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SUMMARY 
 
This paper presents the results from an experimental and analytical research program investigating the 
axial and lateral behavior of reinforced concrete columns with poorly detailed transverse reinforcement. 
As part of the experimental research, four full-scale reinforced concrete building columns were tested 
under constant and varying axial loads and cyclic lateral loads. The columns, with nominally identical 
properties, had details typical of those found in low seismic regions or those permitted in high seismic 
regions in the U.S. until mid-1970s. The test columns were designed to experience significant stiffness 
and strength degradation due to shear failure after flexural yielding. Column deformations due to flexure, 
longitudinal bar slip at column supports, and shear are investigated. Flexure deformations are computed 
from fiber section moment-curvature analysis with uniaxial material properties. A bar-slip model using 
moment-curvature analysis results is developed to predict deformations due to longitudinal bar slip at 
beam-column interfaces. A shear strength model is proposed to predict the column shear strength 
considering the effects of key variables such as axial load, column aspect ratio, transverse reinforcement, 
and displacement ductility demand.  
 
 

INTRODUCTION 
 
Structural collapse under combined action of seismic and gravity loads is a limit state of great interest in 
design of new reinforced concrete buildings and evaluation of existing buildings. Seismic evaluation and 
rehabilitation guidelines such as FEMA 356 [1] identify shear and gravity load failure of columns as the 
critical failure mode associated with structural instability or collapse. Usually these failures occur in a 
brittle manner at relatively small lateral drifts. Many examples of such column failures were observed and 
documented during recent earthquakes (Figure 1). Most commonly, these columns include insufficient 
transverse reinforcement, involving both wide spacing and inadequate anchorage with 90-degree end 
hooks.  
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This research program was initiated to examine the shear and gravity load failure of reinforced concrete 
columns with limited strength and deformation capacity. As part of the experimental research, four full- 
scale columns with nominally identical properties and details were tested. This paper presents some of the 
test results as well as analytical models to predict the deformation response and shear strength of lightly 
reinforced columns. 
 

EXPERIMENTAL INVESTIGATION 
 
Test program 
Four columns were designed and tested in double curvature quasi-statically. The columns had cross-
sections of 457 mm by 457 mm, and were approximately 2950 mm tall. The test specimen elevation, 
typical column cross-section, and test setup are shown in Figure 2. The column design details, geometry, 
and material properties are representative of those of older columns in existing buildings, and are based on 
the studies of older building code requirements and similar columns tested previously [2]. Detailed 

    
Figure 1 Column failures in a hotel building in the 1994 Northridge, California earthquake 

    
Figure 1 Column failures in a hotel building in the 1994 Northridge, California earthquake 

 
Figure 2 Specimen elevation, cross-section details, and test setup (units in mm)  



description of test specimens, construction process, test setup, loading conditions, and test results are 
reported by [3]. 
 
The specimens included 760 mm deep, 2440 mm long, heavily reinforced top and bottom beams, which 
simulated a rigid foundation or a rigid floor slab. The specimens were loaded axially using two 1780-kN-
capacity vertical hydraulic actuators while maintaining zero rotation of the top beam. Uni-directional 
lateral load was applied by a displacement controlled 2220-kN-capacity horizontal hydraulic actuator. The 
average measured concrete cylinder strength was about 21 MPa on the day of tests. Eight 28.7-mm-
diameter longitudinal bars were used for a longitudinal reinforcement ratio of 2.5 percent. The average 
yield strength and ultimate strength of the longitudinal bars were 438 MPa and 645 MPa, respectively. 
The measured yield strength and ultimate strength of 9.5-mm-diameter deformed transverse reinforcement 
were 476 MPa and 724 MPa, respectively.  
 
The first three specimens were subjected to the same lateral displacement history, which included 
application of three cycles of fraction of nominal yield displacement, ∆y initially. Then, the magnitude of 
displacement cycles was increased incrementally, i.e., three cycles of ∆y, 2∆y, 3∆y, etc., until the specimen 
failed. The last specimen was loaded monotonically to failure after the yield displacement was reached. 
The first and last test columns, Specimen-1 and Specimen-4, were subjected to constant compressive axial 
load of 667 kN. Specimen-2 was subjected to a constant axial load of 2670 kN. These three columns with 
constant axial load were intended to represent columns in a gravity load carrying frame system. As shown 
in Figure 3, the axial loads 667 kN and 2670 kN correspond nominally to the same flexural strength on the 
axial load-moment interaction diagram. Therefore, the three columns subjected to constant axial loads had 
the same theoretical shear demand. Specimen-3, which represents of a corner column or an end column of 
a building frame, was subjected to varying axial load. The axial load on this column was a linear function 
of lateral load, and varied between 2670 kN in compression and 250 kN in tension.   
 
Strain gages were attached on the longitudinal and transverse reinforcement to monitor the strain 
variations along the height of the columns. Figure 4a shows the arrangement of strain gages attached on 
the steel bars. Local deformations were measured over the height of test columns using linear 
displacement potentiometers. Figure 4b shows the arrangement of displacement potentiometers installed 
on both sides of the column. Global deformations between fixed points in the laboratory and various 
points on the specimen were also monitored during the tests (Figure 4c). Instruments including 
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Figure 3 Arrangement of displacement potentiometers and strain gages  



linear variable differential transducers (LVDTs), direct current differential transducers (DCDTs) and wire 
potentiometers were used to measure the global deformations such as total column lateral and vertical 
displacements.  
 
Description of column behavior 
Figure 5 shows the damage and crack distribution on each face of the specimens after the completion of 
yield displacement cycles and at failure. Figure 6 shows the measured lateral load versus lateral 
displacements for all columns. Before the tests, horizontal hairline cracks apparently due to shrinkage 
were uniformly distributed over the height of the columns. During the initial cycles up to yield 
displacement, all columns behaved similarly, and had some inclined cracks near the top and bottom ends 
(Figure 5a).  
 
Specimen-1 lost its lateral strength substantially during the displacement cycles of two times yield 
displacement (56 mm). At larger displacements, the column sustained significant damage including large 
diagonal cracks and concrete spalling. However, it was able to carry the applied axial load until the end of 
the test where no lateral load carrying capacity was left. The lateral strength and stiffness of Specimen-2, 
which was subjected to very high axial load, were noticeably higher during low displacement cycles. 
However, the specimen had a sudden axial and shear failure at relatively low displacement. Final failure 
occurred shortly after an apparent longitudinal reinforcement bond failure over the length of the column. 
No diagonal cracks were observed around the midheight of the column, and longitudinal bars did not 
reach their yield strength before failure occurred. Specimen-3 with varying axial load had larger lateral 
strength and stiffness when subjected to larger compressive axial loads (Figure 6). Under tensile or low 
compressive axial loads, the strength degradation was less significant (Figure 6). Under monotonic lateral 
load, the lateral displacement capacity of Specimen-4 increased as compared with the displacement 
capacity under cyclic loading (Specimen-1). In addition, the reduction in the lateral strength was slower, 
apparently because degradation in resistance mechanisms was less severe under monotonic loading.   
 

   
(a)    (b)            (c) 

Figure 4 Instrumentation to measure: a) longitudinal and transverse steel strains, b) local 
deformations, and c) global deformations   



The measured relations between the vertical displacements and lateral load shown in Figure 6 indicate that 
initially vertical displacements were directly related to magnitude of applied axial load. This is primarily 
because columns tend to elongate with increasing lateral deformation as a result of crack opening along 
the column height. As the columns further damaged, the tendency to elongate reverses, and continued 
shortening progresses mainly through sliding along diagonal cracks.  
 

 
Figure 5 Crack pattern at: a) yield displacement, b) at failure; and c) damage at failure 



EVALUATION OF TEST RESULTS AND ANALYTICAL WORK 
 
Local vertical displacements, measured by the displacement potentiometers installed on each side of the 
columns (Figure 4a) were used to compute average curvatures over the column height. Average curvature 
profiles for each column are shown in Figure 7. Curvature profiles are shown at three lateral displacement 
levels in both loading directions. Apparently, because of additional deformations due to longitudinal bar 
slip, the measured average curvatures were much larger near the beam-column interfaces at the top and 
bottom of columns. Except for these large curvatures near the top and bottom, in general, the average 
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Figure 7 Average measured curvature profiles (top row), and measured transverse steel 

strain distributions over the height of columns (bottom row) 
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Figure 6 Lateral load-displacement, and vertical displacement-lateral load relations  



curvatures varied almost linearly over the height and were smaller than the calculated yield curvature, φy. 
Also shown in Figure 7 are the transverse reinforcement strain distributions over the height of columns. 
The strains were plotted in each loading direction at first yielding in the longitudinal bars, at peak lateral 
load, and at loss of lateral capacity (ultimate), which is assumed to occur when the lateral load drops to 80 
percent of peak lateral strength is reached. At peak and ultimate levels, the transverse reinforcement 
strains tend to be the largest some short distance away from column ends, where most of  
the damage and extensive cracking were observed due to combined high flexural and shear demand. As 
the damage progresses, more cracks intersect the transverse reinforcement and consequently increase the 
strains in the bars crossing the cracks. For instance, in Specimen-2 with less damage and less number of 
cracks at the onset of failure, the strains in the transverse direction were much smaller prior to failure. 
 
Deformation components 
As illustrated in Figure 8, total column lateral displacement measured at the top of each column can be 
assumed to be the summation of deformations due to: a) flexure, ∆flexure; b) longitudinal bar slip at column 
ends, ∆slip; and c) shear, ∆shear. Experimental flexure, bar slip, and shear deformations are obtained and 

presented in the following sections. Figure 9 shows the contribution of these deformation components to 
the total column lateral displacement at peak displacement during each displacement cycle. The results 
indicate that approximately 40 to 60 percent of total lateral displacement is due to flexure, while 25 to 40 
percent is due to bar slip deformations. Typically the shear displacement component is relatively small 
especially in the elastic range and under very high axial loads. However, the contribution of shear 
deformations can increase significantly as in Specimen-1. In this column, the contribution of shear 
deformations grew gradually to about 20 percent of the total deformation at a displacement ductility of 
two, at which time shear strength degradation became severe and shear deformations increased 
dramatically to about 40 percent of total displacement. 
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Figure 9 Contribution of displacement components to total lateral displacement 

           
Figure 8 Contribution of displacement components to total lateral displacement 



Flexure response  
For a typical beam-column frame member, lateral displacement due to flexure can be calculated by 

integrating the flexural curvatures, φ along the height of the member:     
0
∫=∆
l

flexure x dxφ  (Figure 10a). As an 

example, Figure 10b shows the cyclic lateral load-flexural curvature relations measured at the top and 
bottom beam-column interfaces of Specimen-1. The curvatures at these cross-sections do not include the 
effect of longitudinal bar slip deformations. In order to eliminate the effect of bar slip deformations on the 
measured total curvatures at column ends (Figure 7), the flexural curvatures are assumed to vary linearly 
near the column supports. Figure 10c shows the moment-flexural displacement relations for the columns, 
which were computed by integrating the sectional curvatures over the column height as illustrated in 
Figure 10a. Calculated monotonic section moment-curvature relations at the top and bottom beam-column 
interface of Specimen-1 (Figure 10b), and the corresponding calculated monotonic lateral load-flexure 
displacement relations for all columns (Figure 10c) are also plotted. The monotonic moment-curvature 
relation is computed using the test column cross section discretized into multiple fibers with uniaxial 
material properties [4]. The uniaxial stress-strain model for the longitudinal reinforcing bars was based on 
measured stress-strain relations from steel coupon tests. A combination of confined and unconfined 
concrete models was used to represent the concrete behavior (Figure 11). Previous research [5] suggests 
that the concrete compressive strength increases if sufficient transverse reinforcement is provided. In this 
research, the nonlinear concrete stress-strain relation between the zero and peak concrete strength is 
modeled using the procedure developed by Mander et al. [5]. Figure 11 shows that, for strains smaller than 
0.002, the confined concrete model compares very well with the measured stress-strain relations from 
concrete cylinder tests. Beyond the peak confined stress, the concrete is assumed to unload more rapidly 
than suggested by the Mander et al. model because, in this study, the transverse reinforcement spacing is 
relatively large and is unable to restrain the cracked concrete core. For the post-peak behavior, the 
unconfined concrete model with a descending straight-line stress-strain relationship developed by Roy and 
Sozen [6] was used. 
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Figure 10 a) Curvatures at the top and bottom of Specimen-1, b) flexure model, and c) lateral load-
flexural displacement relations 



 
Bar slip deformations 
Elongation and slip of the tensile reinforcement at beam-column interfaces could result in significant 
fixed-end rotations that are not included in the flexural analysis. These additional rotations at beam-
column fixed-ends can increase the total member lateral displacement significantly. Figure 9 indicates that 
up to 40 percent of total lateral displacement can be due to longitudinal bar slip.  
 
The relation between the cross-sectional moment and strain in the tensile reinforcement can be computed 
as part of the moment-curvature analysis. The calculated section moment-longitudinal bar strain relations 
are compared with the measured cyclic moment-strain relations at the top and bottom of Specimen-1 
(Figure 12). Figure 12 shows that, in the elastic range and during the first yield cycle, strains can be 
estimated reasonably well from the moment-curvature analysis. 
 
As a result of bond deterioration between steel and concrete, and penetration and accumulation of axial 
strains along the tensile reinforcement inside the joint, the extension and slip of the reinforcing bar at the 
interface can be significant. The slip resulting from accumulated axial strains in the bar embedded in the 
joint can be calculated by integrating the strains over the portion of the bar between the interface and the 
point with no axial strain. Using a bilinear strain distribution shown in Figure 13, the slip can be 
determined from the following equation. 
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Figure 11 Compressive stress-strain relations for concrete 
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Figure 12 Calculated and measured strains at the top (Strain Gage-C7) and bottom (Strain 

Gage-C1) of Specimen-1  
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where, slip = amount of reinforcing bar slip at beam-column interface, ld = elastic development length,  
l’

d = development length over the inelastic portion of the bar, ldy = development length corresponding to 
reinforcing bar yielding at interface, εs = strain in reinforcing bar, and εy = yield strain.  
 
The development lengths over the elastic and inelastic portions of the bar can be calculated based on the 
equilibrium of forces in the bar at the interface, and the assumption of bi-uniform bond stress distribution, 
ub [3]: ld = fs db/(4ub), ld’ = (fs-fy) db/(4u’b), where ub = elastic uniform bond stress, u’b = inelastic uniform 
bond stress, fs = stress in reinforcing bar, fy = steel yield stress, and db = bar diameter. Using equilibrium at 
first yielding in the longitudinal bar and assuming a linear strain distribution along the bar, by inserting ld  

= fs db/(4ub) into Equation 1, the average uniform bond stress at yielding, uby can be calculated as a 

function of slip: )8/(2 slipEdfu sbyby = . The slip was measured at the ends of twelve column specimens 

tested by [2] and [3]. Using the measured slip values at yield displacement, uniform bond stresses, uby are 
calculated. The calculated bond stresses are normalized by 

cf ′  and presented in Figure 14. For the twelve 

columns considered, the average bond stress is 0.95
cf ′ MPa with a standard deviation of 0.2

cf ′ MPa. In 

this study, a uniform bond stress, ub of 1.0
cf ′ MPa (12

cf ′ psi) is assumed in the elastic range (Figure 13). 

In the portion of the reinforcing bar over which the yield strain is exceeded, a uniform bond stress, u’b of 
0.5

cf ′ MPa (6
cf ′ psi) is used as suggested by [7].  

 
Figure 13 illustrates that the section rotation due to bar slip, θslip can be calculated by dividing the slip by 
the width of the open crack, which is the difference between the section depth, d and the neutral axis 
depth, c: θslip= slip/(d-c). This is based on the assumption that the section rotates about its neutral axis. 
Then, substitution of elastic and inelastic development lengths, ld and ld’ into Equation 1 yields  
 

 
Figure 13 Illustration of bar slip deformation and forces at the beam-column interface  
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As shown in Figure 15a, the rotation due to bar slip, can be assumed to be concentrated at the beam-
column interface in the form of rigid body rotation. If the slip rotation at the top and bottom of a double-
curvature column with a length L is known, total lateral displacement due to bar slip can be calculated 
from 

( )Lbottomsliptopslipslip  ,, θθ +=∆        (3) 
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Figure 14 Calculated bond stresses at yield level 
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Figure 15 a) Slip displacement model, b) slip rotations at the top and bottom of  
Specimen-1, and c) lateral load-bar slip displacement relations 



Using the longitudinal bar stress-strain relations calculated from fiber section moment-curvature analysis, 
(e.g., Figure 12), the section moment-slip rotation (Figure 15b) and column lateral load-slip displacement 
relations (Figure 15c) can be computed from Equations 2 and 3. The calculated and measured lateral load-
slip displacement relations compare relatively well for the four column specimens tested in this study. 
 
Shear deformations and shear strength 
Local shear deformations along the height of the column and total shear displacement (∆shear in Figure 8) 
can be computed from the local deformation measurements (Figure 4a) using the principle of virtual work 
[3]. In this research it was observed that, in general, the shear deformations tend to increase within the 
upper and lower one third of the columns. This is consistent with the strains measured in the transverse 
reinforcement (Figure 7) and can be attributed to opening and closing of flexural and inclined cracks in 
those regions (see crack patterns in Figure 5). The measured lateral load-shear displacement relations for 
each test column are shown in Figure 16. Typically the shear displacements are relatively small before the 
development of large inclined cracks in the columns. For example, in Specimen-1, the sudden increase in 
the shear displacements in the first and second cycles of 3∆y displacement level coincides with the 
extensive damage including development of large diagonal cracks during those cycles.  
 
The columns tested in this study developed their flexural strength before shear failure followed by axial 
failure under low axial load, or shear failure combined with axial failure under very high axial load. Both 
Specimen-1 and Specimen-4 had shear and axial failures at a displacement ductility of approximately 3 
and 6, respectively. Specimen-2, which was subjected to very high axial load, had combined shear and 
axial load failure at a displacement ductility of 2. One of the main objectives of this research was to 
investigate the vulnerability of lightly reinforced columns to shear failure including axial load effects. For 
this purpose, Sezen and Moehle [8] collected and analyzed experimental data from 51 test columns 
representative of columns that sustained shear failure following flexural yielding. For the test data 
considered, the variation of measured normalized shear strength as a function of key variables is plotted in 
Figure 17, where P = axial compressive load at the time of shear failure, a = distance from point of 
maximum moment to point of zero moment, d = distance from extreme compression fiber to centroid of 
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         Figure 16 Measured lateral load-shear displacement relations 
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         Figure 17 Effect of key variables on shear strength 



longitudinal tension reinforcement, ρw = transverse reinforcement ratio = Av/bs, Av = cross-sectional area 
of transverse reinforcement parallel to the applied shear and having longitudinal spacing, s, and b = 
column width. The trends in the plotted data suggests that: a) shear strength increases with increasing 
compressive axial load; b) shear strength decreases with increasing aspect ratio, a/d; and c) shear strength 
increases with increasing amounts of transverse reinforcement.  
 

Some researchers [9, 10] have proposed shear strength models in which concrete contribution to shear 
strength reduces with increasing displacement ductility demand. Others, such as [11], have found that 
column shear strength was independent of displacement ductility demand. Based on observations from 
column tests in this study, it was noted that with increasing displacement ductility, both the concrete and 
the reinforcement (hooks opening) and the interaction between concrete and reinforcement (bond-splitting 
cracks) contributed to progression of strength degradation. Thus, a strength degradation factor is applied 
to both concrete and reinforcement contributions to the shear strength ([2] and [8]). The shear strength 
model is expressed by the following equations: 

scn VVV +=           (4) 
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where Vn = nominal shear strength, Vc = nominal concrete contribution to shear strength, Vs = nominal 
transverse reinforcement contribution to shear strength, and k = a ductility related factor to account for 
effects of inelastic displacement cycles on shear strength degradation. Figure 18 plots the ratio of 
measured shear strength, Vtest to shear strength Vn calculated from Equations 4 through 6 without k factor 
versus the measured displacement ductility. Following the trend suggested in Figure 18, the factor k is 
defined to be equal to 1.0 for displacement ductility less than 2, and 0.7 for displacement ductility 
exceeding 6. For displacement ductilities between 2 and 6, the factor k varies linearly.  
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         Figure 18 Relation between factor k and displacement ductility 



Figure 19 plots the ratio of measured shear strength, Vtest to shear strength Vn calculated from Equation 4 
versus displacement ductility. The correlation between the measured and predicted shear strengths across 
the range of displacement ductility is reasonably well. The mean ratio of measured to calculated shear 
strength is 1.05 with a coefficient of variation of 0.15. Given the relatively low ductility associated with 
shear failure of columns like those considered in this study, the strength used in design or assessment 
normally will correspond to a lower-bound estimate of the shear strength. FEMA 356 [1] defines this as 
the lower five percentile of strengths expected. By this definition, and assuming a lognormal distribution 
in the strength ratio, the design strength should be taken as 0.80 times the nominal strength for the 
proposed model.  

 

CONCLUSIONS 
 
Analytical and experimental findings from a research program investigating shear and axial failure of 
lightly reinforced columns are presented. All test columns experienced shear failure, though with different 
modes depending on the axial and lateral loading history. The lateral displacement components due to 
flexure, longitudinal bar slip, and shear were obtained. It was found that the contribution of bar slip 
deformations to total lateral displacement can be significant. Similarly, shear deformations can be 
considerably large after the development of large diagonal cracks. Monotonic flexural deformations 
calculated from fiber section moment-curvature analysis compared reasonably well with the experimental 
results. A monotonic bond-slip model is developed to characterize the bar slip deformation behavior. The 
calculated monotonic lateral load-slip displacement relations compared well with the measured cyclic 
response. A shear strength model is proposed including the contributions of transverse reinforcement and 
concrete. The effect of shear strength degradation is included in the transverse reinforcement and concrete 
contributions equally through a factor related to displacement ductility demand.  
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