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SUMMARY 
 

This paper explores the advantages of expansion in orthonormal wavelet bases—as a preprocessing tool—
in analysis of large sets of seismic vibration monitoring data, of ground or structural response, for possible 
application in data mining. The focus is on the insight that can be gained from the wavelet domain 
representation, convenience in estimation of energy and correlation, efficiency of representation (data 
compression property), and dimensionality reduction.  Local and global aggregates and average 
distributions of energy and related quantities (e.g. power, power spectrum density, Fourier amplitude, 
cross-energy, cross-power, cross power spectrum density, etc.), computed directly in the wavelet domain, 
are discussed and interpreted as information granules, representative of a frequency interval, of a partition 
of the phase plane, or of the entire record.  The concepts explored are illustrated on a mini database of 
strong motion records from the 1994 Northridge in a 7-story reinforced concrete building located in the 
Los Angeles area.  Nodal time-frequency distributions of power spectrum density are shown for the 
ground floor and roof responses. Dimensionality reduction by thresholding is illustrated and compared 
with sub-sampling. The errors associated with compression are illustrates for a small database of ground 
response records from six earthquakes recorded in the same building. The results show that the error is 
very small even for high compression ratios.  It is concluded that expansion in orthonormal wavelet series 
is potentially a very useful preprocessing tool in mining large data sets of ground and structural response 
vibration data under earthquake excitation. One drawback of the orthonormal wavelet transform is poor 
resolution at high frequencies, which can be eliminated by using expansion in orthonormal wavelet 
packets, to which most of the presented concepts are directly applicable.  The theory and concepts 
presented apply directly to datasets of any time series data.   
 

INTRODUCTION 
 
Since first emerged as a consistent theory in the 1980s from the work of French geophysicists Morlet and 
Grossman (Vetterli and Kovacević [1], Daubechies [2]), wavelet analysis has become a very popular tool 
for analysis of signals and images in many fields of science and engineering. The wavelet transform is 
particularly suitable for analysis of transient signals and of time varying systems, because it is localized 
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both in time and frequency. Its widespread use is also due to the existence of orthogonal and bi-orthogonal 
wavelet bases, the efficiency of representing transient signals in such bases (data compression), and the 
existence of fast and accurate computational algorithms for signal/image transformation and 
reconstruction (asymptotically even faster than the fast Fourier transform).   The use of wavelets in 
analyses of mechanical vibrations was first introduced by Newland [3], who proposed the use of wavelet 
maps as a diagnostics tool for time-varying systems, in particular for detecting and localizing in time 
hidden details and small perturbations that are practically invisible in the time representation, as well as in 
providing insight into local correlation of two signals.  
 
The recent advances in sensor, computer, and communication technologies have enabled and encouraged 
collection of large volumes of scientific data that needs to be efficiently stored, managed and analyzed.  
These needs have stimulated many advances in the fields of data engineering and digital signal and image 
processing.  In strong motion seismology, the volume of data is increasing rapidly not as much due to the 
number of new sensors deployed as due to the increasing sensor sensitivity and recorder dynamic range 
(currently approaching 26 bits or 156 dB), which makes it possible to record, with strong motion 
instruments, ground and structural response to very small and distant earthquakes as well as to ambient 
noise (Trifunac and Todorovska [4]). The increasing capability of recording, combined with the dramatic 
reduction of the cost of digital storage media, lead to lowering the triggering level of recording and even to 
selective continuous recording.  As a part of the Advanced National Seismic System (ANSS) initiative 
launched by the U.S. Geological Survey  (Benz et al. [5]), a large number of instruments will be installed 
in structures as well, which will further increase the number of recordings.   
 
Seismic and other mechanical vibration data is normally archived by storing the waveform data in the time 
domain.  However, retrieval of such time series data that is of high dimension (i.e. consisting of many data 
points) from permanent archives on a remote server is slow, especially when, for a specific application, 
lowering the dimensionality of the data (e.g. by reducing the resolution of the representation, by data 
compression, or by representing values in intervals by local averages) is permissible or even desirable (e.g. 
in pattern recognition).  A novel approach to store time series or spatial data would be to expand in 
wavelet series and archive the coefficients of the expansion. This paper summarizes an exploratory 
analysis of the advantages of wavelet bases representation of strong motion data for mining of large data 
sets, published in Todorovska and Hao [6]. 

 
THEORETICAL BACKGROUND 

 
Wavelets, Wavelet Families, Bases and Orthonormal Wavelet Transform 

According to the modern wavelet theory, a wavelet, ( )tψ , is a real or complex zero mean wiggle on the 

real line that is localized both in time and in frequency.  For the zero mean condition (also called 
admissibility condition) to be satisfied, it must be oscillatory—hence the name wavelet (Vetterli and 
Kovacević [1], Daubechies [2]).  By elementary operations consisting of shifts in time, b, and dilation or 
contraction, a family of wavelets 
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can be constructed from a prototype wavelet, 2( ) ( )t L Rψ ∈  (called the “mother wavelet”).  In eqn (1), a is 
the scale variable, such that 1a >  corresponds to dilation, and 1a <  corresponds to contraction.  The 

normalizing constant 1/ a  is such that all the wavelets in the family have same L2 norm, usually set to 
unity.  The localization of a wavelet in a family is described by their central time and central frequency, 
and the spread in time and in frequency. If the mother wavelet is centered at time 0t  and at frequency 



0ω , then , ( )a b tψ  is centered at time ( ) 0t b t b= +  and at frequency ( ) 0 /a aω ω= .  Also, if the mother 

wavelet has spreads in time and frequency , 0tσ  and , 0ωσ , the corresponding spreads of , ( )a b tψ  are 

( ) ,0t ta aσ σ=  and ( ) ,0 /a aω ωσ σ= , which implies that the larger scale (more dilated) wavelets have 

larger spread in time but smaller spread in frequency, while the relative spread 
ω

/σ ω  is constant.  The 

area of localization in the phase plane (time-frequency plane), ( ) ( )t a aωσ σ , is also constant for the 

family, and cannot be made arbitrarily small, as described by the Heisenberg uncertainty principle 
(Vetterli and Kovacević [1]).  
 
Of interest in this study are wavelet families such that the scale and time are sampled on a discrete grid 

0 0 0 0 0,   ,          , ,  1,  0m ma a b nb a m n a b= = ∈ ≠ ≠�   (2) 

where �  is the set of integers.  Then the corresponding grid of central times and frequencies of the family 
is such that the spacing in frequency is larger at higher frequencies, but is constant on a logarithmic 
frequency axis. The projection of a signal ( )s t  on such a family is by definition the discrete wavelet 

transform (DWT) of the signal with respect to that family 
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The DWT is a time-scale distribution. It is also a time-frequency distribution, as scale and frequency are 
closely related and can be used interchangeably.  The frequency corresponding to scale a is the central 
frequency of  the wavelet with scale a 

0 / aω ω=   (4) 

Most widespread is DWT with 0 2a =  and 0 1b = , referred to as dyadic.  If the grid is sufficiently dense, 
the signal can be reconstructed from its DWT.  For wavelet families that are orthonormal, i.e. 

, ', ' ' ',m n m n m m n nψ ψ δ δ= == , the reconstruction formula is 
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Two extreme examples of orthonormal wavelet bases are the Haar basis, such that the prototype wavelet in 
the time domain is a rectangular up and down pulse, and the sinc basis, such that the prototype wavelet is 
a rectangular pulse in the Fourier domain (Vetterli and Kovacević [1]).  The former basis has finite 
support in the time domain but infinite support in the frequency domain, while the latter has finite support 
in the frequency domain, but infinite support in the time domain.   
 
Of particular interest for applications are orthonormal wavelet families that have compact support, but are 
more “regular” (smoother) than the Haar basis. Such series of families were constructed for the first time 
by Daubechies in the late 1980s (Daubechies [2]), and are called doublets (named after Daubechies), 
symlets (named for their higher degree of symmetry compared to the daublets), and coiflets (named in 
honor of R. Coifman).   These families are of interest because the analysis and synthesis of a discretely 
sampled signal can be achieved by using finite impulse response (FIR) filters, using an algorithm—the 
pyramid algorithm (due to Mallat; Vetterli and Kovacević [1]), which for large N (the length of the signal) 
has complexity O(N), and hence is faster even than the Fast Fourier Transform.  The forward algorithm 
computes the discrete wavelet transform of the signal (i.e. the coefficients of the expansion in wavelet 



series), while the inverse algorithm computes the signal from the coefficients.  This algorithm is based on 
the framework of mutiresolution analysis (postulated by Mallat) and is implemented by filter banks.  
 
Multiresolution Analysis, Subband Decomposition and Their Relation to Wavelet Basis Expansion   

The general framework for construction of wavelet bases—multiresolution analysis—was developed in 
1986 by Mallat and Meyer (Daubechies [2]), who saw the connection between wavelet analysis and 
subband theory.  This section explains briefly its main features. 
 
Multiresolution analysis consists of a sequence of embedded closed approximation subspaces  

2 1 0 1 2V V V V V− −⊂ ⊂ ⊂ ⊂ ⊂L L   (6) 

such that their union covers ( )2L �  and their intersection is the empty set, and they are scaled versions of  

each other.  The projections of a signal onto these spaces represent approximations at different 
resolutions, with larger m corresponding to lower resolution approximation. Let mW  be the orthogonal 

complement of approximation subspace mV  in approximation subspace 1mV − .   Then, 1mV −  is a direct sum 

of mV  and mW , and the projection onto mW  contains the detail that has been removed from 1mV −  to create 

the lower resolution approximation in mV .  Hence, the subspaces ,   mW m∈Z  are called detail subspaces.  

In contrast to the approximation subspaces ,   mV m∈Z , which are embedded, subspaces ,   mW m∈Z  are 

disjoint and hence orthogonal to each other, and their union covers ( )2L � .  A theorem guarantees the 

existence of orthonormal bases for each of the approximation and detail subspaces.  The basis functions 
for the detail spaces are wavelets (i.e. zero mean functions), while those for the approximation spaces are 
scaling function, which are not zero mean, and are, like the wavelet bases, scaled and shifted versions of a 

prototype scaling function.  Let ( ){ },m n n
tψ

∈Z
 be a basis for mW , and ( ){ },m n n

tϕ
∈Z

 be a basis for mV .   

 
Subband theory is an area of digital signal processing, which is based on the design of a set of prototype 
filters such that divide the signal frequency band in equal parts (subbands).  For example, a two-channel 
filter bank consists of a high-pass and low-pass filter.  These filters are applied recursively to the signal, 
which leads to its division in subbands.  The filters applied at each stage have identical properties except 
for scale. The set of filters is referred to as filter bank.  The prototype filters are used to construct the 
wavelet and the scaling function.  Hence, subband decomposition becomes equivalent to basis 
decomposition for discrete time signals.  The following example shows how multiresolution 
approximations of a discrete signal can be obtained using subband decomposition.   
 
All discrete time signals are band-limited, and have maximum frequency ( )max 1/ 2f t= ∆  Hz (where t∆  is 

the sampling period in seconds), called the Nyquist frequency.  This frequency corresponds to circular 
frequency maxω π=  radians per sample, which is the circular frequency in radians per second if 1t∆ =  s.     

Hence, all discrete signals belong to the space of band-limited functions on [ ],ω π π∈ − , which we will 

call 0V .  Let the prototype filters be ideal low- and high-pass filters, as shown in Fig. 1 (top), with impulse 

responses respectively [ ]0h n  and [ ]1h n , and with Fourier transforms ( )0H ω  and ( )1H ω .  Filters 

( )0H ω  and ( )1H ω  split the signal into two components, 1S  and 1D , such that the former is a smooth 

approximation of the signal and the latter is the remainder, containing the detail.  These two components 
are respectively band-limited on [ ]/ 2, / 2ω π π∈ −  and [ ] [ ], / 2 / 2,ω π π π π∈ − − U .  Next, the smooth 



component, 1S , is split into a low-pass (smooth) and high-pass (detail) components 2S  and 2D , by 

applying filters ( )0 2H ω  and ( )1 2H ω .  If this procedure is repeated recursively, after J steps we have 
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This leads to division of the space 0V  into a sequence of detail subspaces , 1,jW j J= K  and a smooth 

subspace JV  

0 1 2 3 J JV W W W W V= ⊕ ⊕ ⊕ ⊕ ⊕L   (8) 

shown in Fig. 1 (bottom) for the positive half-band only.    Recalling that , 1,j jD W j J∈ = K  and 

J JS V∈ , and that each mW  has basis ( ){ },m n n
tψ

∈Z
 and JV  has basis ( ){ },J n n

tϕ
∈Z

, it follows that the 

subband components can be expanded in series of the basis functions as follows 
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which gives the relationship between subbands and the wavelet bases.  The coefficients of the expansion 
represent the discrete wavelet transform (DWT) of the signal 

( ), , ,j k j kd s tψ=   (11) 

( ), , ,J k J ks s tϕ=   (12) 

For dimensionality reduction, discussed in the next section, it is important to note that the number of basis 
functions for both the approximation and detail subspaces reduces by a factor of 2 at each consecutive 
level of approximation, and that, for any level of decomposition, J, the total number of basis functions, 
which can represent the signal exactly, is equal to N—the length of the signal in the time domain. Hence, 
the orthonormal wavelet transform is nonredundant. 
 
For ideal low- and high-pass prototype filters and discretely sampled signals, the division of the signal 
bandwidth into subbands, and the central frequencies ω  and bandwidths ω∆  of the subbands for some 
intermediate stage of filtering j are 
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We recall that ω  is the frequency in radians per sample. The corresponding frequency in Hz is 

( )/ 2f tω π= ∆ . 

 
The pyramid algorithm does subband decomposition of discrete signals by splitting the signal into a high- 
and a low-frequency component, followed by sub-sampling by a factor of two, keeping the high-frequency 
output, while operating further on the low-frequency output by splitting and sub-sampling it in the same 
fashion.  The splitting and sub-sampling of the low-frequency output is applied iteratively in several 
stages.  The final results consist of the outputs of the high frequency channels and the low frequency 
output of the last channel. The maximum number of iteration stages, called levels of the decomposition, 
depends on the length of the signal and on the length of the impulse responses of the digital filters used to 
spit the signal (it is larger for a longer signal and for a shorter filter). The output sequences consist of the 
coefficients of the Discrete Wavelet Transform of the signal. 
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Fig. 1  Ideal low and high pass filters as prototype filters for a two-channel filter bank (top), and an illustration of a 
J-level division of the space of discrete time signals, V0, by application of the filter bank. 

 
THE DISCRETE WAVELET TRANSFORM AS A DATA MINING TOOL  

 
This section deals with the theoretical aspects of dimensionality reduction and information granulation of 
time series data, using representation in orthonormal wavelet bases, for possible application to data 
mining. Of particular interest to the authors of this paper are time series data of ground and structural 
vibration response to strong earthquake shaking, as well as to ambient noise, or to forced vibration.  The 



apparent suitability of the wavelet domain for this purpose is mainly due to the following properties: (1) 
inherent hierarchical structure, which enables automatically different resolution views of the data, i.e. to 
zoom in and view the detail (i.e. the trees) or to zoom out and see a coarser view (i.e. the forest); (b) sparse 
representation compared to that in the time domain of non-stationary and/or band-limited time series data, 
which leads to high data compression rates with little loss of information; (c) discretely sampled 
representation, convenient for automated analysis; (d) complete representation, which enables exact 
reconstruct of the time domain if all the information granules are used, and (e) ability to detect hidden 
detail in the signal (such as abrupt changes, possibly indicative of damage).  Illustrations of these concepts 
for strong earthquake motion records are presented in the next section.  
 
Some Basic Concepts in Data Mining and Knowledge Discovery  

Sensors collect data about a process or an object, but data represent only raw information, which is not 
useful per se.  What is useful is the knowledge revealed from the information contained in the data, which 
enables one to draw opinions based on the data and take actions accordingly.  The purpose of these 
opinions may be to understand the nature of the physical process that generated the data (i.e. understand 
the past), or further to predict future events, or to serve as a basis for decision-making (i.e. shape the 
future).   This section reviews some basic concepts in data mining and knowledge discovery, with the 
purpose of providing a context for the application of the discrete wavelet transform, which follows. The 
definitions of these concepts closely follow Cios et al. [7].    
 
Data mining methods are tools used in knowledge discovery to reveal new pieces of knowledge from large 
data sets.  The terms knowledge discovery and data mining first appeared in the late 1980s, and were 
defined as “the nontrivial process of identifying valid, novel, potentially useful, and ultimately 
understandable patterns in data.”  Here, a pattern is an entity representing (characterizing, describing) an 
abstract concept or a physical object, and may describe relationships, correlations, trends, etc.  It is a 
collection of individual attributes (features) of the data, and hence is a vector quantity.  The number of 
attributes defines the dimensionality of a pattern in the pattern space.  One may search for patterns in the 
data and classify the data into classes according to the nature of the patterns discovered.  A class can be 
thought of as a state of nature that governs the pattern generation.  For example, in data mining of 
structural vibration data, the concept of interest can be damage, and a pattern characterizing damage can 
be a collection of attributes such as visible fractures and cracks in the structure, reduction of the natural 
frequency, specific changes of the mode-shapes of vibration, reduced wave travel times across a fractured 
structural element, etc.  According to this pattern, the data can be classified into two groups (classes), one 
indicating possible damage and the other one—no damage in the structure.  In data mining of ground 
vibration data, the concept of interest can be hazardous ground shaking, with respect to some event such 
as structural failure of a particular structure at the site where the ground motion was observed, or 
liquefaction at the site which may initiate foundation failure, which can be characterized by different 
patterns, depending on the criticality condition adopted.  For example, a pattern indicating hazardous 
ground shaking can be the peak acceleration or the spectral acceleration exceeding some specified 
(design) level, or the total energy of ground shaking exceeding some level (which depends on a pattern of 
velocity and duration of shaking, or on a pattern of the Fourier amplitude spectrum).  Then according to 
these patterns, the ground shaking can be classified as hazardous or not.   It should be noted here that the 
classification of the data could be “hard,” i.e. with deterministically defined boundaries and exclusive 
membership in a class, or “soft,” i.e. with fuzzy boundaries between the classes and membership defined 
by a probability distribution function.   
 
The examples mentioned earlier in this section already indicate that the patterns characterizing some 
concept or object may be more naturally defined in some transformed domain, rather than in the domain 
where the data was recorded.  In the case of mechanical vibrations, the data is typically recorded in the 



time domain, but is commonly Fourier transformed and analyzed in the frequency domain. In applications 
that require preserving the time localization, the data is transformed by some time-frequency distribution, 
e.g. by the wavelet transform or the Gabor transform.  Transformation of the data is part of the 
preprocessing stage.    
 
Another important element of preprocessing is information granulation, which refers to reducing the 
dimensionality of the data by encapsulating numeric data, e.g. in an interval, into a single conceptual 
entity.  Information granulation is necessary for several reasons.  Firstly, while data is usually recorded as 
some long sequence of numbers, it is the nature of the human mind to process information by reducing 
this longer sequence of numbers into fewer groups or intervals, and associating to each interval some 
concept, which represents some higher level of abstraction but which is more naturally related to the 
phenomenon of interest. For example, the sequence of amplitudes of recorded vibrations can be 
granulated by classification into intervals, which, at a higher level of abstraction, are viewed as 
representing small, moderate or large response. Information granulation also often consists of aggregating 
the information by computing local and global averages, for example, representative of a segment of the 
domain or of the entire domain.  For example, one such aggregate granule of information may be the 
average amplitude of the signal, the root mean square amplitude, which is related to the total energy of the 
signal, or energy of the signal contained in different frequency subbands. Information granulation is also a 
practical necessity to avoid a combinatorial explosion in analysis of large sets of data, but may be also 
convenient in comparing different patterns, i.e. in defining distance between patterns. This report explores 
the use of the discrete wavelet transform as a means for information granulation and definition of patterns 
in data mining through large set of mechanical vibration data, such as earthquake response data.  As it will 
be seen later in this chapter, the orthonormal discrete wavelet transform appears to be a very convenient 
tool for representing the signal energy, both on a local and on a global scale.   
 
Wavelet Transformed Database 

This sections describe how the discrete wavelet transform of a time series data can be used as a tool in 
data mining, in particular for reducing the dimensionality of the data, as well as for particular 
characterization of the data (feature selection) and pattern recognition.   We assume that the database has 
been transformed, and are interested, in particular, in features that can be obtained directly in the wavelet 
domain, by simple manipulation of the wavelet coefficients, such that can be done at a database level.  
The record stored in the database for each discrete time series [ ], 1,...,s n n N=  is the set of N  
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It is understood that the discrete time series [ ], 1,...,s n n N=  is a sampled version of a continuous time 

signal ( )s t  at sampling interval t∆ .   Each coefficient of the expansion is the orthogonal projection of the 

signal onto the corresponding basis function, and hence is a measure of how similar the signal is to that 
basis function.  The basis functions are localized both in time and in frequency, effectively within a tile of 
the time-frequency plane.  Figure 2 shows a multiresolution partition of the time-frequency plane in non-
overlapping tiles.  In reality, and even theoretically, the time-frequency distributions of the basis functions 
extend beyond the boundaries of the corresponding tiles, but most of their energy is within the tile.   The 



leakage of energy in the neighboring tiles depends on the nature of the basis.   Extreme cases are the Haar 
basis, for which there is no leakage of energy in the neighboring tiles along the time axis but there is 
leakage along the frequency axis, and the sinc basis, for which there is no leakage of energy in the 
neighboring tiles along the frequency axis but there is leakage in the neighboring tiles along the time axis. 
The compactly supported wavelets, such as the s8 wavelet used in the examples in this report, are 
localized reasonably well both in time and in frequency.   
 
It can be seen from Fig. 2 that, for smaller frequencies, the tiles become wider and shorter, while the area 
of each tile remains always constant and equal to π .  For the detail coefficient ,j kd , the tile is a rectangle 

with width 2 jn∆ =  and height / 2 jω π∆ = , and centered at time ( )2 1/ 2jn k= +  and at frequency 
13 / 2 jω π += .  For the smooth coefficient ,J ks , the tile is also a rectangle with width 2Jn∆ =  and height 

/ 2Jω π∆ = , and centered at time ( )2 1/ 2Jn k= +  and at frequency 1/ 2Jω π += .    Note that the half 

plane is sufficient to represent the signal.  
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Fig. 2  Multiresolution division of the time-frequency plane for level J=4 expansion. 

 
The N  coefficients of orthonormal wavelet expansion represent all the information about the signal, and 
the signal can be exactly reconstructed (i.e. up to the precision of the machine) using the inverse wavelet 



transform, which can be practically implemented for compactly supported wavelets by the pyramid 
algorithm.   Hence, the set of all of the wavelet coefficients represents the signal at the finest information 
granulation level.   
 
While the coefficients for fixed j  represent a sub-sampled version of the subband components, the 
subband components as functions of time can be reconstructed at the initial sampling rate of the signal by 
synthesis of the corresponding coefficients 
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which can be also accomplished by the inverse pyramid algorithm, by setting to zero all other coefficients. 
 
Reducing Data Dimensionality  

Data compression is reduction of the size of a signal while preserving its significant features or most of 
the energy.  The wavelet basis expansion and its relative—the wavelet packet expansion are very efficient 
for compression of non-stationary time series, such as strong motion earthquake records.  As it will be 
seen in the illustrations in the next section, especially for structural response records, dramatic 
compression rates are achieved (i.e. reduction of size) by preserving most of the energy.   
 
Data compression is accomplished by expanding the signal in a wavelet basis, and dropping the 
coefficients of the expansion that are not significant, based on an adopted rule, depending on the specific 
application. One rule may consist of creating a lower resolution approximation of the signal, by dropping 
the detail coefficients that correspond to the smaller scales, considering them as noise.  This may be 
desirable in applications in which the features at the coarser scales are considered as those defining the 
signal, while the details are considered not so important or contaminated with noise.  Another rule is the 
one based on thresholding, which consists of defining some application specific or universal threshold 
level, and dropping the coefficients that have magnitude smaller than that level. This rule may be 
desirable when the signal may have some significant higher resolution features (e.g. some singularities) 
that need to be preserved. Then this method will preserve the high-resolution features associated with a 
large wavelet coefficient, while still dropping the less significant features.  The threshold level can be a 
specified as a single value (hard thresholding) or as a range, such that below that range, all coefficients are 
dropped, while within the range, the coefficients are gradually “shrunk”  (soft thresholding), which may 
reduce some artifacts resulting from the compression.  Depending on specific applications, other 
thresholding schemes can be defined, e.g. such that have subband-specific threshold levels. Data 
compression is closely related to nonparametric estimation and noise removal using wavelets (Bruce and 
Gao [8]), as both are based on the same principle of “shrinking” the less significant coefficients.   
 
For discrete sequences, data compression or nonparametric estimation can be formally defined as creating 
and approximation [ ]s n%  of the signal [ ]s n  such that  

[ ] [ ] [ ]
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where the new coefficients of the expansion ,j kd%  and ,J ks%  are  
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where ( )xδ  is a threshold function, which depends on the adopted threshold scheme.  The degree of 

compression can be measured by the compression rate, herein defined as  

Compression rate 1
N

N
= −

%

  (18) 

where N%  is the number of nontrivial reals used to represent the approximation (i.e. the coefficients in the 
wavelet expansion that are different from zero), and N is the dimension of the original signal (i.e. the 
number of reals that represent is exactly).  In digital signal and image processing, the compression ratio is 
defined via the ratio of the number of bits used to represent the original signal and the number of bits used 
to represent the compressed and quantized and coded signal.  Quantization consists of dividing the range 
of possible values of the coefficients in discrete levels, and assigning the coefficient to one of these 
discrete levels, and coding consists of assigning each level a unique string of bits, with length that it is 
shorter for the intervals occurring most often.  Quantization and coding are out of the scope of this 
analysis.  Dimensionality reduction of mechanical vibration data by compression for feature selection has 
been previously considered by Staszewski [9]. 
 
Estimation of Energy, Correlation and Related Quantities—Local and Global Aggregates and 
Averages 

The estimation of these quantities is based on the Parseval’s relation for the orthonormal DWT, also called 

wavelet Placherel formula.  Let [ ]s n  and [ ]g n  be two signals of equal length, and ( )
,
s

j kd  and ( )
,
s

J ks , and 
( )
,
g

j kd  and ( )
,
g

J ks , respectively, be their coefficients of expansion in orthonormal wavelet basis.  The 

Parseval’s equality for these two signals is 
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and if the two sequences are equal 
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Physically, the inner product of two signals is their correlation or cross-energy, and the 2L  norm squared 
is the energy of the signal, and both represent single aggregate quantities (single granules of information) 
representing the individual signals an their relationship, i.e. what they have in common.  Division by the 
length of the signals gives the average power and average cross-power, which are single value average 
distributions of the energy and cross-energy. The sums on the right hand side of equations (19) and (20) 
allow convenient deaggregation of the energy and cross-energy, into local aggregates and also local 
averages for the subbands, and further into local aggregates and averages for each bin of the time-
frequency plane (Fig. 2), which represent the next two levels of granulation.  For all of these levels of 
granulation, one can compute average spectral density of energy/power for the entire signal, for the 
subbands and for the bins of the time-frequency plane. Similarly, one can compute average cross-
energy/cross power spectrum density at each granulation level.   These granules of information then can 
be used to plot nodal spectra and time nodal time-frequency distributions of (cross) energy, (cross) 
power, (cross) power spectrum density, Fourier spectra, etc. Detailed expressions for these quantities, as 



well as for average Fourier spectra, are not shown here due to lack of space, and can be found in 
Todorovska and Hao [6].   It is only noted that the square of the magnitude of each coefficient of the 
expansion is equal to the energy in the appropriate bin of the time-frequency plane, and also the average 
power spectrum density in the bin.  The convenience offered by the orthonormal wavelet transform to 
study energy of earthquake motion has been previously recognized by Iyama and Kuwamura [10] who 
studied the cumulative energy and the rate of energy input for earthquake ground motions. 
 

RESULTS 
 
Few of the concepts discussed in the preceding section are illustrated on acceleration records in a 7-story 
reinforced building in the city of Van Nuys of the Los Angeles metropolitan area (Trifunac et al. [12]; data 
was provided by California Div. of Mines and Geology).  This building was severely damaged by the 1994 
Northridge earthquake and aftershocks.  More detailed illustrations of all of the concepts discussed can be 
found in Todorovska and Hao [6].  These results were computed using the S-Plus wavelet toolbox and the 
s8 wavelet (Bruce and Gao [8]).  Figure 3 illustrates the efficiency of the representation in the (discrete) 
wavelet domain.  It shows the fraction of the total energy that is represented by the top coefficients as 
function of their number, for the EW accelerations of the Northridge building recorded at the ground floor 
and at the roof (sampled at 0.02 s).  It can be seen that very few of the top coefficients represent most of 
the energy (3.3% of the coefficients for the roof record and 5% for the ground floor record account for 
90% of the total energy).  Figure 4 shows, for the same two records, the effect of reduction of 
dimensionality by thresholding and by subsampling.  It is seen that, for the same reduction factor, 
compression by thresholding preserves the high frequency content where it is significant, while 
subsampling does not.  The error due to the compression for earthquake records that are transient in nature 
is small, and its value depends on the nature of the excitation.  Fig. 5 shows the normalized root mean 
square error as function of the compression rate, defined in eqn (18), for the EW component of the ground 
motion records from six earthquakes. The error is the largest for the smallest earthquakes (Montebello and 
Malibu), which caused shaking that was richer in high frequencies and more  “stationary like,” and is the 
smallest for the earthquakes that were the closest to the site Northridge and San Fernando), which caused 
the largest amplitude shaking. Finally, Fig. 6 shows nodal
time-frequency distribution of normalized power spectrum density (by the maximum value for each 
subband), for the EW displacements at the ground floor and roof during the 1994 Northridge earthquake.   
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Fig. 3 Fraction of the total 
energy represented by the top 
coefficients versus their 
number for the EW acceleration 
records at the ground floor and 
at the roof from the 1994 
Northridge earthquake.  
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Fig. 4  Comparison of results of reduction of dimensionality by shrinkage of the less significant wavelet coefficients 
and by sub-sampling, for the EW accelerations from the 1994 Northridge earthquake. 
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The central frequency of the subbands is shown on the right-hand-side of the plot, and the plot on the 
bottom shows the instantaneous soil-structure system frequency for EW rocking, determined by the 
complex continuous wavelet transform using the Morlet wavelet (Todorovska [11]).  This plots shows 
significant reduction of this frequency at about 10 s from the beginning of shaking.   The large spikes in 
the highest frequency subband of the roof record indicate (otherwise hidden) abrupt changes in this signal, 
possibly due to rapid loss of stiffness as a result if damage (Hou et al. [13], Rezai et al. [14]).  The discrete 
wavelet transform is a promising method for detection and localization of damage in a structure.  
However, more research is needed to determine the reliability of this method when applied to actual 
earthquake records.   

Fig. 5 Root mean 
square error, 
normalized by the 
standard deviation of 
the signal for EW 
accelerations 
recorded at the 
ground floor during 
six earthquakes. 
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Fig. 5.7.5  Time-frequency distribution of average power spectrum density (PSD), normalized to unit amplitude for each subband, of the
EW absolute displacement at the ground floor and on the roof  during the 1994 Northridge earthquake. 



 DISCUSSION AND CONCLUSIONS 
 
From the presented theory and illustrations, it can be concluded that expansion in orthonormal wavelet 
series is potentially a very useful preprocessing tool in mining large data sets of ground and structural 
response vibration data under earthquake excitation. The beneficial properties of the transform are: 
linearity, orthogonality (convenient for estimation of energy), time-frequency localization (convenient for 
analysis of time varying systems), ability to detect and localize in time abrupt changes in the signal 
(promising for application to structural health and monitoring damage detection), information granulation 
(i.e. encapsulation of information about an interval into a single value, hence providing more robust 
estimation than single values), data compression (enabling a very high degree of dimensionality reduction 
while preserving the significant features at all scales), multi-resolution structure (enabling separation of 
features that appear at different scales, as well as dimensionality reduction by lower resolution 
approximation), and discrete structure (convenient for automated analysis in data mining).  One drawback 
of the orthonormal wavelet transform, as pointed out by Todorovska and Hao [6], is poor resolution at 
high frequencies.  This drawback can be eliminated in principle by further expansion of the subbands that 
require better frequency resolution in wavelet packets.   
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