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SUMMARY 
 
The Northern Algeria (Mw = 6.8) earthquake occurred on 21 May 2003 and affected a large coastal region 
in Algeria.  This event is one of the first large earthquakes to be imaged immediately thereafter by a high-
resolution commercial satellite, and therefore, represents a unique opportunity to evaluate whether 
detailed earthquake damage can be accurately identified from high-resolution satellite images.  High-
resolution (0.6 m), pre- and post-earthquake images of the severely damaged Algerian city of Boumerdes 
were acquired by the Quickbird satellite and used for this study.  Semi-automated, thematic classification 
algorithms were investigated as methods to identify specific collapsed and pancaked buildings using only 
a post-earthquake, pan-sharpened image.  Classifications were performed first using only spectral (color) 
information, but were then extended to include both spectral and textural information.  Supervised 
classification using spectral and textural signatures provided the most accurate identification of heavily 
damaged areas in the image.  Additionally, change detection algorithms, which compare pre- and post-
earthquake images, were investigated.  Change detection allowed for a more complete documentation of 
damage across parts of the city, but also suffered from limitations related to image changes that were not 
related to the earthquake.  A damage map of Boumerdes developed from the satellite images revealed that 
the heaviest damage was concentrated in the southwestern part of the city.  The results of this study 
indicate that high-resolution satellite images analyzed using semi-automated classification algorithms, or 
simple visual classification, are potentially useful for identifying areas exhibiting severe earthquake 
damage.   
 

INTRODUCTION 
 
With the recent successful launch of high-resolution commercial satellites, the ability to identify 
earthquake-induced damage from satellite imagery is a reality.  Digital data from high-resolution 
commercial satellites have spatial resolutions as high as 0.6 m, and therefore, these data potentially 
contain a wealth of information for mapping earthquake damage.  Several methodologies developed in 
image and signal processing for thematic mapping and monitoring change in multi-temporal data sets can 
be utilized to extract this information.  Two widely used approaches are: (1) thematic classification and (2) 
change detection.  Both approaches have advantages and disadvantages with respect to their ability to 
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provide the necessary information for earthquake reconnaissance and earthquake response over a large 
areal extent.   
 
This study used pre- and post-earthquake satellite images from the 21 May 2003 Northern Algeria (Mw = 
6.8) earthquake as a test bed for demonstrating the ability to identify earthquake damage from satellite 
images.  Pre- and post-event images of the city of Boumerdes, a small coastal city severely affected by the 
earthquake, were obtained from the Quickbird satellite (www.digitalglobe.com).  Both semi-automated 
thematic classification methods and change detection methods based on visual examination were 
investigated to identify damage in the images.   
 

DAMAGE DETECTION METHODOLOGIES 
 
Over the last few years the remote sensing field has advanced significantly with the launch of high-
resolution commercial satellites, such as Quickbird in 2001 (www.digitalglobe.com) and IKONOS in 
1999 (www.spaceimaging.com).  These satellites carry sensors that collect digital image data at spatial 
resolutions of 0.6 m (Quickbird) to 1 m (IKONOS), which allows identification of terrestrial features such 
as individual buildings, roads, and even cars.  These satellites acquire panchromatic data (a single band 
between 450-900 nm in the electromagnetic spectrum, usually displayed as gray-scale) at high resolution 
(0.6 to 1.0 m), as well as multispectral data at lower resolution (2.8 to 4.0 m).  The multispectral sensors 
on these platforms collect data in distinct spectral bands (blue 450-520 nm, green 520-600 nm, red 630-
690 nm, near infrared 760-900 nm) that provide important spectral (color) information about the target.  
Although the multispectral data are collected at a lower resolution (2.8 m for Quickbird, 4 m for 
IKONOS), they can be fused with the higher resolution panchromatic data to produce spatially enhanced 
color images, called pan-sharpened images. 
 
In image analysis, thematic classification involves labeling objects or regions of interest within a digital 
image using information derived from “features” extracted from the image data [Schowengerdt 1].  
Classification of individual pixels (referred to as pixel-by-pixel classification) is based on the values of the 
features associated with that pixel and is commonly used in remote sensing data analysis.  A wide range of 
methods, including statistical, artificial intelligence, and user-defined rule based methods, have been 
developed to accomplish the classification task.  Thematic classification typically is performed on single 
images, although sequences of data can be analyzed jointly if available.  Earthquake damage detection 
using solely post-earthquake satellite images essentially involves classifying parts of an image as 
“damaged” and “undamaged” based on characteristics of the image and uses common classification 
algorithms.  This is an attractive approach for earthquake damage detection because it requires only a 
post-earthquake image.  However, the choice of the characteristics that distinguish between the various 
regions of interest (often called classes) is extremely critical to the success of the classification.  Common 
characteristics used in thematic classification are spectral responses (e.g., amplitude responses in the blue, 
green, red, and infrared bands) and texture.  Texture is a feature that shows promise in distinguishing 
between damaged and undamaged areas [Zhang and Xie 2] because it provides information about the 
“spatial distribution of tonal variations” in an image [Haralick et al. 3].  Further, texture is also a stable 
characteristic that does not change significantly with illumination, season, or location, unlike spectral 
(color) characteristics that often vary seasonally with sun angle and vegetation cycles.   
 
Most quantitative textural characteristics are based on statistical measures of the change in tone (or gray 
scale) across an image area.  Second-order statistics derived from the gray-tone co-occurrence matrix 
(CM) of an image often provide useful information regarding texture [Julesz 4].  The contents of CM(i,j) 
are the probabilities that a pair of gray levels (i,j) occur at a separation of h units.  The separation, h, is 
defined in terms of a number of pixels and a direction (e.g., horizontal, vertical, diagonal).  The 
probabilities within the CM are referenced as p(i,j).  If an image has a “smooth” texture and h is small 



compared to the size of the textural elements, pairs of points tend to have similar gray levels.  These large 
numbers of similar gray levels result in large values close to the diagonal of the CM and small values 
away from the diagonal.  If an image has a “rough” texture, then pairs of points tend to have dissimilar 
gray levels, which results in more scatter about the diagonal within the CM.  In the pioneering work of 
Haralick et al. (1973), a variety of scalar textural measures based on the CM were proposed to quantify the 
scatter within the CM (e.g., contrast CON = Σ (i – j)2·p(i,j), dissimilarity DIS = Σ ⎢i – j⎥·p(i,j), angular 
second moment ASM = Σ p(i,j)2, and entropy ENT =-Σ p(i,j)·log p(i,j)).  Each extracts different spatial 
information and is affected differently by the scatter in the CM.  CON and DIS are measures of local 
variation, while ASM is a measure of homogeneity.  ENT is a measure of randomness in an image.  
Haralick et al. [3] and Weszka et al. [5] used these textural measures, as well as combinations of these 
measures, to classify terrain type from aerial photographs, land use from satellite imagery, and sandstone 
types from photomicrographs.  These texture measures are still used in classification applications today 
[Schowengerdt 1].  More recently, methods such as Gabor filters [Lamei et al. 6], wavelets [Fukuda and 
Hirosawa 7], Markov random fields [Derin and Elliott 8, Manjunath and Chellappa 9, Won and Derin 10], 
and multi-resolution methods [Bouman and Liu 11, Krishnamachari and Chellappa 12] have become 
popular for representing texture.    
 
Change detection is another attractive approach for earthquake damage detection because it involves 
identification of major changes between pre- and post-earthquake images.  Singh [13] reviewed traditional 
semi-automated change detection methods used with digital images.  Some frequently used change 
detection methods include image differencing, image-to-image correlation, image ratioing, and principal 
component and minimum noise fraction (MNF) analysis.  These methods have been used to identify 
buildings, monitor land use changes, and assess deforestation.  Huyck et al. [14] used moderate resolution 
(20 m by 20 m pixels) pre- and post-earthquake optical satellite images from the 1999 Kocaeli, Turkey 
earthquake to investigate the ability of change detection to identify earthquake damage.  Using post-
earthquake reconnaissance damage data, Huyck et al. (2002) characterized the damage distribution across 
the city of Golcuk.  The city was divided into five regions based on the percentage of the building stock 
that had collapsed during the earthquake.  The regions ranged from areas with less than 6% of the 
building stock collapsed to areas with more than 50% of the building stock collapsed.  Image differencing 
was performed for each of the five defined regions.  The results showed that areas with more damage 
became brighter in the images after the earthquake due to the higher reflectance of rubble.  The most 
significant difference occurred for areas with more than 50% of the buildings collapsed. 
 
Change detection requires that the pre- and post-earthquake images be aligned geometrically (co-
registered) and that the impact of differences in sun angle and atmospheric conditions at the times the two 
images were collected be mitigated.  Additionally, the images typically contain changes that are not 
earthquake related, and thus may incorrectly identify some damaged areas.  This issue becomes even more 
problematic when analyzing high-resolution images because these images contain small-scale features, 
such as traffic congestion, that are highly transient.  Finally, pre-earthquake images may not always be 
available, and in this case, change detection is not impossible.   
 
Although single-image thematic classification of post-earthquake images does not suffer from the issues 
noted for change detection algorithms, thematic classification does require the existence of significant 
distinguishable differences in damaged and non-damaged areas.  Thus, only severely damage and fully 
collapsed/pancaked buildings typically can be identified via thematic classification. 
 



NORTHERN ALGERIA EARTHQUAKE 
 
Earthquake Effects 
The Northern Algeria earthquake (Mw = 6.8) occurred on 21 May 2003 along the northern coast of 
Algeria, east of the capital city of Algiers (Figure 1).  The northern coast of Algeria is an area of high 
seismicity that coincides with the boundary between the Eurasian and African plates.  This thrust event 
occurred on a previously unknown northeast-trending reverse fault that dips predominantly to the south.  
Preliminary fault rupture inversions indicate that the fault ruptured bilaterally from its epicenter, 
approximately 30 km to the west and 20 km to the east.  The zones of largest slip occurred near the 
epicenter and near the western terminus of the rupture [EERI 15].   
 
The city of Boumerdes is located approximately 30 km west of the earthquake epicenter, very close to the 
western terminus of the rupture and a zone of high slip indicated by fault rupture inversions.  No ground 
motions were recorded in Boumerdes during the main shock.  However, ground motions recorded 12 to 20 
km inland from Boumerdes measured peak ground accelerations in the range of 0.3 to 0.5 g.  These 
motions are consistent with those predicted by current attenuation relationships for reverse events [EERI 
15].   
 
The city of Boumerdes was founded in 1958 as an educational and administrative outpost for the capital, 
Algiers.  Because of the relatively recent establishment of the city and the original purpose of establishing 
the city, the building stock consists mostly of reinforced concrete frame structures constructed by 
government-owed construction companies [EERI 15].  Approximately 18% of the building stock in 
Boumerdes was destroyed by the earthquake, with the damage predominantly occurring to large multi-
story structures [EERI 15]. 
 

 
Figure 1. Epicenter of the Northern Algeria earthquake and city of Boumerdes [16] 

 
Satellite Data 
Three sets of satellite images were obtained from the Quickbird satellite, operated by DigitalGlobe 
(www.digitalglobe.com).  The pre-earthquake image was acquired on 22 April 2002 at an off-nadir angle 
of 11°.  The off nadir angle represents the angle (measured from vertical) at which the sensor was pointed 
when acquiring an image.  As images are acquired at larger off nadir angles, more geometric distortion is 
observed in an image.  Two post-earthquake images were obtained: one acquired on 23 May 2003 (24° off 
nadir) and the other on 18 June 2003 (8° off nadir).  The 23 May 2003 image represents the earliest 



possible attempt to capture an image of Boumerdes, but it had a large off nadir angle because of the 
location of the satellite at that time.  By 18 June 2003, the satellite orbit allowed an image of Boumerdes 
to be collected at a much smaller off-nadir angle.  For each date, a 2.8-m resolution multispectral image 
and a 0.6-m resolution panchromatic image were obtained and fused to create pan-sharpened color images 
at 0.6-m resolution.  Figure 2 is the 23 May 2003 pan-sharpened satellite image of the entire city of 
Boumerdes.   
 

 
Figure 2.  Pan-sharpened satellite image of Boumerdes  

acquired on 23 May 2003 (from DigitalGlobe) 
 
 

IDENTIFICATION OF EARTHQUAKE DAMAGE 
 
Semi-Automated Thematic Classification 
Initial investigations focused on using semi-automated thematic classification to identify heavily damaged 
buildings in a small section of southwestern Boumerdes using only the post-earthquake image.  Figure 3 
shows the pan-sharpened 23 May 2003 image of this section of Boumerdes.  This section of Boumerdes 
was chosen because fully collapsed structures are readily visible, but many undamaged are also present.  
Classification of this Boumerdes image focused on trying to accurately identify the five fully collapsed 
and pancaked structures labeled (a) through (e) in Figure 3.  All image analysis was performed with the 
software ENVI 3.4 [Research Systems, Inc. 17]. 
 
Visual inspection of this image indicates that the damaged areas have distinct color (i.e. spectral) 
characteristics, as well as textural characteristics.  The challenge is to identify which characteristics best 
distinguish between damaged and undamaged areas.  For this initial evaluation of distinguishing 
characteristics, five general classes within the image were defined: (1) collapsed structures and debris, (2) 
asphalt and undamaged buildings, (3) soil, (4) vegetation, and (5) shadow.  Training areas for each class 
were identified within the image, each area encompassing between 1,000 and 2,000 m2.  These training 
areas represent only a small percentage of each class within the image.  After defining the training areas, 
classification was performed with a maximum-likelihood, supervised classification algorithm.  In 
supervised classification, the training data are used to estimate the characteristics/attributes of each class 
and then the remaining pixels in the image are labeled as one of the defined classes based on the class the 
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pixel most resembles [Lillesand et al. 18].  A maximum-likelihood classifier assigns the pixel to the class 
for which the statistical likelihood function is maximized.   
 
The initial supervised classification used only data from the spectral bands (blue, green, red, and near 
infrared) as input into the classification algorithm.  Separability analysis was performed to evaluate the 
statistical separability of the training classes.  The Jeffries-Matusita separability measure [1], which ranges 
between 0.0 (low separability) and 2.0 (high separability), is reported for each pair of classes.  Typically, 
separability greater than 1.9 is desired.  Using only spectral data, the separability analysis indicated low 
separability (Jeffries-Matusita separability measure between 0.9 and 1.3) for class pairs 1-2 (collapse-
asphalt/buildings), 2-3 (asphalt/buildings-soil), and 1-3 (collapse-soil).  All other class pairs displayed 
separability greater than 1.9.   
 

 

Figure 3. Post-earthquake, pan-sharpened image of southwestern Boumerdes 
 
The resulting maximum-likelihood classification using only spectral data is shown in Figure 4.  In this 
figure the red areas represent collapse and debris (Class 1), the green areas represent undamaged buildings 
and asphalt (Class 2), the blue areas represent soil (Class 3), the yellow areas represent vegetation (Class 
4), and the cyan-blue areas are building shadows (Class 5).  Approximately 73% of the collapse area 
(Class 1), as defined by the five collapsed buildings, is accurately identified as collapse and debris.  This 
corresponds to a 27% omission error.  Additionally, approximately 53% of the classified collapse areas 
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(i.e., red areas in Figure 4) do not correspond to the identified collapse areas.  This represents a 47% 
commission error.  These misclassified areas are located predominantly north of the collapsed buildings.  
Visual examination of Figures 3 and 4 reveals that these areas correspond to regions that have a spectral 
signature similar to the collapsed areas.  Note the white cars and building roofs misclassified as collapse 
near the top of the image because their color is similar to the collapsed structures.  The large commission 
error for the collapse class (Class 1) is not surprising based on the results of the separability analysis, 
which indicated that Classes 1 and 2, and Classes 1 and 3 displayed low separability.  To better 
distinguish between damaged and undamaged areas, textural measures were considered in the 
classification. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Classification results using only four spectral bands 
 
Texture characteristics are useful in image classification because they are related to the “smoothness” or 
“roughness” of gray scales across an image.  Visual inspection of Figure 3 suggests that collapsed areas 
have rough texture, with large variations in tone over small distances, while the undamaged areas have 
smooth texture, with little variation in tone over distance.  Therefore, texture should help distinguish 
collapsed areas from undamaged areas.   
 
As discussed earlier, second-order statistics derived from the gray-tone co-occurrence matrix (CM) 
provide useful information regarding texture [4].  The elements within the CM are referenced as p(i,j), 
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where i and j are gray levels.  Eight scalar texture measures were computed across the image for a 20 by 
20 pixel window, shifted 10 pixels horizontally.  Comparing the average texture measures for the five 
training classes indicated that the collapse areas (Class 1) displayed distinctively large values of contrast, 
CON = ∑ (i-j)2⋅p(i,j), and dissimilarity, DIS = ∑ ⎢i-j⎟⋅p(i,j).  Both CON and DIS quantify the regular 
scatter about the diagonal in the CM matrix, p(i,j), using weights that increase as (i-j) increases.  
Separability analysis then was performed using the four spectral bands and the texture measures CON and 
DIS.  The separability for class pairs 1-2 (collapse-asphalt/buildings), 2-3 (asphalt/buildings-soil), and 1-3 
(collapse-soil) improved significantly (Jeffries-Matusita separability measures greater than 1.65). 
 
Maximum-likelihood supervised classification was performed using the four spectral bands and the two 
texture measures CON and DIS.  The same training classes from the previous analysis were used.  The 
four spectral bands and the two texture measures were used as input for the classification.  The resulting 
classification using both spectral and textural measures is shown in Figure 5.  The collapsed areas are 
better classified in this analysis, with only a 15% omission error.  The commission error (classifying 
undamaged areas as collapsed areas) is still relatively high, with about 35% of the red areas in Figure 5 
representing undamaged areas.  However, these areas tend to be spatially distributed throughout the  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Classification results using CON and DIS textural measures and four spectral bands 
 
 

Red:   Collapse and debris 
Green:  Asphalt and  

 undamaged buildings 
Blue:  Soil 
Yellow:  Vegetation 
Cyan:   Shadow 

a 

b

e 

d c 

50 m 



image and do not confuse visual identification of the collapsed buildings.  The final classification image 
allows the analyst to distinguish between zones with heavy damage (bottom of image) and zones with 
little damage (top of image).  Most of the red areas in Figure 5 that do not correspond with collapsed 
buildings tend to represent areas with closely spaced cars that have textural and spectral characteristics 
that are similar to the collapsed areas.   
 
Change Detection 
 
As noted previously, change detection requires both pre- and post-earthquake satellite images.  For the 
northern Algeria earthquake, one pre-earthquake image was available (22 April 2002), along with two 
post-earthquake images acquired about one month apart (23 May 2003, 18 June 2003).  Typically, change 
detection requires co-registration of the images such that the same regions are compared in the two 
images.  In this preliminary study, only visual change detection was considered (no co-registration 
required) in an effort to investigate: (1) the issues that may result in inaccurate damage identification from 
change detection, and (2) the information that potentially can be extracted using change detection that 
cannot be obtained from thematic classification. 
 
Change detection algorithms identify all differences that are present between two images.  When using 
change detection to distinguish regions damaged by an earthquake, it is important to consider what 
changes in the images are not due to the earthquake.  This issue is particularly critical for high-resolution 
satellite images, which capture various features that are highly transient.  For example, Figure 6 shows a 
region of Boumerdes acquired before (April 2002, Figure 6a) and after (May 2003, Figure 6b) the 
earthquake.  Although these images represent the same section of the city, there are significant spectral 
and textural differences in the image.  These differences are caused by a large collection of vehicles that 
were present in April 2002, but not in May 2003.  Change detection methods would classify this part of 
Boumerdes as significantly changed, although the change was not caused by the earthquake.  Other non-
earthquake changes that may be identified by change detection algorithms include construction of new  
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Figure 6. Non-earthquake changes in satellite images acquired on  
(a) 22 April 2002 and (b) 23 May 2003. 
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Figure 7. Identification of partially damaged buildings by comparing  
(a) 22 April 2002, (b) 23 May 2003, and (c) 18 June 2003 satellite images. 

 
infrastructure, seasonal changes in vegetation, and partial cloud cover.  Because of these issues, results 
from automated change detection results should be visually examined to ensure that the areas identified as 
changed were, in fact, changed by the earthquake.   
 
Thematic classification of these images via the maximum likelihood method only allows fully-collapsed 
and pancaked buildings to be identified.  Change detection can detect less dramatic damage because of the 
comparison between the pre-earthquake and post-earthquake configurations.  Figure 7 again focuses on 
the damaged areas in southwestern Boumerdes.  Figure 7a shows the pre-earthquake image, while Figures 
7b and 7c are the post-earthquake images.  If one considers only the 23 May 2003 post-earthquake image 
(Figure 7b), only the fully-collapsed buildings can be readily identified.  No other damaged structures can 
be definitively identified.  However, comparison of the 22 April 2002 image (Figure 7a) and the 23 May 
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2003 image (Figure 7b) reveals that the two buildings in the center of the image have translated 
significantly (approximately 5 m) from one another.  This amount of movement is indicative of severe 
earthquake damage.  This hypothesis is confirmed by the 18 June 2003 image (Figure 7c), which reveals 
that both of these buildings (along with the five fully-collapsed buildings) have been demolished and 
removed. 
 
The 23 May 2003 and 18 April 2003 images represent an interesting opportunity to compare the damage 
information that is extracted immediately after an earthquake and about one month after an earthquake.  
The 23 May 2003 image, taken only two days after the earthquake, allows for a quick evaluation of 
damage shortly after the earthquake, which can be used in earthquake reconnaissance and recovery efforts.  
One the other hand, images taken weeks after an earthquake, while less useful in reconnaissance and 
recovery efforts, can identify buildings that have been demolished and removed after the earthquake (e.g., 
Figure 7c).  It can be assumed that buildings that are removed after an earthquake experienced heavy 
earthquake damage.  By documenting the buildings removed after an earthquake, a more complete picture 
of the damage patterns across a city can be developed.   
 
For the small city of Boumerdes, it is possible to visual examine and compare the pre- and post-earthquake 
images to identify earthquake damage.  Using the three satellite images acquired as part of this study, 
fully-collapsed and heavily-damaged structures were identified through visual examination.  The resulting 
map of fully-collapsed (red) and heavily-damaged (yellow) structures is shown in Figure 8.  This map 
clearly shows a concentration of damage in the southwestern part of the city.  No heavily damaged 
buildings were identified in the northern or eastern sections of city, although moderate structural damage 
may have occurred in these areas.  Unfortunately, earthquake reconnaissance reports published to date for 
the Northern Algeria earthquake [15] do not describe in the detail the damage patterns across Boumerdes, 
and therefore, the damage patterns in Figure 8 cannot currently be verified with ground truth data.   
 

 
Figure 8. Collapsed (red) and heavily damaged (yellow) structures identified from visual 

examination of pre- and post-earthquake images.    
 
If one assumes that the construction quality of structures across the city of Boumerdes is relatively 
uniform, owing to the fact that the city was constructed predominantly by government-owned contractors 
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[15], the concentration of damage in southwestern Boumerdes may be an indication of enhanced ground 
shaking due to soft soil conditions.  A 1:500,000 scale geologic map of Algeria [Cornet 19] indicates that 
the majority of Boumerdes is founded on Pleistocene, lacustrine clays, with Quaternary alluvium found 
along river channels.  The damaged areas in Figure 8 straddle the north-flowing river that runs through 
Boumerdes.  Therefore, these areas may be underlain by younger alluvial sediments that amplified ground 
motions.  Further investigation into the geology and soil conditions can confirm this hypothesis.   
 

CONCLUSIONS 
 
This study examined the potential use of high-resolution satellite images to identify earthquake-induced 
infrastructure damage.  The city of Boumerdes, which was damaged during the 21 May 2003 Northern 
Algeria earthquake, was used as a testbed for this investigation.  One pre-earthquake and two post-
earthquake pan-sharpened images (0.6-m resolution) of Boumerdes were obtained and used to investigate 
earthquake damage detection using thematic classification of post-earthquake images and visual change 
detection using pre- and post-earthquake images. 
 
Thematic classification of post-earthquake images involved identification of infrastructure damage (i.e., 
collapsed buildings) using spectral (color) and textural characteristics of damaged and undamaged areas.  
Initial classification using only spectral information did not clearly delineate the damaged and undamaged 
areas, because many undamaged areas had a spectral signature similar to that of the collapsed buildings.  
Including the texture measures contrast and dissimilarity to the classification process significantly 
improved the identification of collapsed structures.   
 
Change detection algorithms that identify changed areas between pre- and post-earthquake images can 
provide a more-detailed representation of damage across a city.  However, change detection using high-
resolution images may be influenced by various changes not associated with the earthquake (e.g., vehicle 
congestion, clouds).  This effect will result in areas erroneously identified as damaged by the earthquake.  
Visual examination of the pre- and post-earthquake images, including an image acquired almost a month 
after the earthquake, was used to develop a damage map of Boumerdes.  This map reveals severe damage 
in the southwestern part of the city, which may indicate enhanced ground shaking in this area due to soft 
soil conditions. 
 
The Northern Algeria earthquake represents the first earthquake captured by high-resolution satellite 
imagery.  The results of this preliminary study indicate that these images contain a significant amount of 
information regarding the earthquake-induced damage to civil infrastructure.  In future, these images will 
play a role in earthquake reconnaissance efforts, and will aid in identifying damage patterns across urban 
areas.  
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