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SUMMARY

New explicit closed-form solutions are derived for the mean upcrossing rate of nonstationary response
quantities of linear elastic, both classically and non-classically damped, multi-degree-of-freedom
(MDOF) systems subjected to a fully nonstationary earthquake ground motion process. The stochastic
earthquake ground motion model used in this study captures the temporal variation of both the
amplitude and frequency content typical of real earthquake ground motions. The analytical results
obtained are applied to single-degree-of-freedom (SDOF) systems and a three-dimensional
unsymmetrical building equipped with viscous bracings. Each of the stochastic earthquake processes
used in the application examples was calibrated against an actual earthquake record.

Using the derived closed-form solutions for the mean upcrossing rates of various structural response
quantities, approximate analytical solutions are developed for the time-variant structural reliability
problem (i.e., evaluation of failure probability cumulative over a time interval such as the duration of
an earthquake process) using the Poisson assumption. An analytical upper bound for the time-variant
probability of failure is also obtained. These approximate analytical solutions and analytical upper
bound for the time-variant probability of failure are verified via Monte Carlo simulation. 

The analytical solutions presented for the mean upcrossing rate of structural response quantities are
extremely useful in gaining better physical insight into the nonstationary seismic response behavior of
linear dynamic systems. They can also be used in benchmark studies to evaluate the accuracy of
numerical procedures devoted to the computation of the time-variant probability of failure of linear
and nonlinear structural systems subjected to realistic stochastic earthquake loading. 
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INTRODUCTION

In many engineering fields, the importance of using stochastic processes to model dynamic loads such
as earthquake ground motions, wind effects on civil and aerospace structures, and ocean wave induced
forces on offshore structures, has been widely recognized. Extensive research has been devoted to the
development of analytical methods and numerical simulation techniques related to modeling of
stochastic loads and analysis of their effects on structures [1,2,3]. In particular, in earthquake
engineering, the non-stationarity in both amplitude and frequency content of earthquake ground
motions has been recognized as an essential ingredient to capture realistically the seismic response of
structures [4,5,6,7]. Therefore, significant attention has been given to nonstationary earthquake ground
motion models, with particular emphasis on their accurate but compact representation [8,9,10,11,12]. 

The probability of failure over a given interval of time (i.e., probability of a response vector process
outcrossing a general limit-state surface during an exposure time) is the fundamental result required in
a time-variant reliability analysis. For a large class of structural applications, the failure condition can
be identified as the exceedance of a deterministic threshold by a linear combination of scalar response
quantities. To date, no exact closed-form solution of this problem (also called the first-passage
problem in the literature) is available, even for the simplest case of structural model (deterministic
linear elastic SDOF system) subjected to the simplest stochastic load model (stationary Gaussian white
noise). The Monte Carlo simulation technique is the only general method accommodating for non-
stationarity and non-Gaussianess of the excitation as well as nonlinearity in the structural behavior and
uncertainty/randomness in the structural parameters. However, it is computationally extremely
expensive. Nevertheless, an analytical upper bound of the time-variant probability of failure can be
obtained readily when response mean outcrossing rates are available [1] and several direct
approximations of this failure probability have been developed making use of different statistics of the
response quantities of interest [13,14]. In particular, Poisson’s and Vanmarcke’s approximations have
been shown to offer a good compromise between accuracy and computational effort [15,16,17]. 

In this paper, explicit closed-form solutions are derived for the mean upcrossing rate of response
quantities of linear elastic multi-degree-of-freedom (MDOF) systems subjected to a fully nonstationary
earthquake ground motion process previously developed by the authors. The stochastic earthquake
ground motion model used herein accounts for the temporal variation of both the amplitude and
frequency content typical of real earthquake ground motions and it has been calibrated against well-
known historic earthquake records. These closed-form solutions are used for the numerical evaluation
of the analytical upper bound (obtained in integral form) and of the Poisson’s approximation (also
obtained in integral form) of the time-variant probability of failure of the subject MDOF system. All
the analytical and semi-analytical results obtained in this study are compared and validated with
Monte Carlo simulation results. 

STOCHASTIC EARTHQUAKE GROUND MOTION MODEL

The stochastic earthquake ground motion model used herein is a sigma-oscillatory process,
nonstationary in both amplitude and frequency content [12]. This earthquake ground acceleration
model, , is defined as the sum of a finite number of pairwise independent, uniformly modulated
Gaussian processes, i.e., 

(1)    

where p represents the number of component processes or sub-process, Ak(t) is the time modulating
function of the k-th sub-process Xk(t), and Sk(t) is the k-th Gaussian stationary process. The time
modulating function Ak(t) is defined as
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where αk and γk are positive constants, βk is a positive integer, and θk represents the “arrival time” of
the k-th sub-process, Xk(t); H(t) denotes the Heaviside unit step function. The k-th zero-mean,
stationary Gaussian process, Sk(t), is characterized by its autocorrelation function

(3)    

and the corresponding power spectral density (PSD) function

(4)    

in which νk and ηk are the two free parameters representing the frequency bandwidth and the
predominant or central frequency of the process Sk(t), respectively. It can be shown [12] that the mean
square function of the above ground acceleration model can be expressed as

(5)    

where  denotes the expectation operator, and the corresponding evolutionary (time-varying)
power spectral density function is given by

(6)    

The above evolutionary PSD function gives the time-frequency distribution of the earthquake ground
acceleration process. 

A very important property of the Gaussian process Sk(t), described by the autocorrelation function in
Equation (3), is that it can be realized as a linear combination of the displacement and velocity
responses of the same SDOF system (with natural period and damping ratio obtained from the two
parameters νk and ηk) subjected separately to two uncorrelated white noise processes. This property
enables a very efficient simulation procedure of Sk(t) and thus of the entire nonstationary process

. 

STATE-SPACE FORMULATION OF EQUATIONS OF MOTION AND COMPLEX MODAL 
ANALYSIS OF LINEAR MDOF SYSTEMS

The general equations of motion of an n-degree-of-freedom linear system can be expressed in matrix
form as

 (7)    

where M, C, and K are the  time-invariant mass, damping and stiffness matrices, respectively;
, , and  are the length-n vectors of nodal displacements, velocities and accelerations,

respectively; P is the length-n load distribution vector, and F(t) is an external, scalar loading function
which, in the case of random excitations, is modeled as a random process. Defining the following
length-2n ‘state vector’ 

, (8)    

the matrix equation of motion (7) can be recast into the following first-order matrix equation:
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(9)    

where

 and (10)    

The complex modal matrix, T, formed by the complex eigenmodes can be used as an appropriate
transformation matrix to decouple the first-order matrix equation (9). Introducing the transformed state
vector V(t) of complex modal coordinates defined by

, (11)    

substituting Equation (11) into Equation (9), performing some algebraic manipulations considering that
 [18] (where D is the diagonal matrix containing the 2n complex eigenvalues, λ1, λ2, ...,

λ2n, of the system matrix G) and that  (where  is the i-th complex-valued
modal participation factor), one obtains the normalized first-order complex modal equations

, i = 1, 2, ..., 2n (12)    

where the normalized complex modal responses Si(t) have been defined by

, i = 1, 2, ..., 2n (13)    

The unit impulse response function for the i-th mode, hi(t), defined as the solution of Equation (12)
when F(t) = δ(t) where δ(t) denotes the Dirac delta function and for at rest initial conditions at time

, is simply given by , t > 0. Assuming for simplicity that the system is initially at
rest, the solution of Equation (12) can be expressed by the Duhamel integral

, i = 1, 2, ..., 2n (14)    

It is worth mentioning that the normalized complex modal responses Si(t), i = 1, 2, ..., 2n, are
complex conjugate by pairs. Combining Equations (11) and (13) yields

(15)    

in which � is the diagonal matrix containing the 2n modal participation factors ,  is the
effective modal participation matrix and  is the normalized complex
modal response vector. 

EXPLICIT CLOSED-FORM SOLUTIONS FOR THE STOCHASTIC RESPONSE OF LINEAR 
MDOF SYSTEMS SUBJECTED TO NONSTATIONARY GROUND MOTION MODEL

The second-order statistics of the response of a linear MDOF system subjected to the fully
nonstationary earthquake ground motion model presented above is derived using state-space and
complex modal analysis. Due to the assumption in the ground motion model that the component
processes of the sigma-oscillatory process are pairwise statistically independent, the second-order
response statistics can be obtained by simply adding the contributions of the individual component
processes. 

In the time domain, the cross-correlation function of normalized complex modal responses Si(t) and
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Sj(t) due to the k-th earthquake component process Xk(t) can be derived as

(16)    

in which  and the superscript * denotes the complex conjugate operator. For , the following
relationships can be used

(17)    

The explicit closed-form solution has been obtained for the above complex cross-modal cross-
correlation function  and is presented elsewhere [19].

The second-order statistics of the nodal relative displacement and velocity responses of a linear
MDOF system can be obtained from the second-order statistics of the normalized complex modal
responses, simply by summing over all modes and over all sub-processes of the ground motion model
accounting for their different arrival times , as

(18)    

where  is the complex cross-modal cross-correlation matrix obtained summing 
over all sub-processes of the ground motion model. 

The second-order statistics of the nodal absolute acceleration responses can also be derived through a
simple linear transformation as explained below. Consider the following alternative form of the
governing equation of motion of the MDOF system

(19)    

in which  denotes the length-n absolute acceleration response vector. Thus, 

(20)    

where matrix A is an  transformation matrix defined as

(21)    

Therefore, the correlation matrix and evolutionary power spectral density matrix of the absolute
acceleration response vector  are given by, respectively, 

 and (22)    

MEAN UPCROSSING RATE OF RESPONSE QUANTITIES FOR LINEAR MDOF SYSTEMS

The mean upcrossing rates of the response of a linear MDOF system subjected to the fully
nonstationary earthquake ground motion model presented earlier can be derived readily from the
second-order statistics of the normalized complex modal responses. In fact, given that the input
processes are Gaussian and the system (filter) is linear, the output processes are also Gaussian. Using
the well-known Rice formula [3,15], the mean upcrossing rate of level , , of the i-th
nodal displacement response  can be obtained as
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(23)    

where

, , (24)    

The mean outcrossing rate of the level , , (symmetric double barrier problem [3]) is
given by

(25)    

The mean outcrossing rate of any response quantity linearly related to the nodal relative displacement
and/or relative velocity responses,  (such as inter-story drifts, internal forces, absolute
floor accelerations), can be obtained by substituting in Equation (23) the quantities ,  and

, with ,  and , respectively. The latter three response statistics are given by

, , (26)    

where , , ,

, , and  denotes the i-th

component of the generic structural response vector . Closed-form frequency-domain solutions
for  are also given elsewhere [19]. 

EVALUATION OF FAILURE PROBABILITY CUMULATIVE OVER A TIME INTERVAL 

The most important quantity that has to be evaluated in a reliability analysis of a structure is the
probability of failure over a given interval of time. In the present study, the probability of failure is
identified as the probability of exceeding a given (deterministic and time-invariant) threshold by a
scalar response quantity  (single barrier problem). 

It is known [1] that an upper bound of the probability of failure over the time interval [0, t], , is
obtained by integrating in time the mean out-crossing rate  of level  by the subject response
quantity , i.e., 
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where  denotes the number of out-crossing events in the time interval [0, t]. Moreover, it is
common to express the probability of failure  as [3,17]

(28)    

where  denotes the probability that, at time t = 0, the subject response quantity 
is below the failure threshold , and  is the so-called hazard function, i.e., it is the mean out-
crossing rate conditioned on zero out-crossing prior to time t. In this paper, at rest initial conditions
are assumed (i.e., ) resulting in ). To date, no exact
closed-form solution is available for the hazard function even for the simplest case of structural model
(linear elastic SDOF oscillator). Nevertheless, many approximations have been developed and are
described in the literature [13,16,17].

The most well-known and simplest approximation is the Poisson hazard function [15], obtained by
assuming that the out-crossing events follow the memoryless Poisson random occurrence model (i.e.,
out-crossing events are statistically independent). This simplifying assumption leads to

(29)    

For low thresholds and/or narrow-band processes, the Poisson hazard function tends to give a very
conservative estimate of the probability of failure, while for high barrier/threshold levels and broad-
band processes, it is asymptotically correct. 

APPLICATION EXAMPLES

Earthquake models 
In this study, the stochastic earthquake ground motion model presented earlier has been calibrated to
three actual ground motion records: the S00E (N-S) component of the Imperial Valley earthquake of
May 18, 1940, recorded at the El Centro station; the N00W (N-S) component of the San Fernando
earthquake of February 9, 1971, recorded at the Orion Blvd. station; and the N90W (W-E) component
of the Loma Prieta earthquake of October 17, 1989, recorded at the Capitola site. The three calibrated
stochastic earthquake models will be referred hereafter as the El Centro, the Orion Blvd., and the
Capitola earthquake, respectively. The parameters for each of these stochastic ground motion models
have been estimated by adaptively least-square fitting the analytical evolutionary power spectral
density (EPSD) function of the model to the EPSD estimated from the target actual earthquake record
using the short-time Thomson’s multiple-window spectrum estimation method [12]. The model
parameter values for the El Centro and the Orion Blvd. earthquakes are given in the same reference,
while the model parameters for the Capitola earthquake are provided in Table 1. In each case, the very
good agreement between the calibrated stochastic ground motion model and the target deterministic
record (in terms of time-frequency distribution of the ground motion energy, mean-square envelope
function, global power spectral density function, and various commonly used ground motion
parameters) has been described elsewhere [12,20]. An illustration of this agreement is given in Fig. 1
which compares the estimated and the model EPSD for the El Centro earthquake in parts (a) and (b),
respectively, and shows the actual and a simulated earthquake ground motion in part (c). For each of
the three target earthquake records, a set of 10,000 ground motion realizations was generated using the
corresponding stochastic ground motion model and a very efficient simulation technique based on the
physical interpretation of the stationary Gaussian subprocesses Sk(t) mentioned earlier. The simulated
ground motions are baseline-corrected in the frequency domain by using a simple rectangular high-
pass filter with a cut-off frequency of 0.10 Hz and by applying a least-square straight line fitting to
both the integrated ground velocity and ground displacement motions. As shown in Fig. 1(d), excellent
agreement is obtained between the analytical mean square ground acceleration function given in
Equation (5) and its counterpart estimated from the simulations. Finally, these artificial earthquake
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ground motions are used as input in the Monte Carlo simulation of the structural response, in order to
validate the analytical closed-form solution developed for the mean out-crossing rate of various
response quantities as well as the approximate solution and upper bound for the time-variant
probability of failure. 

Table 1. Estimated parameters of ground acceleration model for Capitola earthquake

k

#

αk βk

[-]

γk

[1/s]

θk

[s]

νk

[rad/s]

ηk

[rad/s]

1 0.00051984 10 1.7348 2.7148 0.2429 9.3424

2 44.469 3 0.7484 10.677 0.8074 7.7278

3 3.4284 3 0.6430 18.132 1.3313 5.6751

4 0.00025921 8 1.1304 -0.2135 2.5585 15.461

5 0.10602 4 0.6009 6.0153 2.0788 18.367

6 3.0913 3 0.5300 0.255 2.1052 29.731

7 21.748 3 1.0678 11.672 0.2289 21.77

8 4.8589 3 0.5471 -0.4698 2.2722 39.641

9 4.6704 4 0.8466 -0.1082 1.5603 46.114

10 15.485 4 1.0249 0.7955 1.9604 51.334

11 0.4639 4 0.6769 -0.3986 8.2081 59.656
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SDOF linear oscillator 
The first application example consists of a linear elastic SDOF system subjected to base excitation
defined as the stochastic earthquake ground motion models defined above. A SDOF system is a
particular case of classically damped MDOF systems; its equation of motion can be readily formulated
and solved in state-space format. The undamped natural period Tn (or the undamped natural circular
frequency ) and the damping ratio  completely define the structure in terms of its
kinematic response quantities. Several natural periods, damping ratios and normalized thresholds 
for displacement response have been considered. In the sequel, the symbol  indicates the Monte
Carlo Simulation (MCS) estimate (ensemble average) of a response statistics r, while the symbol 
denotes the average over an interval of time (temporal average) of a response statistics r. 

Figs. 2 and 3 display the results obtained for a SDOF system with parameters Tn = 2 s and 
subjected to the El Centro earthquake process. Fig. 2 (a) compares the analytical mean square
(relative) displacement response, , and its MCS estimate given with  standard deviations
interval. A close-up of the second peak of the mean square displacement response is given in the
inset. Fig. 2(b) compares the analytical displacement mean upcrossing rate for three different
normalized threshold levels (  where ) and their
MCS estimates obtained through ensemble averaging of upcrossing over a single time step Dt = 0.02 s
followed by temporal averaging of this ensemble average over ten time steps. The results shown in
Fig. 3 relate to the normalized displacement threshold level . Fig. 3(a) plots the MCS
estimate of the sums  (nmax = 1, 2, 3, 4 as nmax = 4 is the maximum number of
upcrossing events in a single realization over the ensemble of 10,000 response realizations), see
Equation (27). These estimated sum quantities are important since their limit for  is the
estimate of the mean number of upcrossing events in the time interval [0, t], which corresponds to the
MCS estimate of the analytical upper bound of the time-variant probability of failure. Furthermore,
Fig. 3(a) shows the relative contribution of the terms  to the upper bound of  in
Equation (27). Fig. 3(b) compares the MCS estimate of the mean number of upcrossings, ,
(given with the  standard deviation interval) and its analytical counterpart E[N]. Fig. 3(b) compares
also the analytical Poisson approximation of the time-variant probability of failure, , and the
MCS estimate of the time-variant probability of failure (given with the  standard deviation
interval). In this case, the Poisson approximation given in Equations (28) and (29) provides a
significantly better estimate of the time-variant probability of failure than the analytical upper bound
given in Equation (27). The comparisons made in Fig. 3 are repeated in Figs. 4 and 5 for the
normalized threshold  and a damping ratio . SDOF systems with natural periods
Tn = 1 s and Tn = 2 s, subjected to the El Centro earthquake process are considered in Fig. 4, while
Fig. 5 is concerned with the SDOF system with parameters (Tn = 2 s and ) subjected to the
Orion Blvd. earthquake process in part (a) and the Capitola earthquake process in part (b). 

All the analytical solutions for the expected number of upcrossings, E[N], are in good agreement with
the corresponding MCS estimates, , thus validating the closed-form solution of the mean
upcrossing rate developed for SDOF systems. It is worth noting that for the examples considered with
the normalized threshold  (Figs. 4 and 5), the Poisson approximation does not provide a
significantly improved probability of failure compared to the analytical upper bound E[N]. These two
approximations converge asymptotically to the exact value of the probability of failure Pf, but the
convergence of Pf,Poisson to E[N] appears faster than the convergence to Pf. 

In the range of natural periods and damping ratios considered in this study, it appears that the classical
Poisson approximation is quite conservative in its evaluation of the time-variant probability of failure
for normalized thresholds  ranging between  and . More extensive studies are needed
to assess the behavior of SDOF systems with a wider range of natural periods and further research is
in progress to develop better analytical and numerical estimates of the time-variant probability of
failure.
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Fig. 2.  Comparison of analytical response statistics and their MCS estimates for a SDOF 
system with Tn=2 s and z=0.10 subjected to the El Centro earthquake process: (a) mean 

square relative displacement response, (b) mean upcrossing rates
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Fig. 3.  SDOF system with Tn=2 s and z=0.10 subjected to the El Centro earthquake process: 
(a) MCS estimate of mean number of upcrossings, (b) comparison between MCS estimates of 

and analytical evaluations of E[N] and Pf, x=2smax
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Fig. 4.  Comparison between MCS estimates of and analytical evaluations of E[N] and Pf, 
corresponding to x=3smax for SDOF system subjected to the El Centro earthquake process: 

(a) Tn=2 s and z=0.10, (b) Tn=1 s and z=0.10
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Ê N[ ]
1 st. dev.±

Pf
ˆ

1 st. dev.±

E N[ ]

Pf Poisson,

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fig. 5.  Comparison between MCS estimates of and analytical evaluations of E[N] and Pf, 
corresponding to x=3smax for SDOF with Tn=2 s and z=0.10 subjected to: (a) the Orion Blvd. 

earthquake process, (b) the Capitola earthquake process
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Three-dimensional unsymmetrical building (linear MDOF) 
The idealized three-dimensional unsymmetrical building shown in Fig. 6 is used to illustrate the
application of complex modal analysis and the derived closed-form solutions for the threshold-crossing
and time-variant reliability problems applied to linear MDOF systems subjected to the fully
nonstationary earthquake ground motion model defined above. This application example is identical to
the one used in previous work by the authors [19]. This building structure consists of three floor
diaphragms, assumed infinitely rigid in their own plane, supported by wide flange steel columns of
size . Each floor diaphragm is assumed to be made of reinforced concrete with a weight
density of 3.6 kN/m3 and a depth of 18 cm. The columns are assumed inextensible. The modulus of
elasticity of steel is taken as 200 GPa. The motion of each floor diaphragm is completely defined by
three DOF’s defined at the floor center of mass (CM), namely the relative displacements with respect
to the ground in the x-direction, , in the y-direction, , and the rotation about the vertical
z-axis, . The earthquake ground motion excitation is assumed to act at 45 degrees with respect
to the x-axis. Both classically and non-classically damped structural models are considered. For the
case of classical damping, each modal damping ratio is taken as 2 percent. To physically realize the
non-classical damping case, diagonal viscous damping elements (fluid viscous braces) are added as
shown in Fig. 6(a). The damping coefficient of each viscous damping element is taken as 0.1

. The undamped natural circular frequencies of this building are given in Fig. 6(d).
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Fig. 6.  MDOF unsymmetrical building: (a) three-dimensional view, (b) plan view, (c) i-th 
floor with DOF’s noted, (d) undamped modes of vibration

(a)

(b)

(c)

Mode 
#

ω i 
[rad/s]

Description 

1 15.97 x-translation

2 24.12 y-translation + 
torsion

3 36.56 x-translation

4 41.21 y-translation + 
torsion

5 56.74 y-translation + 
torsion

6 56.98 x-translation

7 73.88 y-translation + 
torsion

8 95.15 y-translation + 
torsion

9 127.69 y-translation + 
torsion

(d)



Figs. 7 and 8 show some of the results obtained from the analytical closed-form solutions presented
above and through Monte Carlo simulation for the building subjected to the El Centro earthquake
excitation process. Fig. 7 corresponds to the classically damped case (i.e., building without viscous
dampers) and presents the results for the roof translational degree of freedom in the x direction,

. The normalized displacement threshold level is taken as  where
. Fig. 7(a) shows the MCS results for the expected number of upcrossings and

the probabilities of N = 1, 2, ..., 8 upcrossing events during the earthquake. Fig. 7(b) compares (1) the
analytical prediction E[N] of the expected number of upcrossings during the earthquake and the
corresponding estimate  (given with the  standard deviation interval) obtained via Monte
Carlo simulation, and (2) the analytical Poisson approximation, Pf,Poisson, and the Monte Carlo
simulation estimate  (given with the  standard deviation) of the probability of failure during the
earthquake, . Fig. 8 shows the same results as in Fig. 7, but for the non-classically damped building
(i.e., building with viscous dampers) and for the rotational degree of freedom of the roof diaphragm

. 

The results for this MDOF application example exhibit features similar to the ones observed for the
SDOF linear oscillator in the previous section. In particular, the analytical mean upcrossing rate (not
shown here) and the analytical expected value of upcrossings during the earthquake are in good
agreement with their respective MCS estimates, thus validating the derived closed-form solutions for
linear MDOF systems. The Poisson approximation of the probability of failure is very close to the
analytical upper bound and overestimates significantly the probability of failure estimated via Monte
Carlo simulation, even for the relatively large normalized displacement threshold 
considered here. It is likely that significant improvement in the evaluation of the time-variant
probability of failure can be achieved by taking into account the “memory properties” of the response
process, by using for example the Vanmarcke’s approximation [16,17] of the probability of failure. 
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Fig. 7.   Unsymmetric building with classical damping subjected to the El Centro earthquake 
process, (a) MCS estimates of upcrossing probabilities, (b) comparison between MCS 
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CONCLUSIONS 

New explicit closed-form solutions are developed for the mean upcrossing rates of nonstationary
response quantities of linear elastic, both classically and non-classically damped, multi-degree-of-
freedom (MDOF) systems subjected to a fully nonstationary earthquake ground motion process. These
closed-form solutions are based on state-space complex modal analysis. Application examples are
presented in which single-degree-of-freedom (SDOF) systems and a three-dimensional idealized
unsymmetrical building structure with and without viscous bracing elements are subjected to the
nonstationary earthquake ground motion model. The latter is calibrated against three historic, well-
known earthquake ground motion records. All the analytical results are validated via Monte Carlo
simulation. 

The closed-form solutions obtained for the analytical mean upcrossing rates are then used to evaluate
an analytical upper bound (the expected number of upcrossings, E[N]) and the Poisson approximation,
Pf,Poisson, of the time-variant probability of failure, Pf, for a given scalar response threshold, . Again,
the analytical results are compared with their counterparts obtained via Monte Carlo simulation,
showing a very good agreement for the expected number of upcrossings. It is found that (1) for low
normalized response thresholds (i.e.,  where  denotes the maximum value of the
response standard deviation during the earthquake), the Poisson approximation provides a significant
improvement over the upper bound estimate of the time-variant probability of failure, but remains
short of being accurate; and (2) for normalized response thresholds as high as , the
Poisson approximation and the upper bound estimate are very close, but may still overestimate
significantly the time-variant probability of failure depending on the relative frequency properties of
the system and earthquake excitation process. Therefore, further studies are underway to find better
analytical/numerical approximations of the time-variant probability of failure. 
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Fig. 8.   Unsymmetric building with non-classical damping subjected to the El Centro earthquake 
process, (a) MCS estimates of upcrossing probabilities and (b) comparison between MCS 
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