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SUMMARY 
 

Many existing R/C framed buildings in seismic areas are designed with no seismic criteria, considering 
only gravity loads. They are a significant percentage of existing structures and their strengthening is one of 
the most urgent problems for seismic risk mitigation. New passive control techniques are very effective 
and to assess their feasibility and effectiveness, an in-situ experimental investigation has been carried out 
on an existing two storey, one bay R/C building structure, designed for gravity loads only, with no 
transverse frame. The structure was upgraded in the transverse direction with four re-centring braces 
based on the super-elastic properties of NiTi shape memory alloys (SMA). Push-over and cyclic tests, as 
well as dynamic release tests, were carried out on the upgraded structure. 
 
 

INTRODUCTION 
 
A big number of Italian buildings is characterised by very low seismic resistance, considerably lesser than 
prescribed for new structures by the current Italian seismic code. This is mainly due to the evolution of the 
seismic classification and to the inadequacy of the old regulations. In many other seismic countries all 
over the world, the same problem occurs for the same reasons. The urgent need for expensive retrofit 
interventions requires accurate investigations on their effectiveness, which cannot be assessed on the only 
base of numerical investigations.  
The results of previous research studies highlighted the peculiar behaviour and the effectiveness of 
devices based on NiTi shape memory alloys (SMA), invented and implemented within the MANSIDE 
project (Nicoletti et al. [1]). Several shaking table tests on reduced scale models have been carried out in 
other research project (Cardone et al. [2], Cardone et al. [3]) after MANSIDE  The availability of an 
existing R/C building to be demolished in the ex-Italsider steel works at Bagnoli-Naples, within the ILVA-
IDEM voluntary project coordinated by prof. Mazzolani [4] of the University of Naples, gave the chance 
to carry out in situ large-displacement tests, on a R/C frame, to evaluate the effectiveness of SMA-based 
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braces for retrofit. A concurrent research project called TREMA, aimed at evaluating the effectiveness of 
new techniques in the seismic upgrading of masonry and r/c buildings, permitted to support the 
experimental activities. The in-situ tests consisted of push-over and cyclic tests, as well as release tests. 
The bracing system was based on the super-elastic properties of Ni Ti shape memory alloys (SMA) (Dolce 
and Cardone [5]), resulting in a strongly re-centring behaviour. The devices used in these tests represent a 
technological evolution of the devices (Dolce et al. [6]) conceived, designed and tested within the 
MANSIDE project (Nicoletti et al., [1]).   
The tested structure was a two-storeys 3D R/C frame, with one-by-one bay. It was obtained by dividing a 
one-by-twelve bay structure into six sub-frames or modules, in order to obtain separate structures to test 
different strengthening systems. One of these units was put at disposal of the University of Basilicata 
(USB) research group, to test advanced bracing systems.  
During the release test some seismic measurements at the soil level were also performed, in order to verify 
the modality of energy transmission from the structure to the soil. The measurements were made in 
collaboration with the University of Bologna and the National Geophysics, Seismology and Volcanology 
Institute (INGV), trough alignments of instrumentation disposed in several directions. The information 
drawn from this data is particularly important to define the interaction effects between soil motion and 
structural vibrations, (Mucciarelli et al. [7]).  
In the present paper the setting out of the tests and the first analyses of the experimental outcomes, 
including the seismometric measurements, are shown. 
 
 

TEST STRUCTURE 
 
The test structure of the ILVA-IDEM Project, is an old R/C building, built in the seventies in the now 
dismissed industrial area of Bagnoli (Naples). The building had originally two storeys, one span in the 
transverse direction and twelve spans in the longitudinal direction. The structure was made of two 
longitudinal bearing frames, with no intermediate transverse frames, which is a quite usual situation in 
gravity-load designed structures. Other usual characteristics of this kind of structures is the small cross 
section of columns and their poor reinforcement, especially transverse reinforcement.  
 

  

 

 
  a)          b) 

Figure 1 - a) Test Building Structure and b) module at disposal of University of Basilicata, without infills. 

 
The intestorey height is about 3.0 m for both the 1st and 2nd storey. The span length is 5.60 m in the 
transverse direction, and varies between 2.80 and 3.80 m in the longitudinal direction. The slabs have 24 
cm thickness at the 1st level and 20 cm at the 2nd level (roof). Both slabs have just a couple of transverse 
T-lintels, in the slab thickness, joining the opposite columns, with the aim of realising a transverse link 
beam. All the columns have square cross section 30x30 cm. The reinforcement is made of four, 12 mm 
diameter, corner bars. To avoid any interaction with the structural elements, all internal and external infill 



masonry panels were demolished and then the structure was subdivided into 6 similar modules, one of 
which was put at disposal of the USB research group. Preliminary investigations on the quality of concrete 
were performed by means of compression tests on cylindrical specimens extracted from the building. The 
average, failure resistance was about 20 N/mm2. Other investigations regarded the fundamental frequency 
of one of the 6 modules. This was performed through artificial vibration induced by a shaker placed on the 
roof (Spina et al. [8]). The fundamental frequency of the analysed structural module was 1.44 Hz, which 
was taken into account in the calibration of the numerical model of the building.  
The tests described in the present paper were carried out on the module N.5, shown in figure 1 b). The 
module was strengthened with the SMA bracing system in its weak direction, i.e. the transverse direction.  
 

 
UPGRADING SYSTEM 

 
The upgrading system was made of four special braces, whose mechanical characteristics are based on the 
properties of Shape Memory Alloy (SMA) Nickel-Titanium (NiTi) wires. The SMA NiTi wires were used 
in their austenite phase. Therefore they exhibited superelastic characteristics and great fatigue resistance 
for large deformations, of the order of 6-8%, (Dolce et al. [5]). The SMA based devices are made in such a 
way as to transform any deformation of the braces in a tensile deformation of the SMA wires (Dolce et 
al.[6]). Moreover the wires are prestressed, so that the device in rest condition is compressed and has a 
high initial stiffness, depending only on the steel truss section. Obviously, when the external force 
becomes greater than the prestress force, the tangent stiffness of the device depends on the stiffness of the 
SMA wire group. Therefore, this wire arrangement provides the device with a strongly non linear 
behaviour and a great re-centring capability, i.e. the availability of large force for small displacement. If 
the number of wires and their prestress level are suitably calibrated, the structural system (frame+braces) 
is able to recover its initial undeformed configuration after an earthquake, even if the R/C frame is 
subjected to significant plastic deformations. Austenitic wires can also dissipate some amount of energy, 
increasing the global damping by some few percent. However the present investigation is mainly aimed at 
exploring the capability of the re-centring characteristic alone to limit the effects (i.e. displacements) of a 
real structures, relying upon the energy dissipation capability of the structure itself to dissipate energy. To 
increase energy dissipation of the brace, however, additional dissipative elements or devices, based again 
on SMA or other materials, can be easily included in the braces, as shown in (Dolce [6]).   

 
 
 
            
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. a) Transverse section frame of the building with bracing system arrangement, b) installed brace. 
 
As can be seen in figure 2, the bracing system is completed by a series of connection plates and transverse 
ties. These latter limit shear variations in columns and avoid or limit tensile forces in the slab.  

a) b) 

Steel tie 

Steel ties 

SMA Braces 



The wires used had 1 mm diameter, while their number was calibrated, for each couple of brace devices, 
according to the output of the design procedure. 
The retrofit was designed with reference to the Italian zone 1 (PGA=0.35g on firm ground for 475 years 
return period) and a medium stiff soil (1.25 soil amplification coefficient), with the following purpose: 

1. limiting interstorey drift within the code (Ord. 3274/03 [9]) requirement, for the Damage Limit 
State design action (0.5% of the storey height); 

2. providing full re-centering capability to the structure, for the Ultimate Limit State design action; 
3. providing adequate safety against collapse also for design actions considerably greater than 475 

years return period. 
A first approximated evaluation of the wire number in each brace was made on the basis of a pushover 
analysis carried out with the DRAIN-3DX finite element program, Prakash [10], that provided the 
stiffness and strength characteristics of the structure under horizontal actions. In the next steps of the 
design, the number of wires was modified, according to the output of non linear dynamic analyses, in 
order to meet the previous design objectives. The final number of 1 mm diameter SMA wires in each 
device was 64.  
The design elongation of the braces was 25 mm. With reference to this displacement, and being 8% the 
maximum deformation limit of the SMA wires to keep them in the superelastic range, the length of the 
wires was consequently found.   
Figure 3b shows the testing set-up at the USB Laboratory of Structures, to carry out the cyclic dynamic 
tests of the braces. The tests were performed in displacement control. Two different frequencies were 
investigated: 0.3 and 1.0 Hz. The maximum amplitude displacement of the cycles was taken as ± 25 mm, 
while intermediate displacements were also carried out with 5-10-15-20 mm amplitude. As can be seen in 
figure 3a, where the recorded mechanical behaviour is shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 a)                 b) 

Figure 3. a) 1.0Hz frequency mechanical behaviour of a brace, b) testing equipment 

 
The force-displacement diagram reported in fig. 3.a clearly shows the strongly non linear re-centring 
characteristics of the braces, with a high initial stiffness, a large re-centring force, of the order of 20 kN, a 
small energy dissipation capability, providing an effective damping of the order of 2%. In figure 4, two 
graphs show, respectively the secant stiffness and the effective damping of one brace, as a function of the 
displacement amplitude. 
Once the braces were tested and characterised, numerical simulations were made on the structural model, 
including the braces with the exact number of SMA wires. The accelerogram was the Sturno record of the 
23.11.1980 Irpinia earthquake, scaled up  to 0.45g PGA. The numerical analyses provided 40 mm roof 
displacement, which is fully compatible with the design displacement of the braces.  
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Figure 4 – a) Secant stiffness and b) effective damping of a SMA brace in a 0.3Hz frequency cyclic test. 

 
 

TEST SETUP 
 
For the experimental in situ tests, a reaction structure was designed and made-up for the ILVA-IDEM 
Project. The steel made reaction structure, shown in figures 5 (a, c), was able to undergo both pull and 
push forces, up to about 300 kN. A steel vertical beam was tied to the R/C frame at both stories, to 
connect a hydraulic jack contrasted against the reaction frame at an intermediate level. 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 – a) Scheme of the reaction structure, b) the linking system and  c) overall view 

a) b) 

a) 
b) 

c) 



Thus the applied force simulates a force distribution derived from a linearly increasing acceleration 
distribution along the height. The vertical beam was linked to the slabs with hinge restrains, in order to 
allow independent displacement of the two floors and perform both pull and push tests. 
The push-pull and the release systems were designed and realised by the USB group. It consisted of a 
double effect Enerpac hydraulic jack, with a force capacity of ±570 kN and 256 mm maximum elongation. 
For the cyclic test the jack was provided with a double orthogonal hinge at the top and bottom, linked to 
the model with a steel extension, as in figure 6. With only few operations there was the possibility to 
change the extension and to insert the device for the release dynamic tests. As shown in figure 7, this 
device was made of a steel 45 mm diameter threaded bar, connected to two circular plates, which were 
rigidly connected to the head of the jack and to the loading beam of the structural model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Push-pull system.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. a) Cutting of the steel release bar and b) Release bar after failure. 

 
Tensile failure tests were carried out on a series of steel threaded bars, in order to evaluate accurately the 
steel strength and the area of the restricted section to facilitate the failure and then the release for the 
desired values of the total force of the jack. This force, for each deformation level of the test, was 
determined from the cyclic tests performed on the model before the release dynamic tests. The force was 
then increased by about 10% and the corresponding restricted section area calculated, in order to avoid an 
early failure and unexpected release. Obviously the test was carried out by pulling the structure up to the 
target displacement was reached. Then the steel bar was cut by a gas-based cutting system (figure 7a), to 

a) b) 



release the structure and let it move freely. To set up again the system for a new test, just the change of the 
steel bar was needed, requiring only few minutes. 

 
 

ACQUISITION INSTRUMENTS  
 
The structural response was recorded during the tests by means of a series of instruments mounted on the 
floor slabs of the frame, on the braces and on the hydraulic jack. As can be seen in figure 8, four Celesco 
wire transducers (two on each floor), fixed on the near structural models, were used for the acquisition of 
the floor displacements. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
# 4 wire transducers for the floor displacement acquisition ±127 mm 
# 4 staff transducers for the braces deformation acquisition ±125 mm 
# 1 transducer for the hydraulic jack displacement ±125 mm 
# 1 load cell for the acquisition of the applied load ± 570 kN 
# 6 Servo-accelerometers ±1 g sensibility 

 
Figure 8 – Arrangement of the acquisition instruments. 

 
 

The displacements of the braces were recorded by means of potenziometric transducers. The jack was 
instrumented with an external wire transducer and a load cell. The acceleration of the model during the 
release tests were monitored by 6 servo-accelerometers with ±1g sensibility, arranged according to the 
scheme of figure 10. 

 
 

EXPERIMENTAL PROGRAM 
 
The first part of the experimental program included quasi-static cyclic tests on the structural model 
retrofitted with the SMA braces. The tests were carried out, by making three complete cycles for each 

 BASE FIRST FLOOR ROOF 

WEST VIEW EST VIEW 



value of the target displacement, referred to the displacement on top of the structure. In table 1 there are 
reported the target displacement and the number of cycles for each test. It can be noted that the maximum 
value of the displacement was 90mm. Despite of the manual control of the hydraulic jack, the 
displacements were reached with good precision. 
The aim of these tests was to check the actual cyclic behaviour of the structural system and of the braces, 
the effectiveness of the braces in their re-centring function, as well as to test their deformation limits, 
beyond the 25 mm design displacement. 
After these cyclic tests, a series of dynamic release test with a start displacement of about 70mm, slightly 
varied in the different tests, were made.  
Two release tests on the bare frame were also made, in order to evaluate the difference of behaviour with 
respect to the condition of braced structure, although in only one of these tests exploitable data were 
obtained, due to the malfunctioning of some instruments. 
After these dynamic tests, a new series of quasi-static tests were made on the bare frame, bringing the 
structure near to the collapse condition. The maximum displacement reached at the 1st floor was 125 mm, 
leaving the structure with large residual deformations and a permanent inclination of the vertical structural 
elements.  
 

Table 1 - Near static cyclic test program. 
Test # # of 

cycles 
Maximum dipl. (mm) Arrangement 

1 3 ±12  Braced structure 
2 3 ±30  Braced structure 
3 3 ±50  Braced structure 
4 3 ±70  Braced structure 
5 1 ±90  Braced structure 
6 3 ±90  Braced structure 

 
 

Table 2 – Dynamic release test program. 
Test # Initial displ. (mm) Arrangement Date 

1 71.28 Braced structure 04/12/03 
2 70.96 Braced structure 10/12/03 
3 77.72 Braced structure 10/12/03 
4 74.74 Braced structure 15/12/03 
5 86.13 Braced structure 15/12/03 
6 70.57 Bare structure 16/12/03 

 

 
MAIN RESULTS OF THE QUASI-STATIC CYCLIC TESTS 

 
In figures 9 and 10 there are shown the force-deformation relationship of the entire structure and of the 
brace system, at the two stories. The total base shear considered in the diagrams of fig. 9 corresponds to 
the total hydraulic jack force. The forces acting on the braces at the two stories in fig. 10, are evaluated by 
considering the arrangement and the position of the hydraulic jack. Therefore the force at the 2nd floor 
and the 1st floor were considered to be, from equilibrium conditions, respectively 2/3 and 1/3 of the total 
base shear. In the following graphs the force-displacement behaviour in terms of 1st and 2nd level forces 
and displacement, are presented, with reference to test n# 3. 
Some irregularities in the force-displacement curves, due to dynamic effects, can be noted, caused by the 
lack of control of the oil flow in the hydraulic jack during the unloading phase. However, the small energy 



dissipation is apparent, due to both the characteristics of the SMA devices and the great flexibility of the 
R/C frame, in spite of the high imposed displacement. The overall behaviour of the structure shows an 
excellent re-centering capacity, with practically no residual deformation when the load is removed. This 
feature is better shown in figure 10, which represents the force-displacement curves of the re-centring 
devices of each couple of braces at the two stories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9 – Force-displacement behaviour of the structure during the cyclic test #3. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 –Force-displacement behaviour of the couple of braces during the cyclic test #3. 
 

 
During test #5 at 90 mm displacement, the failure of few SMA wires in one of the 1st level braces 
occurred. The difference in the total recorded force before and after the wire’s failure indicates that about 
50% of the wires of one brace became ineffective. It was decided to go on with the tests, also to verify the 
effectiveness of the damaged protection system. Therefore, a further cyclic test was made at 90mm 
amplitude, giving a good behaviour, although the 1st level static re-centring capacity was reduced. 
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MAIN RESULTS OF THE DYNAMIC RELEASE TESTS  
 
The model was moved up to the release start position, 71.3 mm for the first release test and 70.6 mm for 
the final test, then the cut system was activated and in few seconds the 17mm calibrated bar section was 
cut to produce the instantaneous failure and the release of the frame. 
In the dynamic tests, the main check point was the top of the structure. As already said, there were two 
displacement transducers placed on the roof. The results are then reported as the mean values of the two 
displacement time histories. 
In figure 11 the responses of the braced frame and of the bare frame, respectively test #1 and test #6, are 
compared. The main effect of the bracing system is a faster reduction of the displacement amplitude.  
Another interesting outcome is represented by the peak roof acceleration reached during the dynamic test 
(figure 12). In test #1 and test #6 the peak roof accelerations were respectively 0.42g and 0.27g 
respectively. Also comparing the accelerations and corresponding displacements in the following peaks, it 
turns out that the mass accelerations that can cause the same structural displacement, and then damage to 
structural and non structural elements, is much larger in the case of the braced frame. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 – Roof displacement comparison between braced and bare frame. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 – Roof acceleration comparison between braced and bare frame,  
a) test #1 Braced frame, b) test #6 bare frame 

 
Based on the recorded data, also the effective structural damping was calculated, by assuming that the 
structure was a SDOF system, in which the considered degree of freedom was the roof displacement in the 
release direction.  
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The diagram of figure 13 shows the effective total damping exhibited by the system structure and braces 
for all the release tests, computed using the well known formula: 
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that produce the evaluation of the effective damping amount through the peak displacement of the roof, 
v(t) and v(t+T), at the times t and t+T, where T is the fundamental vibration period. In each time history, 
the first five cycles were considered and the greatest displacement for every test, that can be seen in figure 
13,  is the second relative peak of the roof displacement. Apart from test #5, which is the one relevant to 
the greatest reached displacement and present an effective damping value of about 14% at large 
displacement, all the other test show damping values of the order of 6-8%, with decreasing values as 
damage progresses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 – Roof displacement comparison between braced and bare frame. 
 
Another consideration can be made with regard to differences between large and small displacements. The 
contribution of the braces to the total effective damping is greater at large displacement due to the little 
hysteresis loops. The absence of this contribution at low displacement is more than recovered by the 
damping of the r/c members due the crack closure.  
Figure 14 shows the Gabor transform (Gabor [11]) of the acceleration signal recorded at the second level 
in the release direction. This representation of the structural frequencies permits to appreciate the variation 
of the fundamental frequency during the free oscillation. The fundamental frequency of the braced frame 
for large deformation was about 1.2 Hz, as a consequence of the non linear behaviour of the structure and 
of the bracing system, increasing up to 2.4 Hz for very small oscillations. 
After the release tests, the 4 braces were dismounted, however leaving the connection devices, which 
somehow modify the stiffness and strength characteristics of the columns. The bare frame was the 
subjected to further cyclic tests, in order to verify its mechanical characteristics, without overcoming the 
maximum previously reached displacement. Then, a release test was made, giving the fundamental 
frequency variation shown in figure 15. The minimum value of frequency, recorded in correspondence of 
the maximum displacement, was about 0.75 Hz, while the final frequency increases up to 1 Hz. The 
comparison of figures 14 and 15 confirm the strong influence of the braces on the overall behaviour of the 
model, as well as their strongly non linear behaviour, resulting in a much larger variation of fundamental 
frequency during free oscillation. 
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Figure 14 – Gabor Transform of the braced frame release test  #3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 – Gabor Transform of the bare frame release test  #6. 
 

SOIL INDUCED SEISMIC WAVES  
 
Within the same experimental program, the propagation in the soil of the seismic waves due to the 
vibrations of the structure during the dynamic tests was measured, in order to evaluate the possible 
interactions between close structures during earthquakes (Dolce [12]). In collaboration with the National 
Institute of Geophysics and Vulcanology (INGV) and the University of Bologna, MANY seismometric 
sensors were positioned around the test building, with the aim of understanding the way in which the 
structure transfer its energy to the ground and the attenuation of it with the distance. The acquisition 
instruments, shown in figure 16, were: 
 
1. In the near field (5 m) one accelerometer Etna Kinemetrics and one velocimeter Nakagrilla; 
2. One array L shaped composed by 7 three-directional sismometers, 6 of which at 1s (Mark L4C) and 1 

at 5 s (Lennartz), the distance between the seismometers was 15 and 10 m in the longitudinal and 
transverse directions respectively. 

3. One linear array composed by 11 vertical geophones at 11 Hz, equidistant at 10 m from 5 to 105m; 
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The more interesting results up to now elaborated, evidenced by recorded data, is the peak to peak 
acceleration in the near field, that was equal to about 0.10g in the dynamic test no.5, in which the initial 
displacement was greater than 85mm. 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure  

 

 

 

16 – Plan arrangement of the seismometric acquisition instruments. 
 

As can be seen in figure 17, probably due to the wavelength of the signal, the maximum value has been 
recorded at 10 m rather than at 5 m. Further confirmations of this fact, that can increase the evaluation of 
the induced PGA, can be obtained by the analysis of the three-directional seismometers array. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17 - Seismic waves recorded by the geophones . 



CONCLUSION 
 
Within the research projects TREMA and ILVA-IDEM, both aimed at studying and testing new 
techniques to retrofit existing buildings, some experimental tests have been carried out on an existing old 
2 storey, one-by-one bay, R/C structure to be demolished, which was designed in the seventieth for gravity 
loads only. The experimental tests were aimed at assessing the cyclic behaviour of the retrofitted structure. 
The retrofit design was based on the use of special braces, whose re-centring characteristics was 
determined by the superelastic properties of Shape Memory Alloy austenitic NiTi wires, which were the 
main components of the device included in each brace. The installation of the braces has proved to be easy 
and fast. Quasi-static cyclic tests and release tests were carried out on both the bare and the braced frame. 
Preliminary design dynamic non linear simulations showed that the upgrading system is able to allow the 
structure to withstand the design intensity earthquake with interstorey displacements of the order of 25 
mm. This was the target displacement assumed in the design of the SMA-based devices. During the cyclic 
tests, displacements up to twice the design displacements were reached, producing the failure of part of 
the wires of one brace. The subsequent release tests were therefore carried out with the retrofit bracing 
system partially ineffective at the first floor. 
The first results here presented demonstrates that the passive protection system based on the use of SMA 
wires behaves as expected, and is therefore able to provide the tested R/C structure with a strong re-
centring capability, increased safety at the Ultimate Limit State and displacement control at the Damage 
Limit State. It should also be remarked that in the direction of the test there was no frame and that the 
retrofitting system alone was able to fully protect the structure, with no unpredicted parasite effects. 
Further processing of the experimental data will provide more detailed information on the behaviour of the 
tested structural system and of the single braces. However the first results show that the real behaviour 
well corresponds to the predicted one, also due to the preliminary experimental tests carried out directly 
on the devices. 
The results of the tests and of the preliminary numerical analyses need to be extended and generalized, by 
making numerical parametric analyses on the structural model, set up on the base of the experimental 
results. Actually several seismic inputs and different retrofitting strategies shall be considered. In the 
present case the retrofitting strategy was based just on the strong re-centring capability of the braces, 
whose energy dissipation capacity is very low. Energy dissipation to limit displacements is then relied 
upon some inelastic excursion of the R/C structure. However, further energy dissipation capability can be 
easily provided to reduce displacements, by simply adding some dissipative elements or devices to the 
brace system. It will be interesting to check the behaviour of the structure under study, being very flexible 
and having little energy dissipation capacity.  
A specific concern is deserved by the seismometric acquisitions, which have confirmed that the structural 
vibrations can induce propagation of further seismic waves in the ground and, then, produce non 
negligible interactions among nearby buildings. Further processing of the huge amount of records will 
considerably improve the knowledge of these phenomena, whose detailed experimental evaluation is 
rarely feasible.  
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