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SUMMARY 
 
The main characteristics of the numerical methods for dynamic response analysis of single degree of 
freedom (SDOF) system in both frequency-domain and time-domain are briefly reviewed in this paper. 
Based on the uniform recursive formula, four methods (Central difference method, Newmark’s method, Z-
transform method and Duhamel’s step integral method) are systematically studied. The advantages, 
disadvantages, relative precision and applicability of the four methods are pointed out through analyzing 
the invariance of recursive parameters b1 and b2 which are related to the poles of the transfer function of 
system. The constraint condition of the system transform function at low frequency and the phase 
properties of the digital filter in theory and numerical calculating have been presented. Based on the 
invariance of operators in dynamic equation common characteristics of the four methods and the 
interrelation among recursive equation of relative displacement, relative velocity and relative acceleration 
are also obtained. This means if the recursive algorithm of relative displacement is known, the 
corresponding recursive equation of relative velocity or acceleration will be obtained easily. At last, a 
series of new algorithms for calculating displacement, velocity and acceleration response of SDOF system 
to arbitrary under ground motion are suggested. 
 

INTRODUCTION 
 
As we known, the dynamic response analysis of SDOF system is an important problem in earthquake 
engineering. With the development of computer technique, the precision in dynamic analysis is mainly 
restricted by the rationality of structure, the applicability of algorithms and the validity of earthquake 
input. Because the time step of strong motion seismograph is different, it will restrict the applicability of 
algorithms for calculating the earthquake response, especially for short period response of structure. In 
this paper, we take the single degree of freedom (SDOF) system for example and discuss the problem in 
essence and the effect on results of some algorithms. In all sorts of methods, because the recursive 
formulae have the characters that the calculation is quick, the format is simple and the physical 
significance is clear, the methods that we studied are written in uniform recursive format and compared. 
The methods for analyzing dynamic response of SDOF system can be classified into two categories. One 
is frequency-domain method; the seismic response can be gained by the Fourier integral transform and 
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inverse transform techniques. The characteristic of the method is that the accurate transfer function is 
known. The frequency-domain method need a complete input record, it is not adapted to real-time 
monitoring of earthquake ground motion. The other is time-domain method whose basic idea is to find a 
causality digital filter so as to make the transfer function )(zH of digital filter in Z plane ( tieZ ∆= ω , t∆ is 
time step, ω is angular frequency) close to the theoretical transfer function )(ωH  in the frequency range 
that engineer is interested in. There are two ways to find the transfer function of digital filter or the 
recursive formulae, one is to analyze dynamic response equation under some assumption of input or 
output, for example, difference method, Newmark’s method and Duhamel’s step integral method etc. The 
other is to gain the transfer function of digital filter by discrete Z transform technique based on the 
impulse response function of system. We can draw the following conclusions as mentioned above. Firstly, 
the transfer function of frequency-method is accurate and that of time-domain method is approximate. 
Secondly, the methods of frequency-domain and time-domain are both restricted by the step time. For the 
frequency-domain method, the proper frequency band was controlled by the effective frequency band of 
the discrete Fourier transform ( )2/1// 0 <∆<∆ TtTt d . dT  is the time length of input recording and 0T  
is the natural period of the SDOF system. For the time-domain method, the frequency band should satisfy 

2/1/0 0 <∆≤ Tt . The basis of frequency-domain method and time-domain method is the dynamic 
motion equation, the former transfer function )(ωH  was described by ω  of the Ω  plane in frequency-
domain and the latter )(zH  was described by z  of the Z  plane in time-domain, so the time-domain 
method can be viewed as how to find the transform relation between )(ωH  and )(zH . At last, 
frequency-domain method and time-domain method are equivalent for linear elastic problem in some 
frequency band that precision is controlled. But for nonlinear problem, the frequency-domain method is 
unsuitable however time-domain method is also applicable.  
 
There are numerous methods for analyzing dynamical response of SDOF system.In this paper four time-
domain numerical methods are studied, central difference method, Newmark’s method, Z-transform 
method, and Duhamel’s step integral method. A lot of researcher had studied the four methods, Kanamori 
etc. (1999), using the forward difference method, derived the recursive digital filter who used the least-
squares method, adjusted the parameter of transfer function and gained the relative displacement. The 
method was implemented in TriNet real-time monitoring of United States. Newmark’s method (Newmark, 
1956) is usually used to calculate the seismic response. In this paper we study it by digital filter and 
compare the difference between its transfer function and theoretical transfer function in order to get the 
recursive formulae of relative displacement, relative velocity and relative acceleration. Lee (1984, 1990), 
using Z-transform technique, studied the same oscillator and presented the recursive formulae of relative 
displacement, relative velocity and relative acceleration. Beck and Dowling (1988), using Duhamel’s step 
integral method and assuming successive linear segments of input acceleration, derived a set of 
complicated formulae. Recently, Liu (2001), assuming successive Lagrange polynomial segments of input 
acceleration, also derived a suit of complicated formulae. After carefully studying the above method, we 
find the following questions. Firstly, what is the relation between the transfer function of time-domain 
recursive filter and theoretical transfer function? Secondly, why the transfer function of time-domain 
methods can not simulate the sympathetic vibration character at high frequency? At last, what is the 
relation among displacement, velocity and acceleration recursive formula in time-domain? This paper tries 
to answer the questions. 
 
 

THE RECURSIVE FORMULAE OF FOUR NUMERICAL METHODS 
 
For the input acceleration, )(ta , the equation of motion of a SDOF linear oscillator with natural frequency 

0ω  and damping ratio ζ  is given 

)()()(2)( 2
00 tatxtxtx −=++ ωζω &&&                                                          (1) 

where the )(tx ， )(tx&  and )(tx&&  denote relative displacement, velocity and acceleration, respectively. The 
equation is discretized by time interval t∆ . It takes the form 

11
2
0101 2 −−−− −=++ jjjj axxx ωζω &&&                                                           (2) 



where 1−ja , 1−jx ， 1−jx&  and 1−jx&& are the input recording ,the relative displacement, velocity and 
acceleration at the time tjt ∆−= )1( , ( Nj ,,2,1 L= ), N  is the total sampling number. In terms of 
Fourier transform of equation (1), it is easy to obtain the following transfer functions of displacement, 
velocity and acceleration, respectively. 
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where )(ωA ， )(ωx ， )(ωx&  and )(ωx&&  are the Fourier transform of )(ta ， )(tx ， )(tx&  and )(tx&& . 
 
Central Difference Method 
Assuming that 2/3−jx ， 2/1−jx  are the sampling at the time tjt ∆−= )2/3(  and tjt ∆−= )2/1(  of 

)(tx , in terms of the definition of central difference definition, it takes the form 
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Substituting (4) into (2), the recursive relation is given by 
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Assuming 2/)( 122/3 −−− −= jjj xxx  and 2/)( 12/1 −− += jjj xxx , and it is also the same with the relative 
velocity and acceleration, the equation is simplified as 
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with 
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In terms of Fourier transform, the transfer function of equation (6) is given 
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For central difference, this shows that the transfer function equation (3) simulates the theoretical transfer 
function equation (8). In terms of Fourier transform, the equation (4) becomes 
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Based on the theoretical relation between the Fourier spectral of displacement and that of velocity, and 
comparing with equation (9), it is easy to understand that the central difference method is equivalent to the 
following transform 
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Newmark’s Method 
Newmark (1959) assumed that 
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It can be proved that under the stability condition the phase will change if 4/1,2/1 ≠≠ αβ . So 
4/1,2/1 == αβ  are chosen. The equation (11) becomes 
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Based on the equation (12), it can be proved that the Newmark’s method is equivalent to the following 
transform 
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Substituting (13) into (3), the recursive filter is given by 
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with 
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Z-transform Method 
Lee (1990), using the Z-transform technique of impulse response function, derived the transfer functions 
corresponding to the digital recursive filter of seismic response x , x& and x&& , respectively 
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The recursive formula in the time-domain is 
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In equation (16) and (17), the coefficients 1b , 2b and 0S are, respectively 
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It will notice that the form of the second formula of equation (17) is not the same as the equation (12) in 
Lee’s paper but they are equivalent to each other.  
 
Duhamel’s Step Integral Method 
Assuming that the input acceleration )(ta  may be approximated by a linear function in time interval 

],[ 1 jj tt − , making the 1−jx and 1−jx&  as the initial condition in the time interval (Nigam and Jennings, 
1968; Li Dahua,1992), the recursive relation of consecutive time of )(tx , )(tx&  and )(tx&&  can be obtained. 
In terms of the deduction of Beck and Dowling (1998), the recursive formula is given by 
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The coefficients 21 , bb and 0S are given by (18), the coefficients ddd eee 321 ,, and ddd www 321 ,,  are given 

by 
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and 
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THE THEORETICAL ANALYSIS OF THE RECURSIVE FILTER FORMULAE 

 
The Coefficients 1b  and 2b  

The coefficients 1b  and 2b  of recursive filter are related to the poles of the transfer function, and 
invariables. In order to explain the concept, take relative displacement for example, the recursive formulae 
of four methods are given by, uniformly 
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We compared (3) with (23), it if easy to get the relation between the theoretical transfer function )(ωxH  
and the transfer function )(zH x  of Z plane. With tiez ∆= ω  is 
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In (24), 1ω and 2ω  are two poles of theoretical transfer function, respectively 01 ζωωω id +=  
and 02 ζωωω id +−= . When transforming the poles from ω plane to z plane, they become tieZ ∆= 1

1
ω  

and tieZ ∆= 2
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ω respectively. So the 1b  and 2b  are, respectively 
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These indicate that the coefficients 1b  and 2b  are related to the poles of the transfer function. Because the 
poles of transfer function of relative velocity and acceleration are the same as relative displacement, the 
coefficients 1b  and 2b  are invariable. We call it the invariance of the recursive coefficients. All the four 
method have the same properity. The coefficients 1b  and 2b  of the Z-transform and the Duhamel’s step 
integral are the same as equation (25), but for central difference and Newmark’s method, only when 
the t∆0ω  is small enough, they will be closed to equation (25). If the t∆0ω  is not small enough, it will 
result in large departure of the resonant frequency of the transfer function of the recursive filter (Fig.2 and 
Fig.3), which are caused by the central difference transform and the Newmark’s transform, as show in 
Fig.1. 
 
Low Frequency Constraint Condition 
When 0→ω , the low frequency limit will approach to the character of the zero frequency of the 
theoretical transfer function 
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The following form can be obtained 
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It is the low frequency constraint condition of recursive filter of relative displacement. The curves of 0S  
are shown in Fig.4. According to the analysis of the four methods, it can be proved that the Duhamel’s 
step integral method satisfies the equation (27) but the Z-transform method does not. The central 
difference method and Newmark’s method satisfy the constraint condition, but when t∆ω  is not small 
enough the coefficients 1b  and 2b  do not satisfy the theoretical value—equation (25). The coefficients 1e , 

2e and 3e  of four method are given by Table.1, and the change of 1e , 2e and 3e  following the t∆0ω  is 
given by Fig.5. Furthermore, 1e , 2e and 3e  can be considered as the weight of the ja , 1−ja  and 2−ja . By 
the same token, the recursive formulae of relative velocity are given by, uniformly 
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The low frequency constraint condition is 
0321 =++ www                                                                (29) 



All the four methods satisfy the constraint condition. The change of 1w , 2w and 3w  of Duhamel’s step 
intergral method following the t∆0ω  is given by Fig.6. 

Table  1. The value of the coeffients 1e , 2e and 3e  of four methods 

 Central Difference   Newmark’s   Z-transform  Dahamel’s step 
integral 

1e  0  0.25  0  0.17~0.20 

2e  1  0.5  1  0.67~0.61 

3e  0  0.25  0  0.17~0.18 
 
Character of the Phase 
As shown before, the central difference method and Newmark’s method are the pure transform of 
amplitude, and the phases are not changed in the range of the precision. When the 1.00 <∆tω (Fig.1), the 
phases are basically same to the phases of the theoretical transfer function. But if the t∆0ω  is not small 
enough, the resonant frequency of digital filter will be departure from that resonant frequency of 
theoretical transfer function. Lee (1990) proved that the phase is the same as that of Z-transform method. 
Beck and Dowling (1988) studied the Duhamel’s step integral method, and the same conclusion was 
drawn. According to analysis, we also find that the input acceleration only reserve one term 1−ja  or 
parameters are 1,0 231 === eee of central difference method and Z-transform method, but the 
weights of Newmark’s method are 5.0,25.0 231 === eee . The weight of 1−ja  is the most and the 
weight of ja is the same as 2−ja . In fact, this phenomenon is not occasional. Assuming that 31 ee ==δ , 
then δ212 −=e , in terms of Fourier transform of 23121 −− ++ jjj aeaeae , it takes the form 
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It indicates that, in Newmak’s method and Duhamel’s step integral, the weights of ja and 2−ja  are almost 
symmetrical about 1−ja  and that does not change the phase but reduce the amplitude of transfer function. 
So a supplementary condition is obtained as follows 
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Fig.1 The error analysis of 
Newmark transform and 
central diffence transform. 

Fig.2 The curves of 
coefficient 1b  with =ζ 0.05 

Fig.3 The curves of coefficient 

2b  with =ζ 0.05 

Fig.4 The curves of coefficient 

0S with =ζ 0.05 
Fig.5 The curves of coefficients 

1e , 2e and 3e of Duhamel’s step 
integral method with =ζ 0.05 

Fig.6 The curves of coefficients 
dw1 , dw2 and dw3 of Duhamel’s step 

integral method with =ζ 0.05 



NUMERICAL ANALYSIS  
 
In order to investigate the calculation precision of the four methods of SDOF system, the amplitude 
spectrum ratio Q  and the phase spectrum difference φ∆ are introduced in this paper, which are defined as 
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Where )(ωxH and )(ωφx  are respectively amplitude spectrum and phase spectrum of theoretical 
displacement transfer function, and ),( tH x ∆ω and ),( tx ∆ωφ  are respectively amplitude spectrum and 
phase spectrum of displacement transfer function of digital filter. The definition of the amplitude 
spectrum ratio and the phase spectrum difference of velocity and acceleration are similar to equation (32). 
With =ζ  0.05 and =∆ 0/ Tt 1/30,1/20,1/10,1/8,1/6,1/4, we calculate the amplitude spectrums and phase 
amplitude spectrums of four methods, respectively, and compare them with the theoretical spectrums. 
Referring Fig 7. From the figures, we can see that with 0/ Tt∆  increasing, the relative error of amplitude 
spectrums will greatly increase. For central difference method and Newmark’s method, with 

0.0 0.5 1.0 1.5 2.0
0

4

8

12

 

A
m

pl
itu

de
 S

pe
c.

(×
ω 02 ) 

∆t/T
0
=1/20  T

 C
 N
 Z
 D

0.0 0.5 1.0 1.5 2.0
-90

-60

-30

0

30

60

90

 

P
ha

se
 S

pe
c.

(o ) 

0.0 0.5 1.0 1.5 2.0
0.90

0.95

1.00

1.05

1.10

ω/ω
0
 

A
m

pl
itu

de
 R

at
io

 

 

 

0.0 0.5 1.0 1.5 2.0
-180

-90

0

90

180

P
ha

se
 D

iff
er

en
ce

(o ) 

 

 

ω/ω
0

0.0 0.5 1.0 1.5 2.0
0

4

8

12

 

A
m

pl
itu

de
 S

pe
c.

(×
ω 02 ) ∆t/T

0
=1/8  T

 C
 N
 Z
 D

0.0 0.5 1.0 1.5 2.0
-90

-60

-30

0

30

60

90

 

P
ha

se
 S

pe
c.

(o ) 

0.0 0.5 1.0 1.5 2.0
0.4

0.7

1.0

1.3

1.6

ω/ω
0
 

A
m

pl
itu

de
 R

at
io

 

 

 

0.0 0.5 1.0 1.5 2.0
-180

-90

0

90

180

P
ha

se
 D

iff
er

en
ce

(o )

 

 

ω/ω
0

(a) 20/1/ 0 =∆ Tt , =ζ 0.05 

(b) 8/1/ 0 =∆ Tt , =ζ 0.05 

 Fig.7 Amplitude spectrum, phase spectrum, amplitude spectrum ratio and phase 
spectrum difference of transfer function of relative .displacement 



=∆ 0/ Tt 1/30 and 1/20, the relative error less than 5% and 10% respectively, and with ≥∆ 0/ Tt 1/10, the 
error of amplitude spectrum and phase spectrum difference increase quickly and the departure of resonant 
frequency of transfer function of digital filter from that of theoretical transfer function is occurred. The 
resonant frequency of the Newmark’s method is less than the theoretical resonant frequency, but that of 
central difference method is larger than that of theory. Fig.1 can explain the phenomena. For Z-transform 
method and Duhamel’s step integral method, with =∆ 0/ Tt 1/30,1/20,1/10, the relative errors are less 
than 1%, 3% and 10% respectively, but with ≥∆ 0/ Tt  1/8, the relative errors are more than 20%. The 
difference of phase centralizes around the resonant frequency, and following the increase of t∆0ω , the 
frequency band of the phase difference widen. For relative velocity (Fig.8) and acceleration (Fig.9), the 
characters are similar to the relative displacement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 
1. The assumptions of central method and Newmark’s method are equivalent to the transform of 
equation (10) and (13), and the calculation precision is controlled by the transforms. With 

20/1/0 0 <∆≤ Tt , the relative errors of amplitude spectrum are less than 10%. With 
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(a) 20/1/ 0 =∆ Tt , =ζ 0.05 

(b) 8/1/ 0 =∆ Tt , =ζ 0.05 

Fig 8. Amplitude spectrum, phase spectrum, amplitude spectrum ratio and phase 
spectrum difference of transfer function of relative velocity. 



10/1/0 0 <∆≤ Tt , the relative errors of amplitude spectrum of Duhamel’s step integral method and Z-
transform method are less than 10%. 
2. When 10 <<∆tω , the phase spectrums of central method and Newmark’s method are hardly 
unchangeable, but with the increase of t∆0ω , there are larger phase errors around resonance frequency. 
The theoretical phases are simulated well by Z-transform method and Duhamel’s step integral method, 
and the error are small. So, the precision of central difference method and Newmark’s method is almost 
same, and that of Z-transform method and Duhamel’s step integral method is almost same and that is 
higher than the central difference method and Newmark’s method. 
3. There are two important coefficients 1b and 2b  in the recursive, and they are relate to the poles of 
theoretical frequency response function in Z plane. With the increase of t∆0ω , for central difference and 
Newmark’s method the coordinate of poles and the resonant frequency will be departure, but the Z-
transform method and Duhamel’s step integral method will not. 
4. 0S , an important coefficient, indicates the character of low frequency and relates to 1b and 2b . 
For the four methods, only does Duhamel’s step integral method satisfy the low frequency constraint 
condition. The coefficients, 1e , 2e and 3e , which determined by the assumption of input acceleration and 
output seismic response, they will satisfy the equation 1321 =++ eee . For the phase constant, the 
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Fig 9. Amplitude spectrum, phase spectrum, amplitude spectrum ratio and phase 
spectrum difference of transfer function of relative acceleration. 



condition δ== 31 ee  will be satisfied. According to the analysis, we recommend the following recursive 
digital filter 
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The value of δ  can be gained by least square method and its range is 0 to 0.25. In other paper, we will 
introduce the value δ  and the numerical analysis. 
5. It is necessary to point out that in equation (33), the recursive formula of calculation relative 
velocity and acceleration can be derived by the recursive formula of calculation relative displacement. 
This is because of operator invariability of dynamic equation (1). 
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