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SUMMARY 
 
This paper addresses the problem of evaluating and reducing the torsional response of an asymmetric 
structure when subjected to a seismic excitation modelled by a stochastic process. A procedure of analysis 
for hysteretic structures is developed based on the equivalent linearization technique and the transfer 
matrix method. A new proposal for calculating the linearization coefficients is presented. The 
effectiveness of the procedure is evaluated using a numerical example. It is shown that the procedure 
provides a good approximation of the torsional response allowing for modifications in design to improve 
seismic performance. 
 

INTRODUCTION 
 
A rational approach for the seismic design and performance evaluation of asymmetric buildings has to 
consider the random nature of earthquakes. However, the non-linear behaviour that occurs when a 
structure undergoes some damage when excited by a strong earthquake makes the random response 
evaluation difficult. The non-linear response of a structure is hysteretic in nature, i.e., it depends on the 
history of motion, rather than only on the instantaneous motion. Because of this, analytical studies of 
random response of inelastic structures have been focussed mostly on the development of approximate 
methods. Among these methods is the equivalent linearization method proposed first by Caughey [1, 2].  
 
Much of the interest in the equivalent linearization method for practical applications is due to the 
introduction of a smooth and versatile hysteresis model by Bouc [3] and further developed by Wen [4]. In 
this model the hysteretic force is included by using an additional state variable controlled by a non-linear 
first-order differential equation. Assuming a Gaussian distribution for the state variables which control the 
hysteretic behaviour, close form solutions for the coefficients of the linearized equation were found by 
Wen [4].  In the original behaviour model the hysteretic variable is bounded by its yield strength, however, 
the linearized model proposed in this paper assigns probability to the entire state space, so that the 
obtained results are affected by assumptions on the behaviour of the hysteretic variable in the regions 
which really should have zero probability. Because of this, divergent solutions have been reported for the 
smooth model under the Gaussian assumption, Baber and Wen [5].   
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The purpose of this paper is to present a new method for calculating the linearization coefficients for the 
smooth Bouc-Wen model and their incorporation in a numerical procedure for analyzing asymmetric 
buildings under random ground motions. This method uses the concept of conditional probability to 
modify the Gaussian probability density function by truncating its tails beyond the yield strength of the 
restoring force. The procedure is based on a transfer matrix approach as presented by Bo et al. [6], 
incorporating the equivalent linearization method for the analysis of non-linear 3D asymmetric buildings.  
Some of the previously used methods for the 3D analysis of buildings considered yield surfaces to take 
into account the 3D behaviour of the structural elements. However, they usually did not take into account 
yield hardening and were limited to the analysis of small structures since the resulting system of equations 
was very large. In contrast, the numerical approach proposed in this paper considers the frames as 
independent elements, takes into account yield hardening and the system of equation is of a workably size 
allowing the analysis of large multi-storey buildings. 
 

LINEARIZED EQUATION OF MOTION TO MODEL THE NONLINEAR-TORSIONAL 
RESPONSE OF SHEAR BUILDINGS 

 
The basic assumptions used in this work to model the non-linear-torsional response of buildings are: 

1. Rigid floor diaphragms. The building structure is formed by independent plane frames, 
interconnected by floor diaphragms considered rigid in their own plane. 

2. Shear frame. The plane frames are modelled as shear structures with a single resisting element per 
floor. 

3. The mass of the building is lumped at the centres of mass of the floors. 
Under these assumptions, the structural response of buildings can be described using only three degrees of 
freedom per floor: the lateral displacements in the X and Y directions and the torsional rotationθ. 
 
The analysis proceeds floor-by-floor establishing and solving the equation of motion for each floor.  The 
boundary conditions are the ground displacement at the base of the building and the zero shear force at the 

top.  Let T
nnYnXn uuu }{}{ θ=  be the displacement vector of the nth floor relative to the ground and 

T
nnYnXn Tqqq }{}{ =  the resultant shear forces in the X, Y and θ directions of the resisting elements 

below that floor.  The state variables of the nth floor are shown in Fig. 1; in which 
T

nnnYnnXn Jumum }{ θ&&&&&&  is the vector of inertial forces and T
nnYnXn Tqqq }{}{ 1111 ++++ =  is the vector 

of resultant shear forces of the upper floor.  
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Figure 1. Illustration of state variables at the nth floor. 



From the free body diagram illustrated in Fig.1, it is clear that the equation of motion for the nth floor is 
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where nm is the mass and nJ the moment of inertia of the nth floor. 

 
The resultant shear force }{ nq  is obtained by the summation of the individual shear forces njq  of the 

resisting elements below the nth floor. The forces njq  represent a combination of three components: a 

linear viscous damping term, )( 1−− njnjnj vvc , a linear stiffness term, )( 1−− njnjnjnj uukα , and a 

hysteretic term, njnjnj zk)1( α− , where 10 ≤≤ njα  is the rigidity ratio, njk  is the initial stiffness, and 

njc  is the damping coefficient.   

 
The calculation of the relative displacements, 1ˆ −−= njnjnj uuu , and relative velocities, 

1ˆ j n j n j nv v v −= − , of the resisting elements, requires the projections of the floor displacements 

T
nnYnXn uuu }{}{ θ=  and velocities T

nnYnXn vvv }{}{ θ&=  along the directions of each resisting 

element as shown in the following equations: 
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where jϕ  is the angle with respect to the X axis of the plane that contains the resisting element and njd  

is the minimum distance of that plane to the centre of mass. This distance is positive if the shear force 

njq  produces a positive contribution to the torsional moment, nT . 

 
The resultant shear force vector }{ nq  is obtained from the sum of the projections of the individual shear 

forces njq  along the X, Y and θ directions, 

}]{[}{][}{][}{ 11 nnnnnnnnn zBvvCuuKq +−+−= −−  (3.a) 
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The hysteretic variables njz  are modelled by a first-order non-linear differential equation. In this work, 

the model proposed by Wen [4] is used with a non-degrading stiffness and strength, and anti-symmetric 
yield strength. This model is given by the following equation: 

m
njnj

m
njnjnjnjnjnjnj zvzzvvzvgz ||ˆ|||ˆ|ˆ),ˆ( 1 γβ −−== −

&  (4) 

where β, γ and m are parameters that control the shape of the hysteresis loop, 1ˆ −−= njnjnj vvv  are the 

relative-velocities of the resisting elements, and the variables njz  have been normalized to their yield 

displacements, njyu , . 

 
A linearized approximation of Eq. (4) for the resisting element is  

njnjnjnjnjnjnjnj zavauaaz 3210 ˆˆ +++≈&  (5) 

The linearization coefficients njia ,  3,2,1,0=i  can be determined by minimizing the mean square error 

represented by the difference between the results of the nonlinear model in Eq. (4) and those of the 
linearized Eq. (5). It has been shown that the only non-zero coefficients are ja2 and ja3 , Wen [2]. In terms 

of the linearized Eq. (5), the differential equations for the njz  variables may be written as 

( ) }{][][}{ 312 nnnnnn zAvvAz +−= −&  (6) 

where nA3  is a diagonal matrix formed with the coefficients nja3  and nA2  is a three column matrix 

containing in each row the terms [ ]njjjnj da ϕϕ sincos2  

 
Considering Eqs. (3.a) and (6), in Eq. (1), gives the equations of motion for the nth floor in terms of the 
state variables of two consecutive floors.  Since nn vu =&  these equations can be expressed as a system of 

first-order differential equations, i.e., 
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where I is the 3x3 identity matrix and ∆  is a diagonal matrix formed by a first-order differential operator 
on its diagonal. This operator applied to a vector of variables produces the first derivative of its terms. 
 
The systems of Eqs. (6) and (7) are solved floor-by-floor starting from the first floor. The boundary 
conditions are those given above. The solution procedure used is given in the next section. 
 
The utilization of the equivalent linearization method is justified from the point of view that among the 
existing approximate methods for analyzing non-linear structures, the equivalent linearization method is 
better as it allows an efficient handling of high non-linearities in the modelling of multi-degree-of-freedom 
systems. It is worth mentioning a remark by Socha and Soong [7], which points out that, contrary to what 
it is often believed, the equivalent linearization method is not an extension of the Krilov-Bogoliubov (KB) 
method [8] but that in fact stochastic averaging is much closer, but still inferior to equivalent 
linearization.   
 



TRANSFER MATRIX FORMULATION FOR THE SOLUTION OF THE LINEARIZED 
EQUATION 

 
The transfer matrix formulation requires the solution of the system of Eqs. (6) and (7) in the frequency 
domain; for this it is necessary to calculate the Fourier transform of these equations to obtain 
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and         }{][}{][ 123 −−=− nnnnn VVAZAiwI  (9) 

where the Fourier transforms of the state variables are denoted with capital letters, i.e.,  nnnn ZQVU ,,,  

represent the Fourier transforms of nnnn zqvu ,,,  respectively, and iw  represents the frequency variable 

with 1−=i .  
 
To express the state vector of the nth floor in terms of the state vector of the (n-1)th floor, Eq. (8) is solved 
to obtain 
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where ][ nnn iwCKD += .   

 
Eq. (10) may be written in a more compact form using the following notation 

}]{[}]{[}{ 1 nnn ZBP −= −UU  (11) 

where vector T
nnnn QVU }{}{ 1+=U  contains the state variables of the nth floor. 

 
Substituting }{ nV of Eq. (10) in Eq. (9) and dividing by iw , the following equation expressing }{ nZ  in 

terms of the response variables of the (n-1)th floor is obtained 
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which may be written in a more compact form using the following notation: 

}]{[}]{[ 1−= nnnn GZE U  (13) 

Solving for }{ nZ  and substituting it in Eq. (11) allows { }nU  to be expressed in terms of { }1−nU  as:  

{ } { } { }1
1

1 ][][ −
−

− −= nnnnnnn BGEP UUU       or      }]{[}{ 1−= nnn H UU  (14) 

where ][][ 1
nnnnn BGEPH −−=  is the transfer matrix of the nth floor. 

 



Special attention is needed in deriving the transfer matrix between the ground and the first floor, which is 
given as the transfer relationship between the ground acceleration and the first floor state variables. The 
equations for the first floor are: 
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where 0U&&  is a diagonal matrix containing the Fourier transforms of the three components of the ground 

acceleration, along the X , Y , and θ  directions; and 1Q  is a diagonal matrix containing the base shear for 
each component of the ground acceleration.  
 
Following the same procedure as that used to derive the transfer matrix of the nth floor, the transfer matrix 
of the first floor may be derived relating }{ 1U  with }{ 0U , that is 

}]{[}{ 011 UU H=  (17) 

Having calculated the transfer matrices of all floors, the state variables of the nth floor can be related to the 
ground state variables  as   

}]{[}]{[}{ 0011 UUU nnnn THHH =⋅⋅⋅= −  (18) 

The base shear is calculated by introducing the assumed boundary conditions in the equation for the top 
floor. For this, it is assumed that the ground acceleration in each of the three components is a Dirac delta 

function, i.e., its Fourier transform is equal to one. Then, the state variables T
nnnn qvu }{}{ =u  are the 

impulse response functions and their Fourier transforms T
nnnn QVU }{}{ 1+=U  are the frequency 

response functions.  Thus, the equation for the top floor with the appropriated boundary conditions is 
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where I is the 3x3 identity matrix and 0 is a 3x3 matrix of zeros and 1Q  represents a 3x3 matrix where 
each column contains the base shear for each component of the ground acceleration.   
 
In this study, the torsional ground acceleration was ignored; therefore the base shear 1Q  has only two 
columns and there are only two frequency-response functions for each response variable.  Thus, for 

example, to find the variance of the displacement of the nth floor in the X direction, 2
Xnuσ , requires the 

evaluation of the following integral 
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where nXXU ,  and nXYU ,  are the frequency response functions of the displacement Xnu  for the X and Y 

components of the ground acceleration, respectively, U is the conjugate function of U, and [ ]S  is a  
matrix  containing the auto- and cross-spectral density functions of the ground acceleration. 
 
Evaluation of the linearization coefficients using the conditional probability concept 

In this subsection, an alternative procedure to calculate the linearization coefficients is presented. This 
procedure uses a modified Gaussian probability density function (pdf) result of truncating its tails beyond 
the yield strength of the resisting force.  Procedures that truncate the tails of the Gaussian pdf have been 
used before, e.g. Kimura et al. [9] proposed the use of a truncated Gaussian density combined with Dirac 
pulses to simulate the effect of the concentration at the maximum values of the hysteretic component of 
bilinear systems. On the other hand, the procedure here presented distributes the contribution of the 
truncated tails uniformly in the truncated pdf. Both methods are approximate ways of introducing the 
contribution of the inelastic response; the concentrated pdfs presume highly inelastic behaviour, whereas 
the distributed one considers a less severe inelastic behaviour corresponding, approximately, to mean 
ductility demands between 1 and 4.  In the application of the suggested procedure, the Bouc-Wen model is 
used; with this model the linearization coefficients may be expressed in almost closed form with one 
simple integral needing to be evaluated numerically.   
 
Considering the domain of definition of jz , i.e., 11 ≤≤− jz , the following conditional probability 

provides the probability distribution of the state variables ),ˆ( jj zv , where jv̂  is the relative velocity and 

the variable jz  has been normalized to its yield displacement, yu . 
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differentiating Eq. (21) to give 
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The linearization of the non-linear model in Eq. (4) requires minimizing the mean square error between 
this equation and the linearized Eq. (5). Since the non-linear model does not depend on the relative 
displacement of the element, jû , and the response is a zero-mean process, the coefficients ja0  and ja1  

are zero; therefore the equation to minimize is   

( )2 2
2 3ˆ ˆ( ( , ) )j j j j j jg v z a v a zε = − +  (23) 



Since the behaviour of the resisting elements depends only upon the relative coordinates between adjacent 
nodes, it may be shown that each element can be linearized individually, Roberts and Spanos [10].  

Minimizing the mean square error, 2ε , gives the following condition 
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Substituting Eq. (23) in Eq. (24) gives 
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where [ ]Γ  is the covariance matrix of the state variables ),ˆ( jj zv . 

 
Using the modified Gaussian distribution in Eq. (22) to evaluate the expectations, the coefficients ja2  and 

ja3  can be determined.  For example, the coefficient ja2  may be written as 
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where T
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Eq (26) can be integrated by parts with respect to jv̂ , and by considering that )exp( 1
2
1 VV T −Γ−  vanishes 

as ∞→jv̂ , this integration yields 
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The property for the Gaussian distribution shown in Eq. (27) was apparently first introduced by Kozakov 
[11] on his studies on statistical linearization; however, it is often associated with the names of Atalik and 
Utku [12], who first applied it to the equivalent linearization method.  However, a different result is 
obtained for the ja3  coefficient since the domain of definition of jz  is 11 ≤≤− jz  and the term 

)exp( 1
2
1 VV T −Γ−  does not vanish when 1=jz . Following the same procedure of integrating by parts, 

the next equation is obtained 
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where the correction term C is evaluated with the following equation that is written in terms of the 
adjusted Gaussian pdf in Eq. (22) 
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Substituting the nonlinear function given in Eq. (4) and calculating the derivatives, the following 
equations are obtained: 
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Taking 2
1== γβ  and 3=m , the following values for the expectations 4,3,2,1, =iEi  are found 
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and the correction term C in Eq. (29) is 
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It is important to notice that the suggested procedure of analysis requires the evaluation of matrices nA2  

and nA3  (see Eq. (12)), which are formed with the linearization coefficients ja2  and ja3 . However, as 

seen in Eqs. (31) to (33), these are functions of the response statistics of the element variables, jv̂  and jz . 

Therefore, Eqs. (12), (31) and (32) are, in general, a system of highly non-linear algebraic equations in the 
unknowns, requiring for their solution an iterative procedure. In this study, the next iterative procedure is 
used: 

(a) Obtain the initial values of the response statistics assuming the linearization coefficients: 12 =ja  and 

03 =ja . These values correspond to a linear-elastic analysis as the hysteretic variables have zero 

contribution. 
(b) Calculate new values of the linearization coefficients. 
(c) Obtain revised values of the response statistics from a new analysis. 
(d) Repeat steps (b) and (c) until a specified degree of accuracy is reached. 



 
NUMERICAL EXAMPLE 

 
To illustrate the application of the proposed procedure of stochastic analysis of buildings a numerical 
example is presented. This procedure gives the variances of the response variables used in to obtain the 
strengths of the resisting elements necessary to produce equal ductility demands in these elements. The 
example structure is a six-storey reinforced concrete building with four frames in each orthogonal 
direction and storey heights of 3 m. Fig. 2 illustrates the location of the frames in a typical floor plant of 
the building. The structural properties of the elements in the building are listed in Table 1.   
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Figure 2. Typical Floor plan of the example 
building. 

 

 

Table 1.  Structural properties of beams, columns 
and shear wall  

 
Floor 

Columns 
base x 
height 
(cm) 

Beams 
base x 
height 
(cm) 

Wall 
Inertia 
(m4) 

Wall 
Shear 
area 
(m4) 

4 - 6 40x40 25x40 1.79 0.477 
1 - 3 45x45 25x45 2.11 0.482  

 

All frames have the same cross sections and dimensions, except Frame 1, which has a shear wall between 
axes A and B. The shear wall was modelled as a wide column with properties referred to its centreline.  
Since the wall is attached to the adjacent columns, the flexural and shear area of the wall were calculated 
considering the cross-sections of the wall and the two columns. Young’s modulus of the concrete in all 
frames was assumed equal to 6x106 N/m and to evaluate the shear deformations in the wall a Poisson ratio 
of 0.17 was used. The mass of the building was assumed lumped at the centres of mass of the floors. The 
masses and moments of inertia are listed in Table 2. 

Table 2. Translational and rotational floor masses 

Floor Translational Mass 
(103 kg) 

Rotational Mass  
(103 kg-m2) 

6 186 4805 

1, 2, 3, 4, 5 265 6846 

To evaluate the storey stiffness of the frames, the building, modelled as a 3D structure with rigid floor 
diaphragms, was pushed with lateral forces functions of the first and second modes of vibration. The 
lateral stiffness of frame j in the nth storey was evaluated using the following equation: jnjnjn VK ∆= /  

where jnV is the storey shear force and jn∆  the corresponding storey drift. Table 3 lists the calculated 

stiffnesses. The damping, modelled as structural in the first mode, was 5% of the critical. 



Table 3. Storey stiffness of the frames 

Frame stiffness in 
kN/cm 

Floor 

Frames 1 2 3 4 5 6 
1 6091 3202 2239 1653 1111 459 

2, 3, 4, A, B, C and D 488 290 264 207 182 144 
 
As seismic demand, seismic excitations typical of the Valley of Mexico with a dominant period of 2 sec 
were considered. This demand was modelled as a stationary Gaussian process with zero mean. Its auto- 
and cross-spectral densities were obtained from the records of the horizontal components of the 8.1 Ms 
magnitude Michoacan earthquake of September 19, 1985. Ground accelerations recorded at the SCT site 
were considered. The N00W and N90W ground accelerations were assigned to the respective X and Y 
directions of the model.   
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Figure 3. Acceleration time histories of the 9/19/1985 Mexico earthquake recorded at the SCT site.   
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Figure 4. a) auto- and b) cross-spectral density of ground motion. 

Fig. 3 shows the strong intensity segments of the records in the X and Y directions corresponding to the 5 
to 95% of the total Arias intensity. The duration of these segments was 52 sec.  Fig. 4 shows the auto- and 
cross-spectral densities of these records. These functions were obtained using the MATLAB function csd, 
Krauss et al. [13], with a Hamming window of 30 sec. and a 50% overlap which required extending the 



length of the records to 60 sec.. The spectral densities were averaged and their intensity scaled to match 
that corresponding to the strong shaking segment.  
 

PRESENTATION AND ANALYSIS OF RESULTS 
 
Elastic analysis and calculation of the mean elastic force in the resisting elements 
The results of the elastic analysis are the standard deviation of the relative displacement, velocity and 
acceleration for all resisting elements. As example of typical results Fig. 5 presents the standard deviations 
of the relative displacement of all frames. 
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Figure 5. Elastic standard deviation of the relative displacement of the resisting elements. 

The maximum response was evaluated using the theory of crossing of random processes. It is well known 
that for a continuous valued random process, D(t), a peak occurs whenever the velocity is zero, and the 
acceleration is negative. This suggests that the peak distribution of D(t) can be obtained from the joint 
distribution of the response vector {D(t) V(t) A(t)}T. Using the density function of local maxima derived in 
Rice [14] (which is the same for local minima) for a zero-mean stationary Gaussian process and assuming 
that local maxima and minima between successive zero-crossings are independent, the following 
probability distribution function for the maximum response is obtained, Barron-Corvera [15]. 
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where )(⋅Φ  is the standard Normal probability distribution, AVD σσσ ,,  are, respectively, the standard 

deviation of the displacement, velocity and acceleration. The number of independent peaks and valleys, 
NP, is related to the mean rate of zero-crossings and to the strong ground motion duration, dt . 

Using Eq. (38.a), the maximum relative displacement in the resisting elements was evaluated. Fig. 6 
illustrates the pdf of the maximum relative-displacement at the base of Frames 1 and 4.  This figure shows 
that Frame 1, which has the shear wall, vibrates within a very short range of displacements as compared 
with the large range of displacements of Frame 4. 
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Figure 6. Probability Density functions of 

maximum elastic displacement, first floor in 
Frames 1 and 4. 
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Figure 7 Elastic and inelastic probability density 
functions of maximum displacement, first floor in 

Frame 4 
 
With the maximum displacement pdf, the mean maximum displacement in the resisting elements were 
calculated and used to obtain their elastic mean forces; these were evaluated multiplying the mean 
displacement of the elements by their stiffnesses. Table 4 presents the calculated elastic forces and the 
ductilities obtained from the inelastic analysis.  The yield strength of the elements was obtained from the 
elastic forces reduced by a factor of two. This table shows similar ductility demands for all elements, all 
around 3. Fig. 7 illustrates the pdf of the elastic and inelastic maximum displacement of the first floor in 
Frame 4.  Here, it may be observed that the yielding structure has larger displacements than the elastic 
structure. 

Table 4. Mean elastic force and ductility demand in the inelastic structure.  

 Mean Elastic Force (KN) Ductility 
Floor 1 2 3 4 A B C D 1 2 3 4 A B C D 
6 122 58 82 107 104 97 97 104 3.0 3.1 3.1 3.0 3.0 3.0 3.0 3.0 
5 327 115 182 250 247 228 228 247 3.0 3.1 3.1 3.0 3.0 3.0 3.0 3.0 
4 524 166 273 380 376 345 345 376 3.0 3.1 3.1 3.1 3.0 3.0 3.0 3.0 
3 705 216 356 495 484 442 442 484 2.9 3.1 3.1 3.1 3.1 3.0 3.0 3.1 
2 896 249 422 594 576 522 522 576 2.9 3.0 3.1 3.1 3.1 3.1 3.1 3.1 
1 1071 280 480 678 648 584 584 648 2.9 3.0 3.0 3.0 3.1 3.0 3.0 3.1 

 
Comparison of the ductility demands obtained with the design criterion used above and the design 
criteria proposed in the Mexican seismic code 
To obtain the design elastic forces of the resisting elements, a modal analysis was performed using the 
first two modes of vibration.  The mode shapes and modal frequencies were obtained from the equation of 
motion that considers the torsional coupling. The first mode has a period of 1.2 sec. and represents pure 
translation in the X direction. The second mode has a period of 1.1 sec. and corresponds to translations in 
the Y direction coupled with the rotation of the floors.  The generalized single-degree-of-freedom (SDOF) 
corresponding to the first mode was subjected to the X component of the earthquake excitation (see Fig. 4) 
and the generalized SDOF corresponding to the second mode was subjected to the Y component.  A 5 % 
damping was assumed for both modes.  The calculated shear forces are listed in Table 5 along with the 
coordinates of the centre of rigidity and centre of mass, and the torsional moments obtained with the 
design eccentricities proposed in the Mexican code, Eqs. (39).  

bee s 1.05.11 +=     and    bee s 1.02 −=  (39) 



where es is the structural eccentricity and b is the maximum horizontal dimension of the building 
measured perpendicular to the direction in which the seismic excitation is applied. 

Table 5. Storey shear force calculated from the modal analysis, coordinates of the centre of rigidity, 
centre of mass, and design torsional moments. 

 Shear force (kN) Centre of rigidity (m) Centre of mass (m) Torsional moment (kN-m) 
Floor Vx  Vy Xct Yct Xcm Ycm M1 M2 

6 422 324 -1.7 0 0 0 549 824 
5 971 746 -3.4 0 0 0 2521 3777 
4 1422 1089 -3.8 0 0 0 4179 6269 
3 1746 1334 -3.9 0 0 0 5199 7809 
2 1942 1481 -4.3 0 0 0 6396 9594 
1 2021 1540 -4.5 0 0 0 6877 10310 

 
The shear forces and torsional moments were distributed among the resisting elements. Due to the 
asymmetry in the Y direction, additional forces were added to the resisting elements in the X direction. As 
suggested in the Mexican code, 30% of these additional forces were added to the elements in the X 
direction. Table 6 lists the calculated elastic design forces in the elements. As accepted in the Mexican 
code, the shear forces obtained from the torsional moments were not subtracted in Frame 1.   

Table 6. Elastic design forces in the resisting elements calculated according to the Mexican code and 
the ductility demand obtained from the inelastic analysis.  

 Elastic Force (KN) Ductility 
Floor 1 2 3 4 A B C D 1 2 3 4 A B C D 
6 165 65 81 99 127 120 120 127 2.3 2.7 3.0 3.1 2.2 2.2 2.2 2.2 
5 550 113 182 251 302 280 280 302 1.6 3.0 3.0 3.0 2.3 2.3 2.3 2.3 
4 871 157 266 375 446 413 413 446 1.6 3.1 3.1 3.1 2.4 2.4 2.4 2.4 
3 1078 192 326 461 548 507 507 548 1.7 3.4 3.3 3.3 2.6 2.5 2.5 2.6 
2 1283 207 366 526 615 567 567 615 1.9 3.6 3.5 3.5 2.8 2.7 2.7 2.8 
1 1364 212 382 551 640 591 591 640 2.2 4.0 3.8 3.9 3.1 3.0 3.0 3.1 

The inelastic structure was analyzed and the mean ductility demands in the elements were calculated. 
Table 6 shows an uneven distribution of ductility demands. Particularly, the elements in the Y direction 
present larger ductilities than those listed in Table 4.   

 
CONCLUSIONS 

 
A numerical procedure for the non-linear stochastic analysis of asymmetric buildings was presented. The 
hysteretic restoring force of the resisting elements was modelled using the Bouc-Wen model and a new 
method for calculating the linearization coefficients.  This procedure was used to evaluate the statistics of 
the response of a six-storey reinforced concrete building subjected to a random ground motion.  From the 
analysis of the obtained results the following conclusions may be draw: 

1. Equivalent linearization can effectively be used in the seismic analysis of multi-degree-of-freedom 
systems representing asymmetric buildings. 

2. The proposed procedure for evaluating the linearization coefficients using the modified Gaussian 
density proved to be very stable when using the Bouc-Wen model with smooth transition 
coefficients larger than 1.   

3. The numerical procedure gives a rational methodology for analyzing asymmetric buildings under 
random ground motion and it has a great potential in the design of asymmetric buildings. 
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