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IDENTIFICATION METHOD FOR FLEXURE AND SHEAR BEHAVIOR
OF SHEAR WALL BUILDINGS
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SUMMARY

This article presents an original identification method for the assessment of flexure and shear stiffness of
shear wall buildings. Required dataincludes an initia (theoretical) model, the estimation of lumped mass
values (by floor) and the experimental evaluation of two eigenvalues (modal frequency and its modal
shapes). The method estimates stiffness whenever flexural (El) or shear (GA) values are relevant or are
irrelevant. An initial formulaincludes both shear and flexural components. Furthermore, particular
developments are carried out for particular cases of irrelevant shear or flexural deformations. The method
is applied for two numerical examples of shear wall buildings showing its simple and efficient
implementation. Numeric errors are very small, in the order of exp(10-18) up to exp(10-12) in the case of
structures with 5 up to 12 stories. This method allows the correction of structural models based on
reduced experimental data (no more than two frequencies and experimental modes).

Keywords: experimental testing, buildings, structural systems, evaluation and retrofit, structural response,
modal analysis.

INTRODUCTION

There is always a difference between the theoretical model of abuilding and the real one. On the other
hand, structural stiffness can vary due to degradation through time, due to building modifications,
damage, overloads or seismic effects. The goal is the determination of the actual structural stiffnessin a
given moment Genatios [1], Ventura[2].

Several stiffnessidentification methods have been developed taking as data modal experimental results
and structural typology, leading to stiffness changes and damage evaluation, Baruch[ 3], Kabe[4],
Papadoupulus[5], Sawyer[6], Zhang[7]. Some of this methods come from aeronautics, and have been
extended for shear wall building identification, Woodgate [8], Yua[9], modeled as flexural structures with
lumped masses on each stage, Ling [10], Garces[11].
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The present article proposes an identification procedure for flexural stiffness (El) and shear stiffness
evaluation (GA/y) for shear wall buildings with predominant behavior on flexure, shear or both.

Given aparticular typology, stiffness values can be evaluated for each level of the building. This requires
two eigenvalues evaluation: two modal frequencies and the corresponding modal shapes. For shear or
flexural predominant behavior, only one eigenvalueis needed.

SHEAR AND FLEXURAL STIFFNESSEVALUATION FOR SHEAR WALL BUILDINGS

Structural idealization

The structure isidealized with N dynamic degrees of freedom (dof) with lumped masses on each story,
with an unknown flexibility matrix F (or its corresponding stiffness matrix K) and a known mass matrix
M. It is accepted that the dynamic analysis allows to know m modal frequencies and its corresponding
modal shapes with m<N.

General Methodology for flexural and shear stiffness evaluation.

Fig. 1 shows the structural model that considers flexural and shear behavior, rigid floors, non vertica
deformations and lumped masses.

Dynamic parameters can be obtained from:
(4" ~FM)g =0 )

with F=flexibility matrix, M= Mass matrix, Ai=oi2, o= i" modal frequency, i=1to N, ¢;=i"
eigenvector.
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Figure 1. N dof Shear wall structure

Flexibility and Mass matrix have the following expressions:
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with : m; = lumped massin the i"level f;; = flexibility coefficient of the flexibility matrix F, ¢; = moda

coordinate of thei™ level of modal shape“a’, 1/ A, =1/ @’ and v, modal frequency of mode “&’.

Considering two eigenvalues corresponding to the modal frequencies am, and a,, and the modal shapes ¢,

and @y, equation (4) becomes:
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Each flexibility value can be evaluated as follows:
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where: Hy = story height of level “k”, E = elasticity modulus of the material of level “k”, I = Inertia
modulus of level “Kk”, G, = Transversal elasticity modulus of level “k”, A = transversal surface of level
“K”, (A /y)=shear transversal surface of level “k”.

Equation (6) can be rewritten asfollows, with “i” and “j”, values from 1 to N:
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It can be also expressed as:
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The goal of this procedure is the evaluation of the stiffness coefficients (El)x and (GA/y)x, for each level
“k”, with k = 1 to N. Considering equations (5) and (6) we come to:
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iandk=1toN:

The vaues are:
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Equation (10) defines a system of N equations with 2N unknowns, as two unknown coefficients (El) and
(GA/y) are considered for each level. This fact imposes the requirement of two modal shapes and their
corresponding frequencies in order to produce two sets of N equations, so 2N equations. The
corresponding two modal shapes are;
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The two modal shapes define the following coefficients:
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Leading to the 2N equations system with 2N unknowns that include shear and flexure coefficients:
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The system can be rewritten as:

[Alix}={c} (15)

{x} isthe unknowns vector that includes the stiffness coefficients.



1 story structure and some singularities
A one store system leads to a singularity. Given matrix [A], equations (14)-(15):

1

1,
[a; bﬂ @ | _ P (16)
ay by e

(G%l e

Asthereisonly 1 dof w;=m,=w. The determinant is equal to:
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General case and singularity in the highest level « N »

A singularity isfound at the highest level “N”, so the last two equations of eg. (14) shall have a particular
treatment. The solution for the first N-1 levelsis (i =1, N-1):
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Once the solution is obtained for the 2(N-1) equations, the highest level can be evaluated by the following
shear-flexura relationship:
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Damage and residual properties
This methodology can be applied for a structural system with known properties before an earthquake
affects its properties, producing new or damaged condition due to the change of shear and flexural
properties.

Initial properties, before the seismic event are: (for “N” levels):
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Properties can be evaluated following equations (19)-(21) once the damage is introduced, and can be
related to theinitial ones by:
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D'= indicates flexure damage and D"= indicates shear damage. Both indexes have positive values from 0
(undamaged condition) to 1 (totally damaged condition).

For the last level only one relationship is found for shear and flexure coefficients so we can accept an
equal damage value for both coefficients:
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FLEXURE STIFFNESSEVALUATION

Structures with flexure predominant behavior (so shear terms can be neglected), only (El) terms are
significant, and (GA/y) terms can be eliminated. In this particular case only one eigenpair is required so
the flexure stiffness values can be obtained from the simplified system of equations obtained from eqg.
(14):
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The solution leads to the stiffness evaluation. Damage can be described by the following indicator,
defined for each “i” level, with i=1,N:
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SHEAR STIFFNESSEVALUATION

In the case of significant values of shear stiffness compared to the flexure stiffness so this last can be
neglected, only (GA/y) terms are significant. Only one eigenpair is required and flexure stiffness
coefficients are given by:
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Solution leads to the stiffness evaluation. Damage can be described by the following indicator, defined for
each “i” level, with i=1,N:
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EXAMPLE AND NUMERICAL ROBUSTNESS
As an example, acomposed structure is considered (Fig 2):

Shear wall height is3m, length 3m and thickness 0,5m.



N levels
Hoors 3 m x ém, with 0.5m thickness.

Initial geometric and mechanical characteristics are givenin Table 1.
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Fig. 2—N dof structure

Initial calculations for this example require theoretical values of frequencies and modal shapes of the
model so two of those eigenpairs can be employed in the identification procedure following eg. (19) and
(21). Mode 1 and mode N where chosen in this particular case. Relative precision of stiffness coefficients
(El) and (GA/y), allows robustness evaluation by comparing the initial stiffness values (table 1) with the
numerically obtained values (tables 2 and 3) following eg. (29) and (30). Obtained precision is very high
ranging 10 to 10™ for stiffness coefficients of al floors but the last (level N). The method proposes for
the last Lloor, the quotient between shear and flexure values, and in this particular case precision range
was 10",

Table 1 - Mechanical and Geometric Char acter istics

Units | Values Level
E: Elasticity modulus MPa 21400 All
G: Transversal Elasticity modulus MPa 8917 All
H: wall height m 3 All
L: wallswidth m 3 All
e: walls thickness m 0,5 All
D: distance between walls m 5 All
h: floor thickness m 0,25 All
w: Volumetric mass for materials Kg/m? 2500 All
|: Z-Z axis quadratic inertiavalue m’ 1,125 All
(Aly): reduced section for Y-Y shear M? 1,25 All
M: lumped mass for each floor kg 15938 la(N-1)

kg 10313 Higher level (N)

(Elo: Initial stiffness condition for | MN.m* | 24075 All
flexure behavior Z-Z axis
(GAY)o: Initia stiffness condition for MN 11146 All
wallsY-Y axis




For error evaluation:
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Table 2- Identification results of a 5 level building
Item Units Precision Levels
A(EN)/(EI)y: Precision of (EI) -- 10™ All but last
A(GA/Y)/(GAly)o: Precision of (GA/y) - 10 All but last
- 10" Last floor
@ ()
7))y |+ E0.(30)
Relative Precision (El) and (GA/y)
modes “a” and “b”
Frequency last mode: m, rd/s 746,5
Period last mode 0,0084
Modal Coordinates - 0,8032 1
-1 2
0,7456 3
-0,3575 4
Frequency first mode: o, rd/s 45,9
Period first mode 0,1369
Modal Coordinates - 0,1061 1
0,3481 2
0,66287 3
1,0000 4




Table 3- Identification results of a 10 level building

Item Units Precision level

A(EN)/(EIl)q: Precision of (EI) - 10 All but last

A(GA/Y)/(GAly)o: Precision of (GA/y) -- 10" All but last

A{ @), ,(G %/)J o - 10" Last level

Relative Precision (El) and (GA/y)
modes“a” and “b”

Modal frequency last mode: w, rd/s 816

Period last mode S 0,0077
Modal Coordinates -- 0,3813
-0,6192

0,8254
-0,9542
1
-0,9578
0,8304
-0,6342
0,3619
-0,1557

SBoo~v~oukrwNnr

Frequency first mode: wp rd/s 8

Period first mode S 0,785
Modal Coordinates -- 0,0176
0,0650
0,1376
0,2307
0,3401
0,4614
0,5909
0,7255
0,86241
1

SBoo~Nv~oukrwNnr

CONCLUSIONS

This article presents amethod for the evaluation of the flexure (El) and shear (GA/y) stiffness coefficients
for each level of abuilding considering 1 dof per level. Required data are level masses, considered as
lumped for each level, two natural frequencies and their corresponding modal shapes. Whenever either
one of shear or flexure coefficients predominates so the other can be neglected, only one modal shape and
its corresponding frequency is needed.



In the general case, once two eigenpairs are known, it is easy to evaluate the shear and flexure stiffness
coefficients for each level, excepting the highest one, for the last one, only the quotient between
coefficientsis obtained.

Once the stiffness coefficients are known, it is easy to obtain the damage values affecting mechanical
properties of each level.

For the analyzed examples corresponding to 4 to 10 floors buildings with mechanical and geometric
properties with few numerical changes, the devel oped methodology gives shear and flexure stiffness
coefficients with a10™ to 10™ precision.
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