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SUMMARY 
 
The paper describes the behaviour and component modelling of partial strength beam-to-column joints 
used in high ductile steel-concrete composite moment-resisting frame structures. The joint performance 
was determined via quasi-cyclic and monotonic tests conducted on subassemblages at the University of 
Pisa and a series of pseudo-dynamic tests executed on a full-scale two-storey frame structure specimen at 
the European Laboratory for Structural Assessment (ELSA) of the Joint Research Centre (JRC). The joints 
analysed are composed of extended end-plate connections whose inelastic response is divided mainly 
between shear yielding of the column web panel and inelastic bending of the extended end plate and 
column flange. Also yielding of the slab reinforcements and concrete crushing against the face of the 
columns took place during testing. Analytical models of internal joints were developed on the basis of 
experimental results and formulae on subassemblages. In detail, experimental laws governing the response 
of joint components were obtained by using only equilibrium and kinematic considerations to process 
experimental data. Results obtained permitted existing laws to be validated, some of which with current 
European standards. 
 

INTRODUCTION 
 
The capacity design criterion can be used to ensure that traditional structures can reach high energy 
dissipation levels without significant strength reduction in order to exhibit good performance under 
seismic ground motions. In general, high-ductility structures must withstand low seismic actions having 
short return periods without undergoing appreciable damage. For high-intensity earthquakes, structures 
must exploit their plastic resources to dissipate seismic energy, thereby sustaining substantial damage, 
while maintaining overall structural stability. Solutions to achieve the necessary ductility can be obtained 
through careful study of building morphology, structural schemes and construction details, but also 
through the rational use of materials. In this perspective, steel-concrete structures appear to be the most 
convenient both for constructional and for economic aspects. When analyzing possible structural 
solutions, it becomes evident that the use of composite beams and columns that exhibit superior stiffness 

                                                 
1 Assistant Professor, University of Pisa, Italy, walter@ing.unipi.it  
2 PhD student, University of Pisa, Italy, a.braconi@ing.unipi.it  
3 Full Professor, Dept. of Mech. and Struct. Eng., University of Trento, Italy, oreste.bursi@ing.unitn.it  
4 Full Professor, Ecole Polytechnique, Montreal, Canada, tremblay@struc.polymtl.ca  



properties can limit significantly second-order effects and allow buildings of considerable height without 
any additional bracing to be erected. This advantage, combined to the use of partial strength joints, 
guarantees the formation of global dissipative frame mechanisms for seismic loads, while avoiding 
undesirable storey or local mechanisms. If associated to suitable constructional solutions, such structural 
schemes can undoubtedly provide significant advantages in terms of both economy and performance [1]. 
However, to date, the adoption of steel-concrete composite structures in design practice has been 
precluded by the lack of suitable construction solutions. A new solution has been recently proposed within 
the framework of two European research projects, ECSC 7210-PR-250 [2] and ECOLEADER HPR-CT-
1999-00059 [3], which have permitted the efficiency of moment resisting (MR) frame structures with 
partial strength joints to be verified [4]. The application of current European rules to this case study has 
revealed their inadequacies in terms of seismic design of high ductile composite beam-to-column joints. 
The rules do not propose component models for seismic loading capable of adequately simulating joint 
behaviour in terms of strength, stiffness and rotational capacity for either sagging or hogging bending 
moments [5-7]. In detail, mechanisms by which the forces are transmitted between the reinforced concrete 
slab and composite columns have yet to be clarified. In the case of internal beam-to-column joints, the 
behaviour is governed by interaction phenomena between forces transmitted by the two beams framing 
into the joint. Moreover, capacity design criteria for components are not provided. A similar situation can 
be found in U.S. [8] where research is still ongoing [9]. 
 
This paper presents a description and an analysis of test results performed at the Materials Testing 
Laboratory of the University of Pisa within the framework of an ECSC research project [2]. A series of 
experimental measurements were obtained on subassemblages representative of internal beam-column 
joints. Using this data and analytical formulae, it was possible to define joint response laws, as well as 
those of individual structural elements and components of an accurate mechanical model specifically 
developed to characterize such joints. Some experimental laws for components of the proposed 
mechanical model are then compared to analytical models and standards in order to verify their accuracy. 
 

SEISMIC DESIGN OF A COMPOSITE BEAM-TO-COLUMN JOINT 
 
The proposed structural solution consists of composite beams made of hot-rolled steel profiles connected 
with studs to a 150 mm-thick concrete slab cast on a collaborating ribbed steel sheet, as illustrated in Fig. 
1. Full shear connection is provided between the steel profile and the concrete slab. The columns are made 
of partially encased hot-rolled steel profiles, which ensures significant structural efficiency for both static 
and seismic loads, as well as good fire resistance. The solution, depicted in Fig 2, also offers the 
advantage of not requiring any welding between the reinforcing bars. However, the reinforced concrete fill 
must be properly secured to the steel profile by means of steel studs to develop effective collaboration and 
avoid detachment of the concrete. The beam-to-column joint has been designed to provide adequate 
structural performance under both monotonic and cyclic loading. To this aim, a relatively thin end-plate 
connection (Fig. 3) has been chosen because of its efficiency and predictable performance under seismic 
demand. The reinforced concrete encasement is interrupted at the joint level, as shown in Figs. 3 and 4, 
and the column is left in the bare steel condition for constructional considerations and suitable seismic 
behaviour of the column web panel [1]. A pair of horizontal stiffening plates welded to the column 
permits full exploitation of the web panel inelastic resources. The stirrups, external to the central area of 
the joint, are arranged within the critical length, as per the provisions of Eurocode 8 [7] (see Fig. 3). 
 
The ductile behaviour of the joints is achieved by defining an appropriate hierarchy of resistance for all 
the components. In this respect, with reference to sagging moments, the end-plate and column flange 
responding in bending, as well as the column web panel acting in shear are all to be considered as ductile 
components; whereas the concrete slab under compression and the bolts under tension are assumed to be 
brittle. With regard to hogging moments, the steel reinforcing bar in tension, the end-plate and the column 



flange acting bending, and the column web panel under shear are considered ductile components; while 
the column web panel and the beam flanges resisting compression are assumed to be brittle [10]. The joint 
also had to possess adequate resistance and rotational capacity [11]. Capacity design of the partial strength 
joints was performed by taking into account the variability of the material properties. The final joint 
details are reported in Table 1. As a result, introducing the actual material properties did not modify the 
location of the yield regions. 
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Figure 1. Steel-concrete composite beam. Figure 2. The composite column 
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Figure 3. Lateral view (B-B cross section) of the interior 
joint 

Figure 4. Plan view (A-A cross section) of the interior 
joint 

 
Table 1. Joint details 

 Internal joint External joint 

Beam IPE 300 IPE 300 

Column HEB 280 HEB 260 

Slab thickness 150 mm 150 mm 

End-plate thickness 15 mm 15 mm 

Sheeting Brollo EGB 210 Brollo EGB 210 

Bolts M24 10.9 M24 10.9 

Steel mesh φ  6 @ 150 mm φ  6 @ 150 mm 

Longitudinal additional rebars 4 φ  12 (2 for each side) 4 φ  12 (2 for each side) 

Transverse additional rebars 6 φ  12 for each side 
5 φ  12 for beam side 

2 φ  12 for the extended side 



MAIN EXPERIMENTAL RESULTS 
 
Full-scale substructures representing the interior joint in Fig. 5 have been subjected to monotonic and 
cyclic tests at the Laboratory for Materials and Structures Testing of the University of Pisa [2]. Both tests 
were carried out under controlled displacements according to the schemes presented in Fig. 6. The 
monotonic test permitted to determine the ultimate resistance and rotational capacity of the joints, while 
cyclic tests allowed their dissipative capacities and ductility to be evaluated, as well as the reduction of 
stiffness and resistance. The joint behaviour of substructures was summarized by means of moment-
rotation relationships. In detail, the joint rotation on the right-hand side reads: ϕr =  ϕbr - ϕf, where ϕbr 
represents the rotation of the beam at the end plate level and ϕf denotes the rotation of the column. In 
addition to the joint rotation ϕr, the measuring apparatus allowed the following rotations to be estimated: 
ϕconn,r = ϕr – ϕc and γsp = ϕc - ϕf, where the connection rotation ϕconn,r and the shear deformation γsp of the 
column web panel, respectively, as showed in Fig. 7, and ϕc defines the column rotation in the panel zone. 
Analogous definitions hold for the joint and the connection on the left-hand side. 
 
The panel shear Vwp.Ed.eff depends on the lever arms zeq [8] [9] and therefore, assumptions representative of 
observed experimental behaviour must be made, which is done following in part the approach proposed in 

[12]. For the negative moment −
conn.RdM , the resulting upper force is assumed to be located at the level of 

the longitudinal reinforcing bars. For the positive moment +
conn.RdM , the resulting force is assumed to be 

located at the mid height of the concrete slab, which defines zeq
-. The level arm zeq then becomes equal to 

0.5(zeq
+ + zeq

-), which reads 402 mm.  
 
Overall joint behaviour 
The moment-rotation and shear-panel distortion relations of an internal joint are illustrated in Fig. 19. The 
inelastic response concentrated in the end plate and the column flanges, as well as in shear in the column 
web panel, allowing for plastic joint rotations of over 35 mrad, as required by Eurocode 8 [7]. 
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Figure 5. Substructure of an interior joint tested at the University of Pisa 

 
The joint exhibited very high ductility, showing well balanced exploitation of the inelastic resources of 
both the column web panel in shear and the connection, as shown in Figs. 9a and 9b, respectively. In this 
case, strut and tie mechanisms in the concrete, as provided for by EC8 [7], were not fully activated. In 
fact, failure of Mechanism 1 occurred at about 14 mrad (see Figs. 8b and 10a), which caused overloading 
of Mechanism 2, with consequent sliding of the column with respect to the concrete slab (see Fig. 10b). 



Under cyclic loading, the applied force vs. interstorey drift hysteresis in Fig. 11 confirms the favourable 
behaviour of the internal joint sub-structure, which could achieve interstorey drift levels of about 5 per 
cent without any significant reduction of strength or stiffness. 
 

2000 2000

35
00

∆

 

35
00

2000 2000

∆

 
Figure 6. Test on an interior joint: a) quasi-static monotonic loading; b) quasi-static cyclic loading. 
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Figure 7. Definition of rotations for an interior joint. 
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Figure 8. Monotonic response of an interior joint: a) moment vs. joint rotation; b) shear force vs. panel rotation; c) 

moment vs. connection rotation 

Evaluation of internal forces 
In order to determine the internal forces acting on the composite beam in the two sections shown in Fig. 
12 and better interpret the joint response, the most significant parameters of the absolute displacement 
were experimentally measured, as well as the forces and reactions applied to the structure and the 
deformations of the steel beams and reinforcing bars [2]. The location of the instrumented sections was 
purposely selected because they were subjected to high bending moments while being sufficiently distant 
from the joint section to allow us to reasonably assume planarity of the sections. The measurements 
permitted to evaluate the overall bending moments acting on the sections for the monotonic test, as well as 

b) a) 

a) 

b) c) 



the forces acting on the slab and the steel profile according to the break-down in Fig. 13, in which the 
distance of the longitudinal bars from the extrados, CSR, is 80 mm and the location of the normal force in 
the slab is situated at its centroid, at 47.5 mm from the extrados (see Fig. 14).  
 

  
Figure 9. Monotonic test on an interior joint: a) column web distortion; b) connection deformation. 

  
Figure 10. Monotonic test on an interior joint: a) concrete slab crushing; b) column sliding with respect to the 

concrete slab. 

-150

-100

-50

0

50

100

150

-6,0 -3,0 0,0 3,0 6,0
Drift [%]

A
pp

lie
d

 F
o

rc
e 

[k
N

]

 
Figure 11. Cyclic test on an interior joint: hysteretic loops of the applied force vs. interstorey drift. 

In detail, the measured external reactions were used to determine the overall positive and bending 
moment, M+

C and M-
C, acting on the two instrumented sections, while the strain gauges readings yielded 

the normal force, NST, and the bending moment, MST, acting on the steel profile and the normal force NSR 
acting in the longitudinal reinforcing bars. From horizontal and rotational equilibrium, the axial force and 
the bending moment acting in the concrete slab, NCS and MCS, could be deducted for both positive and 
negative moment conditions: 

CS ST SRN N N 0+ + ++ + =  (1.a) 

( ) b cls
C ST CS CS SR rss SR SR

h h
M M M N N h N c 0

2 2
+ + + + + + + + + + ⋅ + + + ⋅ = 

 
, (1.b) 

 



CS ST SRN N N 0− − −+ + =  e (2.a) 

( ) b cls
C ST CS CS SR rss SR SR

h h
M M M N N h N c 0

2 2
− − − − − − + + + + ⋅ + + + ⋅ = 

 
 (2.b) 

where hb is the height of the steel beam, hrss is the height of the ribbed sheeting, hcls is the thickness of the 
concrete layer above the sheeting collaborating with the steel profile, and cSR is the height of the centroid. 
The apices + or - indicate whether the internal force refers to the section subjected to positive or negative 
bending moment.  
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Figure 12. Instrumented sections of a composite 

beam. 
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Figure 13. Structural scheme for calculation of internal 

forces. 

In calculating the axial force acting on the slab subjected to tension, the concrete contribution, N-
CS, has 

been included by using a decreasing exponential tension-stiffening model [14]. Figures 16 and 17 show 
the variation of the normal force and bending moment acting on the monitored section subjected to 
negative bending moment. As can be seen from Fig. 16, the contribution of tension-stiffening consequent 
to the progressive cracking of the slab (see Fig. 18) decreases, until it vanishes for drift over about 7%.  In 
the equilibrium calculations for positive moments, the tensile force acting in the longitudinal bars, N+

SR, 
has been considered, thus accounting for interaction effects in the joint (see Fig. 19).  
Figures 20 and 21 show the variation of the axial force and bending moment acting in the monitored 
section subjected to positive bending moment. Interaction between the forces acting on each side of the 
beam-column joint is activated in the slab by the transfer of the tensile force acting on the longitudinal 
bars, which are anchored in the compressed zone (see Fig. 22). Such phenomenon and, above all, the 
effect of the large distortions of the column web panel (see Figs. 23 and 24), induce a further increase in 
the axial force in the concrete, which causes early fracture in the area of contact with the column flange 
(Figs. 10 and 11), resulting in a sudden decrease in the forces, as can be seen in Figs. 16, 17, 20, and 21. 
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Figure 14. The internal forces acting in the 

composite section . 
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Figure 15. Break-down of the bending moment in the composite 

beam. 
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Figure 16. Axial force in the section subjected to 

hogging moment. 
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Figure 17. Bending moment in the composite section, subjected 

to hogging bending moment.  

 
Figure 18. Cracking in the slab under tension. 
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Figure 19. Effect of force interaction in the slab. 

 
MECHANICAL MODELLING OF AN INTERNAL JOINT 

A mechanical model was developed based on the "components method" modeling approach to describe 
the behavior of the beam-column joints. The components active in transferring the bending moment from 
the beam to the column were identified by observing the behavior of the joint during testing (see Figs. 23 
and 24). For sagging bending moment, the following components were considered: (1) the slab under 
compression, (5) the lower T-stub subjected to tension, and (4) the upper T-stub subjected to compression. 
For hogging bending moment, the following components were assumed active: (6) the slab under tension, 
(3) the lower T-stub subjected to compression, and (2) the upper T-stub subjected to tension (see Fig. 25). 
The column web panel subjected to shear (7) was modeled using a diagonal spring within an articulated 
quadrilateral formed by rigid elements. Only the panel area free of concrete was considered to deform in 
shear, while the immediately overlying portion was assumed infinitely stiff, as confirmed by experimental 
measurements.  
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Figure 20. Axial force in the section subjected to sagging 

moment. 
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Figure 21. Bending moment in the composite section 

subjected to sagging moment. 
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Figure 22. Tensile stress in a reinforcement bar in the 

monitored sections. 
 

Figure 23. Column web distortion in an internal joint 
during monotonic test. 

 

Sagging Moment

LVDT 
11

 

 

CONN

γSP

γSP

 

CONN

Hogging Moment

 

Localized compresion

γSP

∆ULVDT11  ∆ULVDT15

LVDT
15

+ -

 
Figure 24. Schematic representation of 

deformation of the internal joint. 
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Figure 25. Mechanical model refined on the basis of the results of 
monotonic tests. 

The known internal forces in the connections include the shear, VC,conn, and the bending moments on the 
left and right hand sides of the substructure (see Fig. 13): 

( )C,conn LC,sx DEV connM R cos Lϕ+ = ⋅ ⋅  ; ( )C,conn LC,dx DEV connM R cos L− = ⋅ ϕ ⋅  (3) 
where Lconn is the distance between the lateral restraints and the connection (see Fig. 26). The axial force 
and the bending moment acting respectively in the steel profile, NST,conn and MST,conn, and in the slab, 
NCS,conn and MCS,conn, are unknown (see Fig. 27). They were derived on the basis of equilibrium 
considerations. Based on a suitable kinematic model by which it is assumed that the beam and slab have 
the same curvature, the axial force acting on the steel beam, NST,conn, can be calculated by imposing 
internal equilibrium on the composite beam (see Fig. 28) [15]. This permits to pose the following 
differential equation: 

( ) ( ) ( )
2

ST 2
ST C2

d N x
N x M x

dx
− α ⋅ = β ⋅  (4) 

where, for the case at hand, constants α and β (whose general expressions are reported in [15]) take on the 
values: α = 0.033 and β = 3.013x10-6, (sagging moment), and α = 0.0203 and β = 5.914x10-7 (hogging 
moment) . Equation (4) must satisfy the associated boundary conditions N(x=0) = 0 and N(x=L) = NST, 
alternatively assigning NST the values of N+

ST and N-
ST at the monitored sections (see Fig. 26).  

Adopting the reasonable hypothesis that the shear VC is transmitted to the column solely by the steel 
connection, the equilibrium of the steel beam between the monitored section and the connection can be 
expressed by (see Fig. 29):  

b
ST,conn ST C

h
M M V L F 0

2
− − ⋅ + ⋅ =∆ ∆  (5) 

, allowing to obtain the bending moment, MST,conn, acting in correspondence to the beam-column joints.  
Lastly, by imposing equilibrium on the rotation and translation of the whole composite beam in 



correspondence to the connection, one can obtain for the joint subjected respectively to hogging and 
sagging moments:  

b cls
C,conn ST,conn CS,conn ST;conn CS,conn rss

h h
M M M N N h 0

2 2
− − − − −  − − − ⋅ − ⋅ + = 

 
 (6.a) 

ST,conn CS,connN N 0− −− =  (6.b) 

 

( )b cls
C,conn ST,conn CS,conn ST,conn CS,conn rss CS,conn rss cls SR

h h
M M M N N h N h h c 0

2 2
+ + + + + − − − − ⋅ − ⋅ + + ⋅ + − = 

 
 (7.a) 

ST,conn CS,conn CS,connN N N 0+ + −− + =  (7.b) 

 

N(x=0) = 0
N(x=L) = N

L

N(x=0) = 0

L

ST
N(x=L) = N

ST

Lconn Lconn

+ -

 
Figure 26. Boundary conditions, equation (6). 
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Figure 27. Unknown forces in the connection. 
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Figure 28. Equilibrium and kinematic model of the 

composite section [17] 
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Figure 29. Equilibrium of the steel beam portion between 
the monitored section and the connection. 

From these expressions, it is possible to evaluate the axial forces, N+
CS,conn and N-

CS,conn, as well as the 
bending moments, M+

CS,conn and M-
CS,conn, in the slab. Using these internal forces, it is possible to calculate 

the forces transmitted by the components of the beam-column joints. For the joint subjected to hogging 
moments, the translational and rotational equilibrium equations become:  

CS,conn T stub,bottom T stub,topN N N 0− − −
− −− + =  (8.a) 

C,conn T stub,bottom 1 CS,conn 2M N h N h 0− − −
−− ⋅ − ⋅ =  (8.b) 

, where N-
T-stub,bottom and N-

T-stub,top are respectively the forces acting in the lower and upper T-stub 
components (see Fig. 30), N-

CS,conn is the tensile force in the slab, h1 is the distance between the two T-
stubs, and h2 defines the position in the slab of the resultant with respect to the upper T-stub. For the joint 
subjected to sagging moment the equilibrium equations are: 

CS,conn T stub,bottom T stub,top CS,connN N N N 0− + + +
− −− + − =  (9.a) 

C,conn CS,conn T stub,bottom 1 CS,conn 2 CS,conn 3M M N h N h N h 0+ + + + −
−− − ⋅ − ⋅ + ⋅ =  (9.b) 



in which N+
T-stub,bottom and N+

T-stub,top are the forces acting respectively in the lower and upper T-stubs (see 
Fig. 31), N+

CS,conn is the force of compression in the slab, N-
CS,conn is the tensile force transferred by the 

longitudinal bars of the beam subjected to hogging moments in the compressed zone, and M+
CS,conn is the 

bending moment in the slab. The heights h1 and h2 respectively represent the distance between the two T-
stubs and the position of the slab centroid, while h3 is the point of application of N-

CS,conn at the centroid of 
the longitudinal reinforcement.  
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Figure 30. Equilibrium between hogging bending moment 

and forces in the active components. 
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Figure 31. Equilibrium between sagging bending 

moment and forces in the active components. 

From the forces acting in the components of the beam-column joints, the overall shear acting in the panel, 
VWP, is derived exploiting the horizontal translation equilibrium equation (see Fig. 32):  

WP CS T stub,top T stub,topV N N N H+ + −
− −= + + −  (10) 

in which H is the force applied by the actuator at the top of the column (shear in the composite column). 
Based on these results, it is possible to describe the pattern of internal forces for the components active in 
the joint subjected to hogging (see Fig. 33) and sagging bending moments (see Fig. 34), as well as the 
shear force pattern in the web panel of the column (see Fig. 35). 
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Figure 32. Forces acting on the column web panel. 
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Figure 33. Internal forces in the joint subjected to 

hogging bending moment. 
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Figure 34. The internal forces in the joint subjected to 

sagging bending moment. 
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Figure 35. Web panel shear force. 

It is also possible to analyze the position of the resultant of the tensile forces in the slab transmitted by the 



concrete under tension and the reinforcing bars for the joint section subjected to hogging bending 
moments (see Fig. 36), as well as the position of the axial force transmitted via the Type 1 mechanism in 
the joint section subjected to sagging bending moments (see Fig. 37). The results obtained enable making 
an immediate interpretation of the overall response of the joint. 
 
In the joint subjected to hogging bending moments, the slab tension, N-

CS,conn, undergoes a sudden fall 
upon fracture of the concrete under compression (see Fig. 33), at a interstorey drift of about 2%, due to 
loss of functionality of the type 1 mechanism. The Type 2 mechanism is never activated on the opposite 
side of the joint. Such a decrease is compensated for in the overall equilibrium of the joint by the force 
transmitted by the upper T-stub. At the same time, the position of the resultant of the tension force in the 
slab migrates, as cracking phenomena progresses, towards the position of the reinforcing bars. That force 
undergoes an abrupt variation (see Fig. 36) which, together with the decrease in the force N-

CS,conn, 
provokes a drop in the bending moment transmitted by the joint (see Fig. 8c). For sagging moments, a 
greater reduction in the moment transferred (see Fig. 8c) occurs due to the lowering of the center of the 
compression force in the slab in contact with the column (see Fig. 37). Such a change in position is caused 
by fracture of the upper concrete layers, where compression stresses are higher (see Fig. 19). The 
compression force in the slab, N+

CS,conn, undergoes in fact only a small reduction. In the stages subsequent 
to fracture, it remains nearly unchanged (see Fig. 34), because as the test progresses, the inner, still intact, 
layers of efficient concrete come to be involved.  
 
Experimental laws governing joint components  
The experimental force-displacement laws defining the behavior of components of the mechanical model 
(see Fig. 25) were determined by coupling the internal forces obtained beforehand with the readings 
obtained by the transducers in the joints (see Fig. 9b), the web panel (see Fig. 9a), and the slab (see Figs. 
10a and 10b). In particular, the force-displacement for the slab in tension (see Fig. 38) was evaluated 
taking into account the relative displacements occurring in the slab on the two sides of the column, from 
the transducers shown in Fig. 10. In order to obtain the force-displacement relation for the pair of springs 
schematizing the slab (see Fig. 39), the bending moment and the compression force acting in the slab were 
first determined, from which the forces acting in the springs, N+

CS,inf and N+
CS,sup (see Figs. 40 and 41) 

could be derived for the mechanical model (see Fig. 25). 
The displacement field for the concrete in contact with the column was characterized on the basis of the 
kinematics observed during testing (see Fig. 42) with the formula: 

( ) b
LVDT SP conn

h
U s U s s

2
+  = − ⋅ + ⋅ + 
 

∆ γ ϕ  (11) 

in which γSP is the angular distortion of the web panel, ϕconn
+ the rotation of the joint, ULVDT is the 

displacement revealed by the displacement transducer and hb is the height of the steel beam; the 
displacement in correspondence to the upper spring is therefore equal to U(s = hcls+hrss), while that in the 
lower spring is U(s = hrss), where hrss and hcls are defined in Fig. 14. 

0.0

25.0

50.0

75.0

100.0

125.0

150.0
0.0 2.0 4.0 6.0 8.0

Interstorey drift - D ID [%]

D
is

ta
n

ce
 f

ro
m

 U
p

p
er

 s
id

e 
[m

m
]

Eccentricity - Hogging
Moment

Upper side of the concrete slab

Lower side of the concrete 
l b

Upper steel flange

Centroid of reinforced concrete section

Measured position of Re Bars

 
Figure 36. Application level of the tensile force in the 
slab; connection subjected to hogging bending moments. 
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Figure 37. Application level of the compression in the 
slab; connection subjected to sagging bending moments. 
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Figure 38. Force- slab displacement law; section 

subjected to hogging moment 
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Figure 39. Scheme of the internal forces in the compressed 

slab 

The angle of distortion defining the experimental law for the web panel (see Fig. 42) is obtained from the 
transducers arranged on the steel column (see Fig. 9a) by the formula: 

( ) ( ) ( )
( )

22 LVDT I LVDT II1
SP SP sp

SP sp

U U
tg h b

2 h b

∆ ∆
γ − −−

 +
 = +

+  

 (12) 

in which LVDT IU∆ −  and LVDT IIU∆ −  are the absolute value displacements recorded by the transducers and 
hSP and bSP indicate the height and width of the steel panel. Figures 43-46 represent the force-
displacement relationships for the lower T-stub in  compression and the upper T-stub in tension in the 
connection subjected to hogging moment, as well as for the upper T-stub in compression and the lower T-
stub in tension in the connection subjected to sagging moments. 
 
Comparison with existing component models 
In this subsection, experimental force-displacement relationships are compared with analytical predictions 
provided by EC4 [6]. Figure 38 illustrates the composite slab subjected to tension and it can be observed 
that concrete in tension contributes significantly with regard to both stiffness and strength. Clearly, the 
concrete softening and the indirect effect of concrete crushing is evident in the inelastic range. The 
disagreement in strength between the experiment and the prediction is due to the fact that yielding of the 
reinforcing steel is assumed in EC4 while this limit state did not happen during testing. Shear distortion of 
the column web panel is illustrated in Fig. 42. Fairly good agreement is obtained with the prediction by 
the Krawinkler’s model [12,13] which slightly underestimates the hardening behavior of the web panel. 
Conversely, in the model suggested by EC3 [3], the lever arm zeq described earlier, only captures the 
global stiffness and strength properties of the panel behavior. The last comparison deals with the bottom 
T-stub subjected to tensile forces. Its non-linear behavior is tracked quite well by the simple bilinear 
model suggested by EC3 [3]. The strain-hardening part of the prediction derives from experimental data 
collected by Bursi et al. [16]. 
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Figure 40. Force-displacement law for the upper 

spring of the slab scheme. 
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Figure 41. Force-displacement law for the lower spring of the 

slab scheme. 
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Figure 42. Shear force acting on the web panel as a function of the distortion. 
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Figure 43. Force-displacement law for the compressed 

lower T-stub; joint section subjected to hogging bending 
moment. 
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Figure 44. Force-displacement law for the upper T-stub 

under tension; joint section subjected to hogging bending 
moment. 

-250

-200

-150

-100

-50

0

0.0 0.5 1.0 1.5

Displacement [mm]

F
o

rc
e 

[k
N

]

Compressive force in upper T-stub 
(Sagging Moment)

 
Figure 45. Force-displacement law for the compressed 
upper T-stub; joint section subjected to sagging bending 
moment. 
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Figure 46. Force-displacement law for the lower T-stub 

under tension; joint section subjected to sagging bending 
moment. 

 
CONCLUDING REMARKS 

 
A new mechanical model of an interior partial strength beam-to-column joint used in high ductile steel-
concrete composite moment-resisting frame structures has been described. The model which still relies on 
experimental data is capable of simulating the behavior of steel-concrete composite partial strength joints 
subjected to monotonic loading. In detail, the model is capable of defining yielding and failure evolution 
of different components. The component models of the slab have indicated clearly that the compressive 
strut strength of the composite slab bearing on the column flange depends on the shear stiffness of the 
column web panel. Moreover, the activation of diagonal compressive struts on column sides induced by 
transversal reinforcing bars is hindered by the direct bearing of the compressive strut. Some force-
displacement relationships provided by the proposed mechanical model have been compared with 
analytical formulae and current European standards. 
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