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SUMMARY 
 
Investigations of damage caused by near-field ground motions have shown that structural response, 
especially in the nonlinear range, is sensitive to the amplitude and duration of acceleration and velocity 
pulses present in the input ground motion.  This paper describes a procedure that utilizes the wavelet 
decomposition of a recorded accelerogram to simulate an ensemble of ground motions that have localized 
temporal features and variations in the frequency content that are similar to those present in the original 
record. Ensembles of simulated ground motions are generated using the proposed method for ten near-
field accelerograms.  It is found that the significant temporal features present in the target accelerograms 
are closely reproduced in the simulations, and the ensemble response spectra, on average, closely match 
the target response spectra over a wide range of frequencies.  A nonlinear model of a nine-story building is 
analyzed using the wavelet-based ground motion ensembles and a second set of ensembles generated with 
the ARMA method.  Structural response produced by the wavelet-based simulations shows closer 
agreement with the target accelerograms than the response produced by the ARMA simulations. 
 

INTRODUCTION 
 
Numerous studies, including those made by Anderson [1], Hall [2], and MacRae [3], indicate that 
structures experience increased inelastic demands when subjected to near-field ground motions. For 
example, an extensive study of the Olive View Hospital, which was heavily damaged in the 1971 San 
Fernando earthquake, revealed that the primary cause of damage was a long-duration acceleration pulse 
that occurred approximately three seconds into the recording, not the large amplitude, short duration 
acceleration spike that occurred five seconds later (Bertero [4]). The importance of the acceleration pulse 
as an indicator of damage potential has been well documented (Anderson [1]).  
 
Because the response of nonlinear structures can be sensitive to temporal variations in the intensity, 
frequency content and phasing of the seismic input, an important aspect of such analyses is the selection 
of the ground motions to be used. Ideally, one would like to use an ensemble of recorded ground motions 
that are representative of the seismic environment of the building site. However, due to the paucity of 
recorded ground motions in near-fault environments, such ensembles cannot always be assembled from 
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historical records alone. Consequently, there is a need for simulated strong ground motions to augment the 
historical database. 
  
This paper describes a wavelet-based ground motion simulation procedure. Wavelet analysis is well-suited 
to identifying and preserving nonstationarity because the wavelet basis consists of compact functions of 
varying lengths. Each wavelet function corresponds to a finite portion of the time domain and has a 
different bandwidth in the frequency domain. The multiscale nature of wavelet analysis facilitates the 
simultaneous evaluation of nonstationarity in the time and frequency domains. Wavelet analysis has been 
applied to engineering problems by several authors. Newland [5,6] used wavelets to analyze structural 
vibrations due to underground and surface traffic. Gurley and Kareem [7] examine a variety of 
applications for wavelet analysis including two general methods for simulating nonstationary processes. 
Given a target signal, evaluating its wavelet transform and multiplying each wavelet coefficient by a unit-
variance Gaussian random variable can produce realizations that are similar to the target. If a target power 
spectrum is given, a different modulating function can be used for each wavelet frequency band following 
a procedure similar to Priestley’s evolutionary spectrum [8]. The procedure proposed by Iyama [9] is 
similar to the latter method. A bilinear target spectrum is used for simplicity and the modulating functions, 
which are expressed as energy release rates, are cubic polynomials. 
 
The objective of the proposed procedure is to use the wavelet decomposition of a recorded ground motion 
to generate simulations that have localized temporal features and variations in the frequency content that 
are similar to those present in the original record. Because the proposed procedure simulates ground 
motions in a numerical manner without consideration of the physics that caused the recorded 
accelerogram (e.g., the faulting mechanism, the propagation and attenuation of seismic waves from the 
fault to the building site, etc.), it is properly classified as a stochastic ground motion model. Stochastic 
ground motion simulation procedures that are currently available include spectral methods [e.g., 10,11], 
autoregressive moving average (ARMA) models [e.g., 12,13], and Fourier phase difference models [e.g., 
14]. As mentioned above, the proposed wavelet-based procedure uses a recorded accelerogram as a basis 
for the simulated ground motions. Consequently, the implementation of the procedure is similar to that of 
ARMA and Fourier phase difference methods that use recorded “target” accelerograms to identify the 
parameters that define the ground motion model. The advantage of the wavelet-based procedure over 
these existing techniques stems from the fact that wavelets are compact and are therefore able to 
accurately preserve time-dependent features present in a recorded signal. 
 
Application of the proposed procedure is demonstrated by analyzing a nonlinear model of a nine-story 
building with ensembles of wavelet-based and ARMA-generated ground motions. These analyses 
demonstrate that the structural response produced by the wavelet-based simulations is in closer agreement 
with that produced by the target accelerograms than the response produced by the ARMA simulations. 
 

WAVELETS 
 
The wavelet transform of a signal f(x) consists of a set of functions (wavelets) that can be recombined to 
recover the original signal. The wavelets can be written in terms of the mother wavelet, ψ(x), as 
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where the scale, j, and translation, k, are elements of Ζ  the integers. The scale parameter determines the 
length of the wavelet function and the translation parameter determines where it is located on ℜ, the real 
numbers. We use the term wavelet level to denote the subset of wavelets corresponding to a particular 
value of j. Wavelet functions are more compact at higher levels; i.e., a wavelet at level j spans a shorter 
domain than a wavelet at level j - 1. However, the set of wavelet functions at each level spans ℜ. For any 
J∈ Ζ, the collection {ϕJ,k(x)}k∈ Ζ ∪ {ψj,k(x)}j≥J, k∈ Ζ  forms an orthogonal basis on ℜ where ϕJ,k(x) is defined 



in terms of the scaling function, ϕ(x), as 
)2(2)( 2/
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where, again, j, k ∈ Ζ  (Walnut, [15]). 
 
From the many wavelets that are available, the D20 wavelet was chosen for this study because it is 
compact and the D20 wavelet function is nearly band-limited. Figure 1 shows the D20 wavelet function at 
several different wavelet levels. Note that at higher levels, the domain over which the wavelet takes non-
zero values decreases, but the shape of the function remains the same. 

            
Figure 1. D20 wavelet function at several different wavelet levels. 

 
Wavelet analysis is a form of multiresolution analysis (MRA). The basic ideas behind MRA can be 
understood through a comparison with the Fourier transform. Each sine or cosine function used in the 
Fourier transform corresponds to a discrete frequency and is defined over the entire signal duration. In 
contrast, the wavelet transform consists of wavelet functions of varying lengths and bandwidths. Each 
Fourier function has the same resolution: the entire time domain and a single frequency. But each level of 
the wavelet decomposition corresponds to a different resolution in the time and frequency domains, hence 
the term multiresolution analysis.  Low-level wavelets are longer in the time domain and correspond to 
narrow, low frequency bands, whereas high-level wavelet functions are shorter and are associated with 
wider, high frequency bands. Thus, the wavelet functions with the finest resolution in the time domain 
have the coarsest resolution in the frequency domain and vice-versa. This is illustrated schematically in 
Figure 2. Note that there is some overlap between the frequency bands associated with adjacent wavelet 
levels, but the overlap is small compared to the bandwidth. The scaling function corresponds to the lowest 
frequency band. 
 
The wavelet transform of a discrete function consisting of 2N points is  
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where djk and cJk are coefficients that are usually computed using a cascading filter bank (Mallat [16]). 



 
Figure 2. Schematic representation of the frequency domain of different wavelet levels. 

 
GROUND MOTION SIMULATION 

 
Historical ground motions, ag(t), are typically available in a digitized format produced by sampling the 
analog accelerogram at evenly spaced time intervals. Therefore, the wavelet transform of ag(t) can be 
expressed as 
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which is the same as (3) with x replaced by t. In the following development, it is convenient to group the 
wavelet coefficients by level, so we rewrite (4) as 
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corresponds to the scaling function level and 
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is the jth-level of the wavelet transform of ag(t). In Figure 3, we show an accelerogram from the 1994 
Northridge earthquake recorded at the Rinaldi station plotted alongside its D20 wavelet decomposition. 
Note the significant localized temporal features in this record. Large amplitude wavelet coefficients in 
levels five and seven correspond to the prominent maxima in the input accelerogram. The sixth-level 
wavelets and the scaling function also exhibit noticeable nonstationary behavior. Above level eight, the 
amplitude decreases significantly with each successive wavelet level. 
 
Several authors have observed a direct relationship between the wavelet coefficients and the evolutionary 
power spectrum of an accelerogram (Gurley [7], Basu [17]). This relationship follows directly from the 
compactness of the wavelet functions and the fact that at least one wavelet function in each level 
contributes to the signal at each point in time. The instantaneous power spectrum at time t can be 
expressed as the sum of the contributions from the wavelet functions that are nonzero at t. Because low-
level wavelets have narrower frequency bands, this approximation is expected to have better resolution at 
low frequencies than at high frequencies. In Figure 3 we observed that the amplitude of the wavelet 
coefficients of a near-field accelerogram tended to be greater at low wavelet levels and decayed rapidly at 
the highest levels. Therefore, we will not introduce significant inaccuracies through coarser resolution in 



the high frequency range or by approximating the narrow low frequency bands as discrete frequencies. 
 
Under the assumption that each wavelet level in the decomposition (5) corresponds to a narrow band of 
frequencies that does not significantly overlap the frequency bands of adjacent wavelet levels, we propose 
that the stochastic process that caused a recorded accelerogram may be modeled as 
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where Qϕ and Qj, j = J, J+1,…,N-1 are uncorrelated time-invariant unit-mean Rayleigh random variables 
that represent the record-to-record variability in the amplitude, and hence energy, of the narrow band of 
frequencies associated with aϕ(t) and aj(t), respectively. The theoretical justification for this model is 
discussed in reference [18]. Note that any temporal variations in the amplitude, phase and frequency 
content of the stochastic model (8) are completely defined by aϕ(t) and aj(t). Furthermore, since 
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simulations based on (8) are unbiased in the time-domain.  

 
Figure 3. D20 decomposition of the Northridge earthquake recorded at Rinaldi receiving station. 



Using the stochastic model (8) as a basis, the proposed wavelet-based simulation procedure used in this 
paper is implemented as follows. 
 
1. Select a target accelerogram and pad the record with zeros until it has 2N values for some integer, N.  

 
2. Select the lowest wavelet level  0 ≤ J ≤ N  to include in the wavelet decomposition (5). The value of J 

to be used can be based on the relative contribution of wavelet levels j < J to the total energy or 
significant temporal characteristics of the recorded accelerogram. In general however, one can select J 
= 0 without any significant impact on the accuracy or efficiency of the procedure. 

 
3. Generate N-J+1 independent realizations of a unit-mean Rayleigh-distributed random variable, qϕ, qJ, 

…, qN-1 and compute 
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which is a simulated accelerogram that has significant temporal features similar to those present in the 
target record. 
 

ANALYSIS AND RESULTS 
 
To examine the accuracy and utility of the proposed simulation procedure, we present the results of series 
of nonlinear time-history analyses performed with ensembles of wavelet-based and ARMA-generated 
synthetic ground motions. The recorded ground motions used as the bases for both the wavelet-based and 
ARMA simulations are listed in Table 1. These fault-normal near-fault ground motions were originally 
compiled for the second phase of the SAC Joint Steel Venture Project by Somerville [19]. The wavelet 
ensembles used in the analyses were generated with the D20 wavelet. The ARMA ensembles were 
generated with the moving-window procedure described by Conte [13]. 
 

Table 1. SAC near-field ground motions. 

Earthquake Year MW Station R (km) ID 

Northridge 1994 6.7 Rinaldi 7.1 N1 

Tabas 1978 7.4 Tabas, Iran 1.2 N2 

Loma Prieta 1989 6.9 Los Gatos 3.5 N3 

Cape Mendocino 1992 6.5 Petrolia 8.5 N4 

Northridge 1994 6.7 Olive View (Sylmar) 6.4 N5 

Kobe 1995 6.9 JKMA 0.6 N6 

 
Figure 4 shows three synthetic acceleration and velocity time histories produced from the Northridge 
Rinaldi ground motion (N1) using the above procedure. It is readily apparent that the prominent localized 
features of the input ground motion have been preserved in each synthetic time history. A corresponding 
set of three ARMA-generated simulations for N1 is shown in Figure 5. The strong initial pulse and several 
secondary pulses are present in the acceleration domain in each of the simulations. However, in the 
velocity domain, the amplitude of the pulse is well preserved, but its shape is severely distorted in all three 
simulations. A visual comparison of the ARMA and wavelet simulations suggests that both methods 
capture the localized features of the target ground motion in the acceleration domain, but it is evident that 
the wavelet method does a superior job of preserving duration and shape of the velocity pulse.  



 
Figure 4. N1 wavelet simulations: (a) target; (b-d) simulations. 

  
As an example of the quality of the artificial accelerograms obtained from these simulation procedures, 
consider the constant ductility response spectra for an ensemble of fifty synthetic ground motions based on 
record N1 shown in Figure 6. The figure shows the yield displacement required to achieve the specified 
ductility at each fundamental period. A strain-hardening ratio of 3% was used. Although some deviation is 
evident near the local extremes, the wavelet ensemble means closely match the target responses over the 
full range of periods. The ARMA ensemble means, on the other hand, exhibit the general trend of the 
targets, but fail to capture any of their localized characteristics.  

 
To further examine the quality of the artificial ground motions generated by the proposed procedure, the 
nine-story building model shown in Figure 7 was analyzed using twelve ensembles of ten synthetic ground 
motions based on the records listed in Table 1 (six ensembles of wavelet-based simulations and six 
ensembles of ARMA-generated simulations corresponding to the six recorded ground motions). The 
moment-resisting frame of this building is proportioned in accordance with the building code 
requirements of Los Angeles and the provisions of FEMA 267 [20]. The design was originally 
commissioned for the SAC Joint Venture Steel Project. We investigated three aspects of structural 
response: maximum interstory drifts, interstory drift time histories, and maximum beam end rotation. 



 
Figure 5. N1 ARMA simulations: (a) target; (b-d) simulations. 

 
The maximum interstory drifts are plotted in Figures 8 and 9 for the wavelet and ARMA simulations, 
respectively. Note that the scale of the plots is different to accommodate the large drifts induced by the 
ARMA simulations. The ensemble means obtained for the wavelet-based simulations match the target 
drift profiles more closely than the ARMA ensemble means. For the N5 and N6 records, nearly all of the 
ARMA simulations produce higher drifts than the target. The wavelet ensembles, in contrast, are more 
evenly distributed above and below the targets. In general, there is also much more variation in the ARMA 
results than in the wavelet results. This variation appears to be independent of story height. For the most 
part, the drift profiles approximate the shape of the target drift profile for both procedures. Assuming a 
drift-proportional damage model, the ARMA simulations appear more likely to produce higher damage 
estimates than the target accelerograms. A bootstrapping analysis applied to these results showed that the 
COV of the ensemble mean was typically about 10% for the wavelet ensembles and on the order of 30% 
for the ARMA ensembles. This suggests that additional simulations are not likely to dramatically alter the 
wavelet results; however, the ARMA results may change somewhat if more simulations are performed. 
 



 
Figure 6. Constant ductility response spectra for N1: (a) µ = 1; (b) µ = 2; (c) µ = 4; (d) µ = 8. 

 

Figure 7. Example 9-story steel moment-resisting frame building. 
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Figure 8. Maximum interstory drifts for wavelet ensembles. 

 
Figure 10 shows the story drift time histories for three wavelet and three ARMA simulations based on 
record N1 at the ninth story. Note that N1 imparts most of its energy in the first five seconds of the 
recording and the response after that point is essentially free vibration. The quantities of interest in these 
plots are the time and amplitude of the maximum story drift and, to a lesser extent, the number and 
amplitudes of the drift cycles. The wavelet simulations closely match the target: the peak drift occurs at 
roughly the same time as in the target and there are roughly the same number of cycles with similar 
amplitudes and durations to the target in each simulation. Furthermore, the initial pulse consisting of a 
negative peak followed by a broad positive plateau can be readily discerned in each of the wavelet 
simulations. Two of the ARMA simulations – Figures 10(g) and 10(h) – capture the first negative peak of 
the target, but neither of these simulations exhibits the positive plateau. Only one of the ARMA 
simulations – Figure 10(f) – has free vibration behavior similar to the target. 
 
The maximum beam end rotations are compiled in Tables 2 through 7. The second column of each table 
lists the average rotation of the nine moment connections at each story for the target accelerogram. The 
third and fifth columns list the average rotations for the wavelet and ARMA ensembles taken over all nine 



connections and all ten simulations. Coefficients of variation are also tabulated for each ensemble. To give 
some meaning to these values, experiments performed as part of the SAC project suggest that flange 
fracture of fully-restrained beam-column moment frame connections occurs at a rotation of roughly 0.04 
radians and (based on a limited amount of experimental evidence) shear tab fracture occurs at a rotation of 
roughly 0.07 radians (see Figure 5-1 and Table 5-6 of FEMA 356 [21]. Note that the first floor beams are 
at ground level – the structure has a basement – and are laterally constrained, thus rotations at the first 
floor are much less than at other floors. Both sets of results tend to be greater than the targets, but the 
difference is much more pronounced for the ARMA ensembles. This is especially evident for N2, N5, and 
N6 where the ARMA mean rotations are 1.5 to 3 times the target values. The wavelet results, in contrast, 
are within ±50% of the targets. The COV is typically between 30% and 60% for the wavelet ensembles, 
and between 50% and 80% for the ARMA ensembles. For the N1 ensembles the ARMA ensemble means 
are closer to the targets than the wavelet ensemble means, but the ARMA ensemble has twice the COV of 
the wavelet ensemble. Part of the reason for this may be seen in Figure 5.8(a). The maximum drifts of 
seven of the ten ARMA simulations lie below the target; however, two outlying simulations that produced 
very large drifts cause the mean to be biased. 

 
Figure 9. Maximum interstory drifts for ARMA ensembles. 



 
Figure 10. Ninth story drift time history for N1 ensembles. (a,e) target; (b-d) wavelet simulations; 

(f-h) ARMA simulations. 

Based on the analysis results presented herein, it is apparent that the response of nonlinear systems to 
wavelet-based simulations tends to be nearer to the target response than the response to ARMA 
simulations. Additionally, the wavelet ensembles reproduced localized and time-varying response 
quantities that the ARMA ensembles failed to capture. Furthermore, the quality of the wavelet ensembles 
was more consistent, exhibiting less variation within simulated ensembles and between ensembles 
generated with different input accelerograms, than that of the ARMA ensembles. Whereas response to the 
wavelet simulations was typically well distributed above and below the targets, the ARMA simulations 
generally produced larger peak responses, both in terms of story drift and beam end rotation, than the 
targets. In some cases, the difference was more than 100%. This is an interesting result because one might 
expect the ARMA simulations to “miss” the near-field pulse and produce less intense simulations more 
consistent with far-field recordings. Instead, the ARMA simulations amplify and extend the pulse (see 
Figure 5), producing simulations that are more intense than the targets. As with all simulation 
methodologies, the quality of the simulations depends on the application. While we have highlighted the 
differences, there are some instances, such as the response of stiff structures, where the two methods 
produced similar results. Therefore, in some cases, the ARMA method may be adequate. However, the 
wavelet method consistently resulted in closer agreement with the target values over a wider range of 
systems and applications than the ARMA method. 



Table 2.  Beam hinge rotations: N1.  Table 3.  Beam hinge rotations: N2. 

  Wavelet ARMA    Wavelet ARMA 

Lvl Target Mean COV Mean COV  Lvl Target Mean COV Mean COV 

1st 0.002 0.004 0.545 0.002 0.903  1st 0.004 0.003 0.650 0.004 1.056 

2nd 0.023 0.030 0.309 0.017 0.653  2nd 0.027 0.024 0.409 0.030 0.600 

3rd 0.025 0.034 0.345 0.021 0.744  3rd 0.025 0.023 0.509 0.035 0.568 

4th 0.025 0.036 0.366 0.023 0.782  4th 0.023 0.022 0.610 0.038 0.548 

5th 0.020 0.031 0.381 0.020 0.881  5th 0.023 0.020 0.582 0.035 0.580 

6th 0.018 0.027 0.324 0.018 0.921  6th 0.023 0.023 0.447 0.030 0.598 

7th 0.013 0.023 0.358 0.018 0.873  7th 0.020 0.021 0.388 0.026 0.655 

8th 0.015 0.021 0.365 0.020 0.778  8th 0.017 0.021 0.364 0.028 0.478 

9th 0.014 0.023 0.406 0.017 0.839  9th 0.016 0.017 0.408 0.027 0.469 

Roof 0.013 0.025 0.439 0.017 0.873  Roof 0.016 0.018 0.355 0.026 0.554 

 
Table 4.  Beam hinge rotations: N3.  Table 5.  Beam hinge rotations: N4. 

  Wavelet ARMA    Wavelet ARMA 

Lvl Target Mean COV Mean COV  Lvl Target Mean COV Mean COV 

1st 0.006 0.008 0.533 0.013 0.636  1st 0.003 0.002 0.598 0.007 0.781 

2nd 0.046 0.046 0.321 0.067 0.467  2nd 0.027 0.019 0.552 0.037 0.557 

3rd 0.058 0.056 0.333 0.082 0.457  3rd 0.031 0.021 0.544 0.043 0.570 

4th 0.061 0.061 0.318 0.090 0.458  4th 0.033 0.024 0.532 0.046 0.539 

5th 0.054 0.058 0.340 0.092 0.514  5th 0.035 0.023 0.604 0.043 0.537 

6th 0.047 0.052 0.362 0.094 0.580  6th 0.034 0.021 0.615 0.040 0.510 

7th 0.039 0.045 0.382 0.100 0.645  7th 0.032 0.020 0.600 0.037 0.462 

8th 0.036 0.043 0.409 0.114 0.686  8th 0.028 0.022 0.573 0.038 0.424 

9th 0.033 0.045 0.493 0.122 0.731  9th 0.029 0.020 0.682 0.041 0.555 

Roof 0.034 0.048 0.506 0.125 0.733  Roof 0.029 0.020 0.743 0.043 0.588 

 
Table 6.  Beam hinge rotations: N5.  Table 7.  Beam hinge rotations: N6. 

  Wavelet ARMA    Wavelet ARMA 

Lvl Target Mean COV Mean COV  Lvl Target Mean COV Mean COV 

1st 0.001 0.001 0.367 0.006 0.845  1st 0.003 0.004 0.485 0.008 0.901 

2nd 0.013 0.016 0.324 0.036 0.597  2nd 0.025 0.028 0.222 0.043 0.600 

3rd 0.017 0.021 0.335 0.045 0.623  3rd 0.032 0.033 0.269 0.052 0.606 

4th 0.020 0.023 0.351 0.049 0.646  4th 0.031 0.033 0.289 0.058 0.594 

5th 0.017 0.020 0.371 0.045 0.676  5th 0.027 0.029 0.337 0.055 0.636 

6th 0.013 0.017 0.367 0.041 0.701  6th 0.020 0.024 0.373 0.053 0.639 

7th 0.011 0.014 0.340 0.040 0.748  7th 0.024 0.026 0.299 0.052 0.662 

8th 0.014 0.015 0.227 0.043 0.764  8th 0.034 0.034 0.247 0.059 0.673 

9th 0.010 0.013 0.301 0.043 0.809  9th 0.039 0.039 0.240 0.064 0.685 

Roof 0.006 0.010 0.426 0.043 0.800  Roof 0.042 0.042 0.269 0.067 0.671 



CONCLUSIONS 
 
This paper describes a procedure that uses the wavelet transform to create ensembles of synthetic ground 
motions from existing ground motion recordings. Because wavelet functions are localized in the time and 
frequency domains, wavelet analysis is well suited to modeling and simulating nonstationary processes. 
The set of wavelet functions at each level is treated as a narrowband Gaussian process where the wavelet 
coefficients act as a modulating function and the wavelet function determines the frequency band of the 
process.  
 
In order to preserve the temporal features of the input accelerogram, we uniformly scale each level of 
wavelet coefficients of the input by a unit-mean Rayleigh-distributed random variable. This results in 
simulations that have the same “shape” as the target. The proposed method does not require user-specified 
parameters aside from the target accelerogram and the wavelet function. The procedure is a three-step 
process. (1) Evaluate the wavelet transform of the target accelerogram. (2) Independently scale each level 
of the wavelet transform by a unit-mean Rayleigh random variable. (3) Calculate the inverse wavelet 
transform. 
 
Ensembles of synthetic ground motions were created based on six fault-normal near-field accelerograms 
using the proposed method and, for comparison, an ARMA-based method. Several nonlinear analyses 
were performed with the wavelet- and ARMA-based simulations. Overall the wavelet ensembles matched 
the targets much more consistently than the ARMA ensembles. The ARMA simulations were on average 
more intense and resulted in greater estimates of displacement, drift, and damage than the wavelet 
simulations. In some cases, the ARMA simulations produced more than twice the target displacement. In 
contrast, the wavelet simulations rarely differed from the targets by more than 50% and were not biased 
with respect to the target values. Outliers were also less common in the wavelet ensembles than in the 
ARMA ensembles. The degree of variation in the ARMA results was significantly greater than for the 
wavelet results. In all, this suggests that the wavelet-based procedure produces simulations that are well-
suited to nonlinear analysis and result in displacements that are similar to those produced by the target 
accelerograms. 
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