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SUMMARY 

 
A semi-analytical and semi-numerical approach for earthquake induced hydrodynamic pressure on pier 
was developed. Trefftz-complete functions were used to form the potential of rigid movement and that of 
elastic vibration. The coupling kinetic equations were solved by FEM with beam element. This method is 
a relatively simple and efficient approach, retaining the gravity waves on the water surface and the 
compressibility of the fluid. Examples were presented to discuss the influence of earthquake induced 
hydrodynamic pressure on pier and the accuracy of this method was illustrated. Based on the potential 
theory, hydrodynamic pressure on the side of circular pile cap was also investigated. An efficient semi-
analytical and semi-numerical approach for harmonic earthquake induced hydrodynamic pressure on the 
side of circular pile cap was developed, as well as coefficient of added mass. This method is not only able 
to consider gravity waves on the water surface, but also able to be applied to pile cap in arbitrary depth of 
water. Results of analysis illustrated that for pile cap near the surface of water, surface wave would have 
significant effect on hydrodynamic pressure in the case of low frequency of movement, while there is 
little effect of surface wave induced by high frequency of movement. Besides, using coefficient of added 
mass in modified Morison equation will over-evaluate the hydrodynamic pressure on pile cap. To 
investigate the importance of hydrodynamic pressure on seismic response of bridge, shaking table tests of 
bridge models have been carried out. 
 

INTRODUCTION 
 

Some bridges crossing sea bays or sea straits have been constructed, or are in the design 
and planning stage in home and abroad, two examples are shown in Figure 1 and Figure2. The 
Bohai bay has a width of 145km, and a mean water depth of 40m; the Qiongzhou strait has a 
shortest width of 20km, and a mean water depth of 60m. Solutions of bridges and tunnels have 
been proposed. The earthquake-resistance of bridges surrounded by water requires special 
considerations, while it does not need such considerations for bridges on the land. 

For decades, most of the researches on dynamics of structures surrounded by water has 
focused on dams[3-6], platforms[7-12], and tower structures[13-17], etc. For vibration of 
structures surrounded by water, various methods may be used, e.g., FEM, BEM, and analytical 
method. However, for complex cases, an analytical method is rather difficult to process 
mathematically. To solve such a problem numerically with FEM or BEM would involve a large 
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number of degrees of freedom and much computer time.  
To the knowledge of the authors, there have been few research papers[18-22] that deal with the response 
characteristics of bridges surrounded by water up to now. Furthermore, in most papers about bridges, the 
pier was reduced to a cantilever beam in water. For a circular cylinder surrounded by water, [23-25] 
which has given analytical or semi-analytical solutions based on vibration equation and mode functions of 
cantilever beam in water. But those solutions are limited to single cylinder, being not convenient to be 
coupled with other parts of a structure for vibration analysis of the whole structure. To overcome the 
above problems, a semi-analytical and semi-numerical method is introduced herein based on Trefftz 
complete function and FEM. The gravity waves on the water surface and the compressibility are retained 
in the method for extremely low frequency and high frequency. The hydrodynamic pressure is expressed 
in the form of virtual mass as the Morison’s equation does. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For pile foundation, Morison equation is preferable to calculate the added mass on piles with small radius. 
But for pile cap under free surface of water, regular coefficient of added mass in Morison equation is not 
suitable anymore. Thus in this paper, earthquake induced horizontal hydrodynamic pressure are also 
obtained for pile cap, as well as coefficient of added mass for pile cap. 
 

HYDRODYNAMIC PRESSURE ON PILE CAP DUE TO EARTHQUAKES 
 

It is assumed that the global displacement motion of pile cap is ( ) tieutU ω
0= , and then the hydrodynamic 

pressure along unit length of the pile cap is,  
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Figure 1. The Bohai Bay in China Figure2 The Qiongzhou Strait 
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where nV1
&

 and sV2
&

 are constants to be decided by the continuous conditions among velocity potentials of 

different fluid domain, other symbols have the same meaning as before. Constants of 
( )1

ijP
 and 
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 are 
calculated respectively,  
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in which, H is the displacement from the surface of cap to the water surface, 0∂  and m∂  are the solution 
of the following dispersion relation equations,  
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Figure 3  Model for Analysis of Hydrodynamic Pressure of Pile Cap 



Finish the integral of ( ) artzrP =,,  along cap in z-direction, the horizontal hydrodynamic force aF  can be 
obtained,  
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then equation (21) can be written as, 

( )tUmF aa
&&−=                                                                                                                                 （10） 

in which am  is the added hydrodynamic mass on the cap in horizontal direction. Then the added 

hydrodynamic mass factor 
'
aC  is, 

2' aCmC aa ρπ=                                                                                                                              （11） 

From the above analysis, with the consideration of surface waves, 
'
aC  is related to frequency ω , then the 

dynamic equation of bridge under seismic action should be written in frequency domain,  
( ) ( ) ( ) ( ) ( )( )ωωωωωωω sgagsi uuMuMuMCK 22 −−−=−+ &&&&

                                                        (12a) 
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where K , C  and M  are the stiffness matrix, damping matrix and mass matrix of bridge respectively. 
( )ωgu&&

 is defined in equation (10), 
( ) ( )[ ]ωωω sg uu 2−&&

 is the absolute acceleration vector of bridge 

structure, aM  is the matrix of added hydrodynamic mass, which diagonal elements correspond  to the 
part of bridge in water and zero elements correspond  to other parts of bridge.  

When the effects of surface waves are neglected, we have 021 ==− ωσ g , and 0λ  and 0∂  do not exist, 
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 are not related to ω , thus the added hydrodynamic mass is not related to ω . Then equation (12b) can 
be written in time domain,  
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As an example, assume the pile cap moves in an harmonic way, and md 30=
，

ma 6=
，

mC 3=
，

o0=θ . The results are shown in Figure 4 and 5. It is observed that the added mass factor is significantly 
increased or decreased by the surface waves in the range of lower frequency, and with the increase of ω , 

the contribution of surface waves to 
'
aC  decreases, finally reach the value without consideration of the 



effects of surface waves. From Figure 5, 
'
aC  is related to the position of the cap in the water. Figure 6 

gives the relationship between 
'
aC  and d . It can be seen from Figure 6 that the depth of water d  has an 

insignificant effect on 
'
aC . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 gives the relationship between 
'
aC  and dC . Figure 7(a) is for md 20= , and (b) is for 

md 40= . It is observed that 
'
aC  increases with C (the thickness of the cap) when d  is a constant. One 

can see that 
'
aC  vary with frequency ω , and reaches a peak at a frequency range of 0.5-1.5rad/s. It means 

that fluid motion with low frequency may lead to large hydrodynamic pressure. 

Figure 8 demonstrates that 
'
aC  gets larger with the value of radius a. But 

'
aC  is not more than 1. 

According to the modified Morison equation, the added mass factor for a circular cylinder with relative 

minor radius to water depth is 0.1=aC . The results shown in Figure 8 mean that the Morison’s equation 
would exaggerate the added hydrodynamic mass on the cap in horizontal direction. 
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Figure 5 The Added mass Factor 
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SHAKING TABLE TESTS OF MODEL PIERS OF BRIDGE 
 

To investigate the importance of hydrodynamic pressure on seismic response of bridge, 
and to verify the formulas derived in this paper, shaking table tests of model bridge piers were 
carried out. Two model bridge piers were designed. The first is a model of Pingtan Bridge(in 
Fujian province, China, see Figure 9) following the similarity laws，and the second one is an 
ideal model, which is the same in configuration, but with different mass density and different 
stiffness. The configurations of the model bridge pier are shown in Figure 10. Figure 11 shows 
the pictures of the model bridge piers. 
Some results of the shaking table tests for harmonic excitations are shown in Figure 12-18. What one can 
observe from Figure 12-18 tell us that the hydrodynamic fluid pressures enlarge the seismic responses of 
the model bridges. Not much enlargement is observed in Figure 13 and 14 for model of Pingtan Bridge. 
But large enlargement for ideal model bridge is observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  d=20m                           (b) d=40m 

Figure 7 Relationship Between 
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aC  and dC  
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Figure 10 The Configuration of The Tested Model 
Bridge Piers 

Figure 11  Example Photos of Bridge Models 
in Testing 
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Figure 13  Strain envelope along the elevation  
For Model of Pingtan Bridge 
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Figure 17  Time History of Strains(0.313Hz) for Ideal Model Bridge 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSIONS 
A example is computed in this section. The example is the prototype of the Pingtan Bridge shown in 
figure 9. The calculated results are shown in Figure 19-24. 
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Figure 19  The First Lowest Modal Frequency  Figure 20  Displacement at Top of Pier 
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Figure 19 gives the first ten modal frequencies of pier vibrating in air and water. In figure, the lowest four 
modal frequencies of pier vibrating in water are almost the same as those in air. Moreover the results by 
two methods have minor difference. The dynamic responses of pier vibrating in air and water are 
compared in figure 20-24. Differences between the dynamic responses of pier vibrating in water and in air 
are observed, but the differences are not significant, not more than 10%. The reason is that the added 
masses for pile cap obtained by two methods are quite small with regard to the mass of pile cap. 
Accordingly, the effect of hydrodynamic pressures on dynamic characteristics of the computed pier is not 
obvious. 
 

CONCLUSIONS 
To estimate the seismic responses of bridges surrounded by water, a semi-analytical and semi-numerical 
approach for earthquake induced hydrodynamic pressure on pier was developed and shaking table tests of 
model bridge piers were finished. The following conclusions can be reached. 
The methods developed in this paper can easily be combined with FEM method, and then make it 
convenient to estimate the seismic responses of bridges surrounded by water; 
Hydrodynamic pressure may largely change the seismic responses of bridges which are of low modal 
frequencies or bridges which consist of thin-wall column piers; 
The results from shaking table tests show that hydrodynamic pressure may be important to seismic 
responses of some types of bridges surrounded by water. This conclusion agrees to that obtained by 
theoretical computation. 
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