 

 a)    b)        c)       
 

Fig. 8 – Storage modulus (a), loss modulus (b), and loss factor (c) of the portal frame with viscoelastic joints

 
Fig. 9 – Relaxation function of the portal frame with viscoelastic joints 
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In a second stage, Eq. (15) and the Inverse Fast Fourier Transform (FFT−1) algorithm were used to 
evaluate the relaxation function of the frame (solid line). The comparison with the GM approximation 
(circles), given by Eq. (16), is shown in Fig. 9. Also in this case the agreement is very good. 
In a third stage, the FRF of the portal frame was evaluated, with 0 0.02ζ =  and 3/ 48.9 10 kg= = ×m q g , 
where 80.0 kN/m=q  is the vertical load uniformly distributed over the beam, and 29.81 m/s=g . Four 
cases were considered: (i) the exact FRF (Eq. (13), solid line); (ii) the FRF of the KV approximation, in 
which stiffness and damping are assumed to be independent of the vibration frequency (dot-dashed line); 
(iii) the FRF of the GM approximation, with 2=n  (circles); and (iv) the FRF of the frame without EDDs 
(dashed line). The comparisons in terms of logarithm of the modulus and argument are shown in Fig. 10. It 
appears that: (i) the GM approximation is in good agreement with the exact model; (ii) the KV model is able 
to capture the resonant peak of the exact model, but an important discrepancy emerges when the vibration 
frequency goes to zero, because of the loss of memory associated with the KV model; and (iii) the resonant 
peak of the frame without EDDs is higher and occurs at a lower frequency: i.e., the EDDs increases the 
global damping of the frame, together with its stiffness at non-zero frequencies. 

  
  

EARTHQUAKE SPECTRA 
  
In the previous sections, a viscoelastic model of dissipative semi-rigid connections has been presented and 
numerically validated. In order to investigate the effects of different viscoelastic joints on the seismic 
response of a SDoF PR portal frame, in this section, the elastic response spectra are evaluated for (i) the 
ground motion recorded at Tolmezzo (Italy) during the 1976 Friuli earthquake, and for (ii) a number of 
artificial ground motions, consistent with the elastic design spectrum given by the Italian seismic code [10] 
for rigid soils. 
In the applications: (i) columns and beam are the same of the previous examples; (ii) the inherent viscous 
damping ratio is 0 0.02ζ = ; (iii) by virtue of its simplicity, the SLS model (a spring in parallel with a single 
Maxwell element) is used to describe the EDDs at the ends of the beam; (iv) six fixity factors are considered, 
in order to simulate different connections flexibilities: 0.01ν =  (quasi-pinned), 0.10 , 0.30 , 0.50 , 0.70 , 
0.90  (quasi-rigid); (v) three relaxation times are considered, in order to simulate different elastomeric 
materials: 0.001τ = , 0.01, 0.1s . Altogether, then, 6 3 18× =  viscoelastic systems are investigated. In each 
one, the dead load q  increases up to 160 kN/m , so that the undamped natural period 0 02 /π ω=T  varies 
from 0.02 s  to 0.42 s . Finally, the ratio f f f[ (0) ( )]/ ( )α φ φ φ= − ∞ ∞ , between the initial value of the time-
varying portion of the relaxation function and the equilibrium modulus, is kept constant: 10α= .  
In a first stage, for each couple of ν  and τ , the state-space model of Eqs. (20) and (21) was built, the 
numerical scheme of Eq. (22) was applied to obtain the dynamic response of the system under the 1976 

 a)     b)       
 

Fig. 10 – Frequency Response Function of the portal frame with viscoelastic joints: a) modulus; b) argument
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Friuli earthquake, and the maximum absolute value of the seismic response, max ( ){ }x t , was evaluated. 
In Fig. 11, the calculations were used to plot the response spectra in terms of the dimensionless pseudo-
accelerations, e 0( ; , )ν τ =S T 2

0 gmax ( ) max ( ){ }/ { }ω x t x t , as functions of 0T . 
The graphs tell that semi-rigid connections allow to reduce the seismic forces on the frame, since the 
maximum peak of the pseudo-acceleration is about e 5=S  for both quasi-pinned ( 0.01ν = ) and quasi-
rigid ( 0.90ν = ) beam-to-column joints, while the maximum peak decreases to about e 4=S  for the 
intermediate values of the fixity factor ( 0.30ν = , 0.50 ). 
Moreover, among the relaxation times considered in the analyses, the larger mitigation of the seismic forces 
is generally associated with the intermediate value 0.01sτ =  (dot-dashed lines). It is worth noting that for 

0.001sτ =  (solid lines) the damping of the joints is nearly viscous, since the relaxation time is much less 
than 0T , and the damping force is almost impulsive. On the contrary, for 0.1sτ =  (dashed lines) the 
relaxation time is of the same order of 0T , and the main effect of the viscoelastic materials at the joints is to 
increase their fixity under dynamic actions. 

 
Fig. 11 – Response spectra of a SDoF frame with viscoelastic joints for the 1976 Friuli earthquake 
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Finally, one can see that the differences among the response spectra obtained with different relaxation 
times is negligible in the case of quasi-rigid connections ( 0.90ν = ): in this case, in fact, the stiffness of 
the beam-to-column joints is so high that the relative rotations are too small to dissipate energy. 
In a second stage, by using the procedure proposed in [11], ten synthetic time histories of ground 
acceleration were generated, consistently with the seismic forces given in [10] for rigid soils. For each 
sample the elastic response spectra e 0( ; , )ν τS T  were computed. The mean spectra are depicted in Fig. 12 
as functions of 0T , showing the same tendencies highlighted for the recorded ground motion. In 
particular, it emerges that special cautions have to be used in selecting the values of flexibility and 
relaxation time of the viscoelastic joints: the ordinates of the response spectrum, in fact, may significantly 
change with them. 
 
 

 
Fig. 12 – Response spectra of a SDoF frame with viscoelastic joints consistent with the design elastic spectrum 
for rigid soils given by the Italian seismic code 
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CONCLUSIONS 
  
In this paper, a consistent model to evaluate, in both frequency and time domain, the seismic response of 
steel frames with viscoelastic semi-rigid joints has been proposed and validated with numerical examples. 
As an application, the dynamic stiffness and the relaxation function of a SDoF system have been 
computed, and the improvement associated with the use of the Generalized Maxwell (GM) model, rather 
than an equivalent Kelvin-Voigt (KV) model, has been shown. 
Finally, a parametric study on the response spectra for recorded and artificial ground motions has been 
presented. In both cases, the seismic forces on the frame depend on the long-term stiffness of the joints, 
and on the relaxation time of the elastomeric material placed therein. These parameters, then, have to be 
accurately selected in the design procedure, and accurately checked in the execution phase. Further 
analytical and experimental works are required to confirm and extend these findings. 
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