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SUMMARY 
 
The paper presents a simple method for the punching shear design of slab column connections subjected 
to seismic loading.  It is proposed to base the punching shear design on the probable unbalanced moment 
capacity of the connection, promoting a flexural failure mode over a shear failure mode.  In this way a 
ductile failure mechanism is assured for the connection. The method does not require the calculation of 
the unbalanced moment caused by the lateral displacement resulting from seismic activity.  This moment 
is difficult to calculate accurately as the analysis is highly sensitive to the effective stiffness used for the 
slab, column, and slab column joint.   
 
The probable unbalanced moment capacity of the connection is primarily a flexural property.  As such it 
can readily be approximated using the yield line procedure.  The paper presents a modified yield line 
approach proposed by the authors.  It differs most significantly from previous work in that it does not 
feature positive flexural yield lines. Positive yield lines are not observed in tests of slab-column 
connections.  The internal work associated with the removal of the positive yield lines is developed in the 
paper and it is demonstrated that the proposed new method, without positive yield lines, results in a lower 
energy pattern than one with positive yield lines.  The predictions of probable unbalanced moment, based 
on the proposed approach, are compared with results found in the literature.   
 

INTRODUCTION 
 
Due to their economy and speed of construction, flat slabs are very common structural elements for 
apartments, office and institutional buildings.  It is well established, however, that the capacity of flat 
slabs is often governed by shear capacity in the vicinity of the columns.  In addition, slabs without shear 
reinforcement are known to have very limited ductility under reversed cyclic loading, Brown and Dilger 
[1]. The collapse of several such floors during earthquakes in past years suggests that flat slabs are not 
suitable for zones of strong seismic activity.  
 
Studies, Hawkins [2], have shown that properly detailed traditional stirrups substantially increase the 
punching resistance of a slab-column connection subjected to combined punching load and unbalanced 
moment.  More recent studies, Dilger and Ghali [3], show that shear studs are a more effective means of 
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enhancing shear strength than traditional stirrups.  There is also a growing body of evidence, Cao [4], 
Dilger and Cao [5],  Megalli [6], and Dilger and Brown [7],  that shear studs are also highly effective in 
increasing both the connection capacity under reversed cyclic loading as well as ductility.  Shear studs 
have the added advantage that they are much easier to install than traditional stirrups. 
 
Given the above, it is then of interest to develop design guidelines for the use of flat slab column 
connections in seismic zones.  These connections may be considered to act in one of two capacities during 
seismic loading.  In the first case, the slab column system acts as a moment resisting frame.  This frame 
action then provides the primary lateral load resisting mechanism of the structure.  This type of system 
will be the subject of a future paper and will not be discussed further here.  In the second scenario, an 
independent lateral load resisting mechanism, such as shear walls, is provided in the building.  In this 
case, the slab column connections need only continue to carry the gravity load tributary to them while 
undergoing the rotations associated with the displacements imposed by the primary system.  It is the 
design requirements for connections in building with this type of system that are the subject of this paper. 
 
The design of a slab column connection in this second case is relatively strait forward once the magnitude 
of the unbalanced moment resulting from the lateral drift of the structure is determined.  The primary 
complication that arises is that it is somewhat difficult to determine this moment with accuracy.  This is 
due to the fact that the unbalanced moment calculated for a given inter-story drift is highly dependent on 
the assumptions made regarding the relative stiffness’ of the slab and column elements.  This is further 
complicated by the fact that as inter-story drift ratios become greater, the relationship between drift and 
unbalanced moment becomes less than linear due to yielding of the flexural reinforcement. 
 
One way to overcome these problems is to calculate the maximum unbalanced moment capacity of the 
connection based solely on the flexural limitations of the slab in the vicinity of the column.  If the 
punching shear design is then completed such that this maximum unbalanced moment can be resisted, in 
combination with the anticipated gravity load at the time of an earthquake, a ductile flexural failure 
mechanism can be ensured.  This is consistent with the “Capacity Design” approach proposed by Park and 
Pauly [8] where plastic hinge locations are consciously selected and appropriately detailed.  This paper is 
primarily concerned with the derivation of a method that can be used to determine the peak unbalanced 
moment capacity of a given connection. 
 

PEAK UNBALANCED MOMENT CAPACITY OF A SLAB COLUMN CONNECTION 
 
Perhaps the most convenient way to determine the probable maximum unbalanced moment capacity of a 
connection, Mpr, is by way of a yield line approach.  This approach has been used before and the pattern 
presented here is not an entirely new creation but is based on patterns proposed by Dilger and Cao [9] as 
well as Gesund [10] before them.  The derivation that follows was part of a dissertation completed at the 
University of Calgary, Brown [11], and builds on the work of these authors.  The pattern developed here is 
intended to be applicable to “typical” loading conditions.  Load cases near the extremes of pure concentric 
load or pure unbalanced load are outside the intended scope of this procedure.  
 
Figure 1 shows the pattern of flexural failure proposed by Dilger and Cao.  This pattern consists of radial 
negative yield lines about the column bounded by a roughly oval positive yield line.  Using this pattern, 
the following relation can be derived:  
 ( )( ) VcmckM pr 5.0112 −++= π  [1] 

where: 
 m negative flexural moment capacity per unit width 
 c dimension of square column 



 k ratio for positive to negative flexural capacity of slab per unit width 
 V Total vertical load applied by slab to column  
 
This equation produces reasonably good results in comparison with test results.  Further, the crack pattern 
that can be observed on the top surface of test specimens is similar to the assumed negative yield line 
pattern.  Laboratory tests, however, do not exhibit the positive flexural cracking implicit in the derivation.  
In addition, Eqn. 1 requires extension to the more general condition of rectangular columns and non-
orthotropic flexural reinforcing. 
 
To further examine this, as well as to expand the equation to the more general case, the radial yield line 
portion of the pattern is examined in more detail, see Fig. 2.  The figure represents a quarter circular 
section of the slab, of radius R, deflected up “unity” at the central corner.   
 
Internal Energy associated with Radial Negative Yield Lines 
Considering only the radial negative yield lines, it can be shown that the total internal energy, Uquarter, 
required to displace the corner of the section of slab up “unity” can be expressed as:  

 
Figure 1  -  Yield Line Pattern As proposed by Cao and Dilger 
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The internal energy dissipated is not a function of the radius, R, of the fan pattern assumed.  This is 
sufficient, in itself, to explain why positive yield lines do not form and are not observed in the laboratory.  
The negative yield lines can extend indefinitely without an increase in the internal energy.  The formation 
of positive yield lines would require additional energy input.  They are therefore precluded from forming.  
As the angle between adjacent negative yield lines, d� /2, approaches zero the internal energy, Uquarter, 
approaches a value of:  
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Internal Energy associated with Perimeter of Yield Line Pattern 
In the yield line pattern shown in Fig. 2, a geometric discontinuity is represented at the circular boundary 
of the negative yield lines.  Previous researchers have addressed this discontinuity by introducing a 
positive yield line.  A result of this extra yield line, however, is that the internal energy associated with the 
pattern is increased.  As noted above, the length of the negative yield lines can increase without a 
corresponding increase in the associated internal energy of the pattern.  Therefore, in an infinite slab the 
geometric discontinuity can be removed by allowing the length of the yield lines to extend indefinitely.  
Despite the infinite extend of the resulting pattern, this produces in a lower energy solution than is 
achieved by introducing a bounding positive yield line.   
 
Infinite slabs are, however, generally not practical to construct and so the more general finite case must be 
considered.  In addition, a slab under gravity load is not initially planar.  These conditions not only effect 
the maximum length of yield line that can be assumed, but also introduce additional internal energy 
mechanisms at the boundary of the yield line pattern.  Of great significance is that, as a result of the fact 

 
Figure 2  -  Geometry of Negative Yield Line ‘Fan’ 



that slabs under gravity load are not initially planar, the length of the radial negative yield lines must 
increase as the displacement is increased. 
 
This is illustrated in Fig. 3A.  The figure represents, conceptually, the profile of a slab that was initially 
planar with no load on it.  As gravity load is introduce the elastic deflected shape indicated by the heavy 
line results.  At some point the flexural capacity at the support of the slab is exceeded and a local flexural 
failure, the start of a yield line pattern, develops at the support.  The dashed line in the figure represents 
this.  In the figure, the support is represented as displacing up for clarity.  In reality the support would 
remain stationary and the slab would deflect down.  
 
In the case of concentric point loading the yield line pattern would consist of radial negative yield lines 
arranged over 360� around the load.  This pattern produces a cone shaped deflection at the support, see 
Fig. 3B.  Note that, as the yield line cone is tangent to the elastic portion of the slab, there is no geometric 
discontinuity at the perimeter of the pattern and therefore no requirement for a positive yield line.  As the 
load increases further, and assuming the positive flexural capacity of the slab at mid-span is not exceeded, 
the slab displaces further and the size of the yield line cone increases, see the upper dashed line in Fig. 
3A.   
 
The internal work associated with the rotation of the radial negative yield lines resulting from this 
displacement can be calculated using Eqn. 3.  In addition to the work related to moments in the radial 
direction, however, work is also done by moments in the circumferential direction in the portion of the 
slab between the two cones that has been ‘straitened out’, see the shaded portion of Fig. 3B. 
 
As the shaded potion of the slab in Fig. 3B is straitened out in the circumferential direction, ignoring the 
influence of tangential flexural strains on circumferential moments, the moment reduces linearly from its 

 
Figure 3  -  Yield Line Development for Point Load 



initial value to zero.  For a small increase in displacement, for which it can be assumed that the initial 
moment mcirc and the applied flexural strain Kcirc in the shaded area, Acirc, is roughly uniform, the 
associated internal energy, Ucirc, can be shown to be:  
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It is important to note that as the direction of circumferential moment, mcirc, is acting in an opposite sense 
to the direction of the applied flexural strain, Kcirc, the associated internal energy, Ucirc, is negative.  This 
means that the circumferential moments are actually driving the development of the yield line pattern.  As 
the size of the yield line pattern grows, the magnitudes of both mcirc, and Kcirc, become smaller and 
smaller.  Both become zero as the radial negative yield lines approach the inflection point of the slab.  As 
a result the energy associated with the circumferential yield lines, Ucirc, also becomes zero as the yield line 
pattern extends to the inflection point of the slab. 
 
The significance of the above is that the load associated with the yield line pattern increases as the size of 
the yield line pattern becomes larger.  A maximum value is reached as the negative radial yield lines reach 
the inflection point of the slab.  At this point the value of Ucirc is zero.  This means that when considering 
the loads associated with the proposed yield line, the influence of the circumferential moments can be 
ignored.  It also suggests that the yield line pattern should be assumed to extend to the inflection point of 
the slab. 
 
Variation of Shape and Non-Orthotropic Reinforcement 
It was assumed above that the yield line pattern was circular.  It is worth considering the influence of an 
elliptical, as opposed to circular, pattern.  It is intuitively obvious that the circular case should produce 
either a local maxima or local minima.  If one of the straight edges of the quarter circular section shown in 
Fig. 2 is assumed slightly longer than the other, the resulting internal energy is expected to differ 
somewhat from that for the circular case.  It is, however, not expected that it would matter which of the 
edges was the longer one.  It can, in fact, be shown that when the ratio of the length of one edge to the 
other is n, the resulting internal energy associated with a unit displacement at the corner can be expressed 
as:  

 
( ) ( )

n

mn
U

n

n
U circular 4

1

2

1 22 π+=+=  [5] 

It is clear from the above that the circular section governs over the elliptical.  That is, the minimum value 
of U is obtained by setting n = 1.0.  This is, however, true only when the moment resistance, per unit 
width of slab, is the same in each of the two orthogonal directions.  In the event that the negative moment 
capacities, mx and my, are not the same, it can be shown by using the method of affine slabs, Ghali & 
Neville [12], that:  

 xyquarter mmU
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Where mx does not equal my, an elliptical yield line pattern produces the minimum energy pattern. The 
ratio of the side lengths, n, can then be expressed:  
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Geometry of a Yield Line Pattern for an Interior Column with Unbalanced Moment 
The above derivation of a yield line pattern for a slab on point supports can now be extended to the case of 
an interior rectangular column with unbalanced moment.  The general geometry of the pattern is as 
indicated in Fig. 4.  The pattern is characterized by two semicircular ‘fans’ of radial negative yield lines 



centered on the forward corners of the column.  The slab at these corners is ‘pushed up’ by the rotation of 
the column in a manner similar to the point support in Fig. 3.  The slab then forms half cones sloping 
away from these corners.  As with the previous example the supports do not really displace up, rather the 
slab displaces down. 
 
On the forward side of the column, the yield lines extend to the inflection point in the slab, see Fig. 4A 
and 4B.  As previously discussed this condition is anticipated to coincide with the peak unbalanced 
moment.  If the internal energy of the pattern is to be minimized, Eqn. 7 must govern the width.  This is 
shown coinciding with the inflection point in the slab, see Fig 4B.  In general this will not be the case.  In 
fact, if the cone is to intercept the elastic slab profile on a tangent, neither of these conditions may be 
satisfied.  Although this will have some effect on the internal energy associated with the pattern, for 
typical slab layouts, the error introduced by ignoring this is small.  As a result, this effect is not considered 
further here. 
 
On the backside of the column, the cone will again extend tangent to the elastic slab profile.  Again, this 
eliminates the need for a positive yield line on the backside.  In general, however, due to the length of the 
column, this will not coincide with the inflection point of the slab.  This results in the two separate effects 
on the internal energy calculations.  Firstly, as the pattern does not extend to the inflection point, the 
internal energy is reduced due to the influence of Ucirc, Eqn. 4.  This is countered somewhat, however, by 
an increase in internal energy resulting from the fact that the aspect ratio of the back quarter ‘fan’ patterns 
is not optimized, Eqn. 5.  This effect varies primarily as a function of the length of the column, measured 

 

 
Figure 4  -  Yield Line Development for Interior Column 



in the direction of seismic activity, relative to the free span of the slab.  For column dimensions less than 
20% of the free span of the slab the effect of this on the internal energy associated with the pattern is less 
than approximately 10%.  This is again neglected in the derivation that follows. 
 
Of greater influence on the derivation is location of the line of rotation, see Fig. 4.  The distance between 
this and the center of the column has a direct influence on how large a roll the concentric gravity load will 
have on the resistance of the connection to unbalanced moment.  The actual location of this line is not 
fixed during loading and, in addition, varies as a function of the column size measured in the direction of 
seismic loading, as well as the magnitude of the gravity load being transferred to the column by the slab.  
It is proposed here to use the intersection of the initial plane of the slab at the column and the final profile 
of the backside yield line as the effective centre of rotation, see Fig. 4B. 
 
As noted previously, the magnitude of the concentric shear force can have a significant influence on the 
yield line pattern that develops at the columns.  For very highly loaded connections, a yield line pattern, 
similar to that shown in Fig. 3, can develop prior to the application of unbalanced moment.  For 
connections where there is very little gravity load, the elastic profile indicated in Fig. 4 may not provide 
sufficient rotation capacity on the backside of the column.  In this case positive yield lines would be 
required.  For a slab detailed to current North American design codes, however, it is reasonable to assume 
that, under specified dead load only, the top bars at the face of the column will be close to, or just beyond, 
yield strain.  This is the condition assumed here.  The fully developed elastic slab profile required to 
eliminate the development of positive yield lines is assumed to be available, but without any significant 
pre-existing yielding of the top bars.  Given this, the center of rotation will always start at the back face of 
the column and move further back, toward the back inflection point, as column rotation increases. 
 
The larger the column dimension in the direction of seismic activity, the further the centre of rotation is 
from the center of the column at the start of seismic loading.  In addition, however, the larger the column 
dimension, the less the center of rotation moves back into the slab as column rotation increases.  Although 
these effects counter each other somewhat, varying the column dimension does have a significant 
influence on the determination of the centre of rotation as defined above.  For column dimensions, 
measured in the direction of seismic loading, between 0.05 and 0.1 of the clear span the distance between 
the centre of rotation and the forward corners of the column, the apex of the displaced cones, varies from 
2.5 to 1.5 times the column dimension.  In order to reduce the number of variables in the derived 
equations, the centre of rotation is assumed fixed at a location twice the column dimension behind the 
forward face of the column, 2 cy. 
 
Equations of Energy for Interior Yield Line Pattern Moment 
In this section, the internal energy and external work equations are developed for the yield line pattern 
shown in Fig. 4.  The equations are all presented for a unit rotation of the column about the line of 
rotation, see Fig. 4A.  For a unit rotation of the slab, the forward corners of are displaced vertically a 
distance:  
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where cy is the dimension of the column in the direction of seismic loading.  The value of 2 in the 
denominator of Eqn. 8 represents that fact that half of the total change in height of the cone is associated 
with the downward movement of the outer perimeter of the cone.  As this is assumed to be tangent to the 
elastic profile, no internal work is associated with this half of the displacement.  The energy associated 
with the radial yield lines, Uradial, is then:  
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In addition to this the internal energy associated with the negative yield line at the front face of the column 
must be added.  This yield line undergoes a rotation of slightly less than twice the rotation of the column.  
The total internal energy, U, associated with the yield line pattern is then:  

 xxxyy mcmmcU 22 += π  [10] 

Where cx is the dimension of the column perpendicular to the direction of seismic activity.  The work done 
by the external loads, W, as the column rotates about the slab can be determined as:  
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Equating Eqn. 10 and ll and solving for the unbalanced moment, M:  
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COMPARISON OF PREDICTED UNBALANCED MOMENT CAPACITY WITH 

EXPERIMENTAL RESULTS 
 
Figure 5 and Table 1 show the correlation between the predicted unbalanced moments, using the above 
derivation, compared with actual test results.  In general the predicted results agree very well with test 
result.  The mean error is only about 1% while the standard deviation of the absolute error is 19%.  
  
In some of the tests reported in Table 1 the predicted unbalanced moment capacity is significantly greater 
than the observed capacity, most notably Cao and Dilger specimen CD-1.  This is due to the fact that this 
specimen, which was subjected to a very high concentric load of 300 kN, did not contain any shear 
reinforcement.  As a result it failed in punching shear prior to reaching its full flexural capacity. 
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Figure 5  -  Comparison of Predicted and Observed Unbalanced Moments 



 
In Fig. 5, the specimens that, according to Canadian deign code CSA-A23.3, would be expected to fail in 
shear prior to reaching the predicted unbalanced moments are indicated with open markers.  In addition, 
the specimens that did not fail until the drift ratio was greater than 5% are indicated with triangular 
markers.  It is reasonable to assume that these specimens reached their maximum unbalanced moment 
capacities. 
 
It is seen in Fig. 5 that the proposed equation gave best results for specimens that were able to resist 5% 
column rotations or greater, triangular markers.   These are the specimens that the proposed method is 
expected to correlate best with.  Where the specimens were not able to undergo an inter-storey drift ratio 
of at least 5%, square markers, the proposed method resulted in a somewhat greater scatter of results.  In 
general, however, the predictions were better where pre-mature shear failure was not predicted to govern 
the results. 

Table 1  -  Summary of Available test data 
Researchers Original loading cx cy davg rhot fy f'c V m neg m pos Mtest Mpr Error

Designation mm mm mm MPa MPa kN kN.m/m kN.m/m kN.m kN.m
Hawkins et al. S2 rev. cyclic 305 305 117 0.0084 464 23 143 48 29 95 88 -7.7%

S4 rev. cyclic 305 305 117 0.0120 460 32 150 67 35 168 136 -19.2%
Hawkins et al SS1 rev. cyclic 305 305 117 0.0129 460 28 133 70 35 160 147 -8.0%

SS2 rev. cyclic 305 305 117 0.0090 464 26 127 51 29 113 101 -10.6%
SS3 rev. cyclic 305 305 117 0.0176 456 26 127 89 51 184 195 5.7%
SS4 rev. cyclic 305 305 117 0.0176 456 28 128 90 51 152 198 30.4%
SS5 rev. cyclic 305 305 117 0.0176 464 32 126 94 53 152 208 37.2%

Elmasri et al SM 0.5 monotonic 305 305 127 0.0050 475 37 129 37 12 101 63 -37.3%
SM 1.0 monotonic 305 305 127 0.0100 475 33 129 70 25 128 147 14.6%
SM 1.5 monotonic 305 305 127 0.0150 475 40 129 102 37 133 228 71.4%

SM 0.5/0.5 monotonic 305 305 127 0.0050 475 33 129 37 12 105 63 -40.2%
SM 1.0/2.0 monotonic 305 305 127 0.0100 475 32 129 70 25 148 146 -1.3%
SM 1.5/2.0 monotonic 305 305 127 0.0150 475 34 401 100 37 144 160 11.2%

Pan and Moehle AP1 rev. cyclic 274 274 103 0.0086 485 29 104 41 15 57 71 25.7%
AP2 rev. cyclic 274 274 103 0.0086 485 30 104 41 15 87 71 -18.1%
AP3 rev. cyclic 274 274 103 0.0086 485 32 53 41 15 56 82 47.3%
AP4 rev. cyclic 274 274 103 0.0086 485 31 53 41 15 106 82 -22.8%

Islam and Park 1 monotonic 229 229 70 0.0106 356 27 34 17 9 31 26 -14.6%
2 monotonic 229 229 70 0.0106 374 32 34 18 9 38 28 -25.8%

3C rev. cyclic 229 229 70 0.0106 316 30 34 15 8 36 23 -35.9%
4S monotonic 229 229 70 0.0106 329 32 34 16 8 41 24 -41.6%

6CS rev. cyclic 229 229 70 0.0106 290 28 34 14 7 38 21 -46.2%
7CS rev. cyclic 229 229 70 0.0106 304 30 34 15 8 42 22 -47.4%
8CS rev. cyclic 229 229 70 0.0106 293 22 34 14 7 35 20 -41.6%

Brown and Dilger SJB-1 rev. cyclic 250 250 115 0.0129 400 32 150 61 23 112 99 -11.5%
SJB-2 rev. cyclic 250 250 115 0.0154 400 34 150 72 23 138 122 -11.9%
SJB-3 rev. cyclic 250 250 115 0.0129 400 32 150 61 23 144 99 -31.1%
SJB-4 rev. cyclic 250 250 115 0.0154 400 40 150 73 23 137 124 -9.5%
SJB-5 rev. cyclic 250 250 115 0.0168 400 33 150 78 23 124 133 7.1%
SJB-6 monotonic 250 250 115 0.0129 400 36 150 62 23 125 100 -19.7%
SJB-7 rev. cyclic 250 250 115 0.0129 400 29 150 61 23 84 97 16.1%
SJB-8 rev. cyclic 250 250 115 0.0129 400 35 150 62 23 122 100 -17.9%
SJB-9 rev. cyclic 250 250 115 0.0168 400 31 150 77 23 127 131 3.3%

Cao and Dilger CD-1 rev. cyclic 250 250 115 0.0129 395 40 300 62 24 50 72 44.3%
CD-3 rev. cyclic 250 250 115 0.0129 395 36 300 61 24 84 71 -15.8%
CD-4 rev. cyclic 250 250 115 0.0129 395 34 200 61 24 120 89 -25.8%
CD-5 rev. cyclic 250 250 115 0.0129 395 31 200 61 24 68 88 29.2%
CD-6 rev. cyclic 250 250 115 0.0129 395 31 200 61 24 112 88 -21.5%
CD-7 rev. cyclic 250 250 115 0.0129 395 29 150 60 23 128 96 -25.0%
CD-8 rev. cyclic 250 250 115 0.0129 395 27 150 60 23 85 95 11.9%

Elgabry and Ghali 1 monotonic 250 250 117 0.0131 452 35 150 72 28 130 122 -6.2%
2 monotonic 250 250 117 0.0131 452 34 150 72 28 162 121 -25.1%
3 monotonic 250 250 117 0.0131 452 39 300 73 28 142 96 -32.7%
4 monotonic 250 250 117 0.0131 446 41 300 73 28 150 94 -37.1%
5 monotonic 250 250 117 0.0131 446 46 450 73 28 105 68 -35.6%  

Ref. [4], [11], [13], [14], [15], [16], and [17] 



 
 

ADDITIONAL CONSIDERATIONS 
 
In the previous section, a method of predicting the probable unbalanced moment that a slab column 
connection can be expected to resist, base on flexural failure, was presented.   In this section additional 
factors that should be considered when designing for punching shear under seismic conditions will be 
presented.  Generally the design for punching under seismic loading is identical to that under gravity 
loading.  Three additional recommended practices have, however, also been identified, Brown [11]. 
 
The first of these relates to the shear stress that can be assumed to be resisted by the concrete, vc, in the 
presence of shear reinforcement.  Under seismic loading, the shear resistance of the concrete is less than 
under static loading.  It is then recommended that, for seismic design, the value of vc, be taken as half the 
value permitted by code for gravity loading.  In addition to this, it is also reasonable to specify a minimum 
level of shear reinforcement, once the use of reinforcement is mandated.  It is proposed by Brown [11] to 

provide a minimum of vs =
'15.0 cf  if headed studs are used and vs =

'20.0 cf if traditional stirrups are 

used.  These are minimum values that may need to be increased for greater load requirements.  Finally, 
some thought needs to be given to the extent of the shear reinforced zone from the face of the column.  For 
static loading, North American design codes specify a minimum extension of 2d from the face of the 
column, where d is the effective depth of the slab.  It is proposed here to double this in the case of seismic 
loading to 4d. 
 
One final point worth consideration is to provide some guidance as to when design for seismic 
considerations needs to be done.  Where seismic displacements are small, and/or the concentric gravity 
load is light, special detailing for seismic loading may not be required.  The head of the seismic sub-
committee to CSA A23.3, Mr. Mutrie, proposed a suitable equation.  His review of available data, derived 
largely from test results reported by Megally [18], indicated that, for slabs without shear reinforcement, 
there exists a relationship between the ratio vf /vr, in non-shear-reinforced connections, and the amplitude 
of reverse cyclic drift that can be applied without failure.  The relation is expressed as:  
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In Eqn. 13, ∆i is the maximum inter-storey drift anticipated to occur during seismic activity.  The term vf is 
the factored shear stress on the critical section and vr is the factored shear stress resistance at that section.  
Equation 13 is intended to be used for connections that do not contain shear reinforcement.  As a result, vr 
is equal to the shear stress resistance of the concrete acting alone, vc. 
 
This equation provides a convenient benchmark to determine if additional attention is required as to the 
seismic resistance of the connection.  Provided the ratio of vf, calculated for seismic load combinations, to 
vr, is less than RE, calculated for the anticipated level of inter-storey drift, it is sufficient to detail the 
connections for gravity load only. 
 

SUMMARY 
 
The economy of flat slab construction, from the point of view of forming requirements, combined with 
their open and unobstructed soffit layout have made them a very popular structural forms, particularly in 
the high-rise condominium market where floor to floor heights are kept to a minimum.  This popularity, 
combined with the fact that most major cities in North America are now seismically zoned to some degree, 



makes the lack of adequate code guidance on the detailing of these connections to resist earthquake 
induced loads a very serious concern. 
 
What is required is a simple method to design the punching shear resistance of a slab column connection 
subjected to seismically induced displacements.  The connection must be able to continue to resist the 
gravity loads tributary to it, while undergoing the reversed cyclic rotations of the column about its 
connection to the slab that are induced during seismic activity.  The primary difficulty is in determining 
the unbalanced moment, transferred between the slab and the supporting columns, associated with seismic 
loading. 
 
This paper has presented a simplified method for determining the peak unbalanced moment capacity of a 
slab column connection based on flexural limitations.  This value can conservatively be used as the 
unbalanced moment for punching shear design to ensure that a brittle shear type failure is avoided.  The 
proposed method has been compared with laboratory results found in the literature and appears to give 
reasonable results.  Some additional design considerations specific to the punching shear design of slabs 
for seismic resistance have also been given.  
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