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SUMMARY 
 
This paper is focused on the performance evaluation of Moment Resisting steel Frames (MRF), designed 
according to three different criteria, leading to Global-MRF (GMRF), Special-MRF (SMRF) and 
Ordinary-MRF (OMRF). To this scope, a complete probabilistic analysis has been developed considering 
the main sources of randomness concurring to the random seismic response of structures: mechanical 
properties of materials, vertical loads and earthquake action. The probabilistic analysis has been carried 
out by means of the Monte Carlo method which consists in generating geometrically equal structures, but 
structurally different in terms of distribution of vertical loads and material properties. The generated 
structural sample is successively subjected to nonlinear dynamic analyses considering a series of 
accelerograms, which have been generated to match the elastic design response spectrum to be 
representative of the zone seismicity. Successively, the seismic reliability of structures is determined by 
means of fragility curves, which provide the probability of occurrence of a pre-defined limit state, 
conditioned on a specific value of the Peak Ground Acceleration (PGA). 
Finally, the influence of the randomness of material properties and vertical loads on the stochastic seismic 
response of steel frames is compared with the influence of the random variability of the seismic action. To 
this scope, from the statistical sample of the structural inelastic response, both the mean values and the 
standard deviation of damage control variables, Roof Displacement Angle (RDA) and Interstorey Drift 
Angle (ISDA), have been evaluated considering both all sources of randomness and by separating the 
seismic action variability from the material properties and vertical load randomnesses. From these results 
it can be observed that the evaluation of the structural reliability by means of probabilistic methods 
considering the effect of the randomness of the seismic action and ignoring the effects of randomnesses 
due to the vertical loads and the material properties is sufficiently accurate, provided that a strict control of 
the failure mode is carried out in the design process. 
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INTRODUCTION 
 
Structures designed according to the traditional seismic design philosophy should, in general, satisfy the 
following rules. First, resist minor level of earthquake ground motions without damage remaining in 
elastic range; second, resist moderate earthquakes without structural damage, but with some non-structural 
damage; and, finally, resist major earthquakes without collapse with some structural damage which has to 
be compatible with the local and global ductility supplies. Even though life safety is the most important 
objective, recent earthquakes have shown that buildings designed primarily for life safety according to the 
seismic provisions of current building codes could sustain too severe damage to structural elements, non 
structural elements and building contents. Although no loss of life occurred in modern buildings, 
economic losses from building damage have been staggering. This is clearly an unacceptable level of loss 
for frequent and moderate earthquakes; thus, the design professionals recognize that buildings should be 
designed not only for life safety of occupants but also for damage control. 
Structures are allowed to undergo inelastic deformation when subjected to severe earthquake ground 
motion to dissipate energy. The inelastic behaviour is indirectly considered in traditional seismic design 
method through reduced level of seismic forces combined with elastic structural analysis. In fact, the usual 
design procedure for seismic-resistant structures is based on elastic analysis under seismic horizontal 
forces, which are defined scaling down the linear elastic design response spectrum (LEDRS) by means of 
a proper coefficient, namely q-factor. Under such reduced horizontal forces, structures have to possess 
sufficient strength and stiffness in order to satisfy the serviceability requirements. The safety against the 
ultimate limit state is considered automatically verified, provided that the detailing rules and the design 
procedures, suggested by seismic codes, are applied. 
This procedure offers considerable simplification, but the limitations are evident. In fact, the suggested 
design procedures do not always lead to the foreseen failure mode and to the expected ductility supply, so 
that the energy dissipation capacity of the structures could be not sufficient to prevent collapse under 
destructive earthquakes; in addition, the designer is not aware about the collapse mechanism of the 
structure, the local and global ductility demands and the actual energy dissipation: such a method is 
inadeguate to have an exhaustive knowledge of the inelastic response of the structure and of the design 
measures to be adopted for its improvement. 
Therefore, Performance-Based Seismic Design (PBSD) [1-7] with the consideration of both structural and 
non-structural damage [7], multiple performance objectives, specific quantification of performance criteria 
and explicit consideration of inelastic deformation of structures, has gained more and more attention 
within the international scientific community. The purpose of performance-based earthquake engineering 
is to ensure that the engineered facilities respond to the needs and objectives of the owners, users and 
society with well defined performance, under common and extreme earthquake ground motions. For this 
reason, it is essential that the design procedure is clear and transparent for the designers to understand the 
expected seismic performance and the inherent risks of structures under various levels of ground motions 
expected during their life cycles. 
In this perspective, the SEAOC Vision 2000 Committee proposed the four well-known performance 
levels: Fully Operational, Operational, Life Safe, Near Collapse. In addition, four earthquake design levels 
are specified: Frequent, Occasional, Rare and Very Rare; the corresponding return periods are equal to 43, 
72, 475 and 970 years [1, 2, 8]. 
However, it can be recognized that it is very difficult to predict with certainty how much damage a 
building will experience for a given level of ground motion. This is because there are many factors 
affecting the behaviour and the response of a building, such as the stiffness of nonstructural elements, the 
strength of individual building components and the quality of construction, which cannot be precisely 
defined. In addition, the analysis procedures used to predict building response are not completely accurate 
and the exact character of the ground motion that will actually affect a building is itself uncertain. Given 
these uncertainties, it is inappropriate to imply that performance can be predicted in an absolute sense, and 
correspondingly, that it is absolutely possible to produce designs that will achieve desired performance 



objectives. In order to evaluate the performance of a steel moment-frame building it is necessary to 
construct a mathematical model of the structure that represents its strength and deformation 
characteristics, and to conduct an analysis to predict the values of various design parameters when it is 
subjected to the design ground motion. The ability of the performance evaluation to estimate reliably the 
probable performance of the structure is dependent on the ability of the analysis procedure to predict the 
values of these response parameters within acceptable levels of confidence. In this context, it is clear that 
the linear dynamic procedure is able to provide relatively reliable estimates of the response parameters for 
structures that exhibit elastic, or near elastic, behaviour; while the linear static procedure inherently has 
more uncertainty associated with its estimates of the response parameters because it accounts less 
accurately for the dynamic characteristics of the structure. Instead, the nonlinear static procedure is more 
reliable than the linear procedures in predicting response parameters for structures that exhibit significant 
nonlinear behaviour, particularly if they are regular; but, if does not accurately account for higher mode 
effects. If appropriate modelling is performed, the non linear dynamic approach is the most capable of 
capturing the probable behaviour of the real structure in response to ground motion. 
To this end, a more accurate knowledge of the seismic performances of a structure such as moment 
resisting steel frames requires sophisticated numerical procedures, because the quantitative evaluation of 
the structural damage for different earthquake design levels would require nonlinear dynamic analyses 
accounting also for the random nature of loads and resistances. 
In particular, the prediction of the seismic response of structures, that suffered damage during 
earthquakes, by means of deterministic analyses can lead to an unsatisfactory agreement between 
predicted and surveyed damage, because inherent randomness and modeling uncertainties limit the quality 
of the agreement that is possible from a single deterministic analysis [9]. Therefore, the evaluation of the 
seismic reliability of structures requires stochastic response analyses. 
The use of fragility curves providing the probability of occurrence of a pre-defined limit state, conditioned 
on a PGA or other control variable that is consistent with the specification of the seismic hazard, has been 
proposed [10-11]. As soon as such fragility curves are derived, the limit state probability can be calculated 
from the convolution of the derivative building fragility and seismic hazard [12]. In fact, generally the 
probability that a building may experience damage more severe than that defined for a given performance 
level is a function of two principal factors. The first of these is the structure’s vulnerability, that is, the 
probability that it will experience certain levels of damage given that it experiences ground motion of 
certain intensity. The second of these factors is the site hazard, that is, the probability that ground shaking 
of varying intensities may occur in a given time period. The probability that damage exceeding a given 
Performance Level may occur in a period of time is calculated as the integral over time of the probability 
that damage will exceed that permitted within a performance level. 
Structural response parameters that may be used to measure capacity include the structure’s ability to 
undergo global building drift, maximum tolerable member forces and maximum tolerable inelastic 
deformations. However, the process of predicting the capacity of a structure to resist ground shaking 
demands as well as the process of predicting the severity of demands that will actually be experienced 
entail significant uncertainties. Generally, uncertainty can be reduced by obtaining better knowledge or 
using better procedures [13]. 
Therefore, in this paper, a probabilistic approach has been applied with reference to a four bay-four storey 
MRF designed according to different criteria. In particular, regarding the dimensioning of the structural 
elements, three design criteria are examined: 

• GMRF: frames designed to assure a global failure mode [14, 15]; 
• SMRF: frames designed according to member hierarchy criterion [16]; 
• OMRF: frames designed without any requirement aimed at the control of the failure mode [17]. 

The aim of this paper is to focus on the performances of these criteria from a probabilistic point of view. 
The reliability analysis has been carried out considering all the randomnesses concurring to the seismic 
response of structures. In particular, mechanical properties of materials, vertical loads and earthquake 



action are considered as random variables. Therefore, a complete probabilistic analysis is proposed to 
evaluate the structure ability to dissipate the seismic energy. This approach includes both the random 
nature of the seismic loading condition and the random location of plastic hinges, whose formation 
depends on the random values of material properties. The probabilistic analysis is developed by means of 
the Monte Carlo method which consists in generating geometrically equal structures, but structurally 
different in terms of distribution of vertical loads and material properties. The generated structural sample 
is successively subjected to nonlinear dynamic analyses. Finally, the seismic reliability of structures is 
determined by means of fragility curves, which provide the probability of occurrence of a pre-defined limit 
state (one of the four proposed by PBSD), conditioned on a PGA value. 
Although the electronics took a step forward in the last years, the burdensome calculation remains the 
most overhanging limit for the application in everyday design experience of a probabilistic procedure. 
Therefore, it is very interesting to develop relatively simple methodologies for the evaluation of the 
seismic hazard for the use in the design practice, both as design tool for new buildings and for evaluating 
the conditions of existing buildings. The tools for reliability analysis are enough sophisticated and they 
can be used for special structures, but they absolutely are not economically flexible and thinkable for the 
design and evaluation of the most part of buildings. 
Therefore, in order to reduce the number of dynamic analyses required by a probabilistic approach, in this 
work the influence of the randomness of material properties and vertical loads on the stochastic seismic 
response of steel frames is compared with the influence of the random variability of the seismic action. 
The aim is the identification of the most important sources of randomness to be included in the structural 
reliability evaluation with probabilistic methods. In particular, from the statistical sample of the structural 
inelastic response, both the mean values and the standard deviation of damage control variables, RDA and 
ISDA, have been evaluated considering both all sources of randomness and by separating the seismic 
action variability from the material properties and vertical load randomnesses. 
 
 

STOCHASTIC RESPONSE ANALYSIS 
 
The variability in the response of structures to earthquake ground motions depends on many sources of 
randomness: material properties, vertical loads, seismic event, structural geometry, structural analysis, 
welding process, quality of workmanship, base metal properties and connection design. 
In this paper the structural parameters treated as random variables are the following: 

• Yield strength: two different yield strength distributions have been considered: the first one for the 
flanges and the second one for the web of the cross section. The random values of the yield 
strength of these two elements are independently generated, to this end a preliminary statistical 
analysis of available experimental data has been performed. This analysis suggested the use of a 
log-normal distribution [12], whose mean value (E[lnfy]) is dependent on the plate thickness (t): 

[ ] tccfE y 21ln −=           (1) 

Conversely, the variance (VAR[lnfy]) can be assumed constant. 
• Vertical loads: the considered random variables are the dead load due to concrete slab and the live 

load. The normal distribution has been assumed for these random variables with a coefficient of 
variation (Cov) equal to 0.10 [18]. The mean value of the dead load due to the concrete slab is 
equal to the product between the concrete cross section area and its specific weight. The mean 
value (Fm) of the live load is given by: 
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where Fk = characteristic value (code specified value) and k = coefficient equal to 1.64 for normal 
distribution. 



• Seismic event: the dominant source of randomness in response is the ground motion; in fact, basic 
seismic hazard at a site, phasing, amplitude and frequency content are random. In this work the 
randomness of the seismic action is considered by means of an ensemble of ten simulated ground 
motions, generated by means of the SIMQKE program, to match the LEDRS of Eurocode 8, for a 
soil type A and for high seismicity zone. In addition, each ground motion is scaled to obtain 
increasing values of PGA. 

Several structural response parameters are used to evaluate structural performance. In this paper, the 
building response statistics considered are the mean and the standard deviation of the maximum roof 
displacement angle (RDA) and of the maximum interstorey drift angle (ISDA). 
RDA is defined as the maximum roof displacement (δ) normalized by the building height (H): 
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where δi = maximum interstorey drift of the i-th storey, np = number of storeys and hi = storey height. 
ISDA is more significant than RDA and is usually adopted in seismic codes as a numerical measure of 
damage. In fact, damage is stochastically averaged over the height of the frame in determining the RDA; 
conversely, the ISDA provides a measure of damage focusing on the storey in which the concentration of 
the seismic energy occurs. In addition, interstorey drift is an excellent parameter for judging the ability of 
a structure to resist P-∆ instability and collapse. It is also closely related to plastic rotation demand or drift 
angle demand on individual beam-column connection assemblies, and it is therefore a good predictor of 
the performance of beams, columns and connections. 
 
Table 1. Limit states 
Limit States  RDA  ISDA 
   (%)  (%) 
Fully Operational  0.5  0.5 
Operational  1.0  1.0 
Life Safe  2.0  2.0 
Near Collapse  5.0  5.0 
 
 

FRAGILITY MODEL 
 
The seismic fragility of a structure Fr(x) is defined as its Limit-State (LS) probability, conditioned on a 
specific PGA, spectral acceleration, spectral velocity or other control variable that is consistent with the 
specification of the seismic hazard: 

( ) [ ]PGALSxPxFr ==           (5) 

where LS represents the corresponding limit state. Fr(x) often is modeled with a log-normal probability 
distribution [10]. 
The fragility for any given limit state is obtained from the cumulative distribution function (CDF) of ISDA 
or RDA. For example, if the limit state is ISDA = 1%, then: 

( ) [ ] [ ]PGAISDAPGAISDAPFr %11%1%1 <−=≥=        (6) 

The aim of this paper is the analysis of the inelastic performances of structures, designed according to 
different criteria, by evaluating the fragility curves corresponding to the three limit states (Operational, 
Life Safe and Near Collapse) engaging the structures in plastic range. The numerical values of RDA and 
ISDA corresponding to the limit states, suggested by SEAOC, are given in the Table 1 [10]. 



The numerical procedure used to determine the fragility curves is a Hybrid Monte Carlo simulation [19], 
which consists in the following phases: 

1. Deterministic dimensioning of frames (three design criteria - OMRF, SMF and GMRF - are 
examined in this paper); 

2. Random generation of geometrically equal structures, but structurally different, in terms of 
distribution of vertical loads and material properties. To make this generation, the first step is 
represented by the generation of numbers uniformly distributed between 0 and 1. Each random 
number corresponds to a random value of the random variable (yield strength or vertical loads), 
for a given probability distribution law. The transformation of random numbers into random 
values of involved variables, for a given probability distribution law, has been performed by 
means of the Box and Muller method [19]; 

3. Structural analysis: the structures previously generated are subjected to nonlinear dynamic 
analyses obtaining a statistical sample of the inelastic seismic response; 

4. Statistical interpretation of results which consist in the following steps: 
• Selection of the control variables (x) to evaluate the seismic structural response (in this 

paper the adopted control variables are RDA and ISDA); 
• Definition of the limit values of the control variables (xlim), corresponding to the different 

performance levels; 
• For any given PGA, the values of the control variables obtained from nonlinear dynamic 

analyses are rank-ordered (x1 ≤ x2 ≤ .. ≤ xn-1 ≤ xn where n is the sample size, i.e. the 
number of the analysed frames); 

• Determination of the CDF value corresponding to the i-th value (xi) of the control variable 
by means of Gringorten formula: 

( )
nn

i
xF ix

1

12
≅

+−
−=
α
α

        (7) 

where α is a constant equal to 3/8. 
• Estimate of the mean value and the standard deviation of rank-ordered series: 
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• For any given PGA, data are plotted in log-normal probability graph paper, as depicted in 
Figure 1; 

• For any fixed limit value of the control variable (xlim), the corresponding cumulative 
probability is evaluated, as denoted in Figure 1; 

• For any given PGA and for any fixed limit value of the control variable (xlim), the fragility 
is evaluated as follows: 

( ) [ ]PGAxFPGAxF xr limlim 1−=       (9) 

• Determination of the corresponding standard normal variable (ur) for a fixed limit state 
(xlim) and for any value of Fr(xlimIPGA) previously computed; 

• For any fixed limit state xlim, the points (PGA, ur) are represented on log-normal 
probability graph paper and the regression curve, representing the fragility curve 
corresponding to xlim, is evaluated (Fig. 2a); 

• The last step is the representation of the fragility curve (Fig. 2b). 
For any fixed limit state, Figures 2a, 2b can be used to determine both the fragility 
corresponding to a given PGA and, conversely, the maximum PGA that the structure is able to 
sustain without violating the design requirements corresponding to the fixed limit state. 
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Figure 1. CDF in log-normal probability graph paper. 
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Figure 2. Fragility curve. 

 
EXAMINED FRAMES 

 
A four bay-four storey frame has been analyzed (Fig. 3). Steel grade Fe430 is used. Regarding the 
deterministic design loads, a uniform dead load of 18.0 kN/m and a uniform live load of 12.0 kN/m are 
applied. The results of the dimensioning according to the three design criteria are presented in Table 2 and 
in Figure 3. In particular, Table 2 shows the influence of the design criteria on the column sections. 
In order to generate geometrically equal structures, but structurally different, the yield strength is 
considered log-normal with a mean value defined by Equation 1 with c1 = 5.7779 and c2 = 0.0030, while 
the variance is constant (VAR[lnfy] = 0.0038); the uniform dead load is constituted by a deterministic part 
and a random part due to the concrete slab, whose weight has been assumed normally distributed with 
mean value equal to 2kN/m and coefficient of variation equal to 0.10. 
Successively, nonlinear dynamic analyses have been performed using DRAIN-2DX. Preliminarily, in 
order to establish the size of the statistical sample of the structural response, 5000 frames have been 
generated and subjected to a single ground motion having a PGA equal to 0.75g. 



 
Table 2. Column sections. 
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Storey Type OMRF  SMRF  GMRF    . 
1  A HEB 160 HEB 200 HEB 340 
1  B HEB 220 HEB 240 HEB 340 
1  C HEB 200 HEB 240 HEB 340 
2  A HEB 160 HEB 200 HEB 300 
2  B HEB 180 HEB 240 HEB 300 
2  C HEB 180 HEB 240 HEB 300 
3  A HEB 140 HEB 180 HEB 300 
3  B HEB 180 HEB 220 HEB 300 
3  C HEB 160 HEB 220 HEB 300 
4  A HEB 140 HEB 180 HEB 260 
4  B HEB 120 HEB 220 HEB 260 
4  C HEB 120 HEB 220 HEB 260 

Figure 3. Examined frame. 

 
From these analyses, the sample size to be used for the complete procedure for evaluating the fragility 
curves has been selected as the sample size assuring sufficiently stable values of average and standard 
deviation of RDA and ISDA. The choice to limit the size to 1000 frames appeared to be an appropriate 
compromise between accuracy of computation and its time effort. 
Therefore, for any selected design criterion, 1000 frames have been generated and successively subjected 
to ten simulated ground motions. Each ground motion has been scaled considering the following PGA 
values: 

• OMRF: 14 cases (0.05, 0.075, 0.1, 0.15, 0.18, 0.2, 0.22, 0.3, 0.4, 0.45, 0.55, 0.6, 0.8, 1, 1.1)g; 
• SMRF: 17 cases (0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.05, 

1.2)g; 
• GMRF: 15 cases (0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.55, 0.6, 0.7, 0.8, 0.85, 0.9, 1, 1.1, 1.2)g. 

The number of cases to be analysed and the values of PGA have been selected to have a sufficient number 
of points to determine the fragility curves. 
 
 

FRAGILITY CURVES 
 
Figures 4-6 show, for any fixed limit state, the fragility curves for the analyzed design criteria. The 
following observations can be made: 

• Considering the limit state ISDA = 1% (Fig. 4), corresponding to the beginning of damage to non 
structural elements, for the same value of PGA, GMRF provides the smallest fragility and, 
therefore, the greatest reliability. It can be noted that for PGA equal to 0.20g OMRF provides 
100% fragility while GMRF and SMRF provide null fragility; 

• Regarding the limit state ISDA = 2% (Fig. 5), corresponding to Life Safe, for a given value of 
PGA, GMRF still provides the smallest fragility and, therefore, the greatest reliability. In 
particular, the fragility curves are significantly spaced pointing out that the adopted design 
criterion plays a very important role for a limit state significantly engaging the structure in plastic 
range, even though collapse is relatively far. For example, for PGA = 0.5g, the fragilities 
corresponding to OMRF, SMRF and GMRF are equal, respectively, to about 100%, 10% and 0%; 
while for PGA = 0.80g the fragilities corresponding to OMRF and SMRF are equal to 100% while 
GMRF is almost completely reliable; 

• Concerning the limit state ISDA = 5% (Fig. 6), corresponding to the incipient collapse, for a given 
value of PGA, GMRF is still the most reliable; but in this case the fragility curves are more closely 
spaced. 
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Figure 4. Fragility curves for limit state ISDA = 1%.  Figure 5. Fragility curves for limit state ISDA = 2%. 
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Figure 6. Fragility curves for limit state ISDA = 5%. 

 
ANALYSIS OF THE INFLUENCE OF THE DIFFERENT SOURCES OF RANDOMNESS  

 
Considering all the random variables, 460.000 dynamic nonlinear analyses have been carried out. From 
these analyses the mean value and the standard deviation (ST.DEV.) of RDA and ISDA have been 
computed and are presented in Figures 7-9. 
Based on the above mentioned results, several conclusions can be drawn. For a fixed design criterion, 
increasing PGA, the mean value of ISDA increases. The gradient of ISDA versus PGA points decreases as 
the design criterion becomes more severe. In addition, increasing PGA, also the standard deviation of 
ISDA increases; this is due to the fact that increasing the plastic deformations the effects coming from the 
randomness of mechanical properties of materials are more significant. 
With reference to RDA, similar observations can be made. In both cases, the design criterion aimed to 
assure a global failure mode, involving an increase of the column sections, leads to the formation of a 
significant number of plastic hinges leading to a better plastic redistribution. Instead, the other design 
criteria, involving a concentration of plasticity in few sections, determine an higher rotation of plastic 
hinges which lead locally to a bigger plastic engagement. This is clear observing the reduction of the 
difference of the mean value of ISDA and the mean value of RDA as the design criterion becomes more 
severe: the value of this difference becomes maximum for OMRF and minimum for GMRF. Moreover, the 
mean value of RDA is always less than the mean value of ISDA. This is because, in determining RDA, 
damage is stochastically averaged over the height of the frame. 
Therefore, in this paper, aiming to compare the performances of the designed structures in terms of 
fragility curves, only ISDA has been considered. 
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Figure 7. Mean values and Standard Deviation in terms of RDA and ISDA for OMRF. 
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Figure 8. Mean values and Standard Deviation in terms of RDA and ISDA for SMRF. 
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Figure 9. Mean values and Standard Deviation in terms of RDA and ISDA for GMRF. 

Figures 10-12 show, instead, the mean values and the standard deviation in terms of ISDA for any 
analyzed design criterion. These values have been obtained, given the ground motion, by considering the 
values of the considered control variable (ISDA) for the 1000 random generated frames. It is clear that this 
representation of the results in terms of both mean value and standard deviation provides, for any PGA 
value, a measure of the effects of the seismic action randomness conditioned to the selected random set of 
frames. In fact, for a given PGA value, the obtained fork of values corresponds to the ten considered 
accelerograms. The extent of the scatter becomes more and more evident as PGA increases and, as a 
consequence, the plastic engagement increases too. In addition, this scatter decreases increasing the 
severity of the design criterion, i.e. passing from OMRF to GMRF. 
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Figure 10. Mean values and Standard Deviation in terms of ISDA obtained for a given ground motion and by 
considering ISDA values for the 1000 random generated frames (OMRF). 
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Figure 11. Mean values and Standard Deviation in terms of ISDA obtained for a given ground motion and by 
considering ISDA values for the 1000 random generated frames (SMRF). 
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Figure 12. Mean values and Standard Deviation in terms of ISDA obtained for a given ground motion and by 
considering ISDA values for the 1000 random generated frames (GMRF). 

 
In the figures 13-15 the mean and the standard deviation in terms of RDA has been presented for any 
analyzed design criterion. They have been obtained, given the ground motion, by considering the values of 
the control variable (RDA) for the 1000 random generated frames. In this case, observations similar to 
those made with reference to ISDA can be outlined, but the effects are smoothed with respect to ISDA. 
Aiming to show in synthetic form both the effects of randomness due to seismic actions and those due to 
the other two considered random variables (vertical loads and material properties), for any PGA value, the 
mean values of ISDA and of RDA are shown in the figures 16-18 where have been depicted only the 



accelerograms providing the minimum and the maximum value of the above parameters for any analyzed 
design criterion. In the same figures the corresponding 16% and 84% fractiles have been represented 
(mean value ± standard deviation). From these figures the influence of the randomness of vertical loads 
and materials mechanical properties can be evaluated by measuring, for any PGA value, the segment 
connecting the point corresponding to 16% fractile to that corresponding to 84% fractile. 
 

OMRF

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

PGA

M
E

A
N

 V
A

L
U

E
 O

F
 T

H
E

 R
D

A
O

N
 1

00
0 

F
R

A
M

E
S

 | 
P

G
A

Acc 1
Acc 2
Acc 3
Acc 4
Acc 5
Acc 6
Acc 7
Acc 8
Acc 9
Acc 10

 

OMRF

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

PGA

S
T

. D
E

V
. O

F
 T

H
E

 R
D

A
O

N
 1

00
0 

F
R

A
M

E
S

 | 
P

G
A

Acc 1
Acc 2
Acc 3
Acc 4
Acc 5
Acc 6
Acc 7
Acc 8
Acc 9
Acc 10

 
Figure 13. Mean values and Standard Deviation in terms of RDA obtained for a given ground motion and by 
considering RDA values for the 1000 random generated frames (OMRF). 
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Figure 14. Mean values and Standard Deviation in terms of RDA obtained for a given ground motion and by 
considering RDA values for the 1000 random generated frames (SMRF). 

GMRF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

PGA

M
E

A
N

 V
A

L
U

E
 O

F
 T

H
E

 R
D

A
O

N
 1

00
0 

F
R

A
M

E
S

 | 
P

G
A

Acc 1
Acc 2
Acc 3
Acc 4
Acc 5
Acc 6
Acc 7
Acc 8
Acc 9
Acc 10

 

GMRF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

PGA

M
E

A
N

 V
A

L
U

E
 O

F
 T

H
E

 R
D

A
O

N
 1

00
0 

F
R

A
M

E
S

 | 
P

G
A

Acc 1
Acc 2
Acc 3
Acc 4
Acc 5
Acc 6
Acc 7
Acc 8
Acc 9
Acc 10

 
Figure 15. Mean values and Standard Deviation in terms of RDA obtained for a given ground motion and by 
considering RDA values for the 1000 random generated frames (GMRF). 
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Figure 16. Minimum and Maximum Mean values in terms of both ISDA and RDA and corresponding 16% and 
84% fractiles for OMRF. 
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Figure 17. Minimum and Maximum Mean values in terms of both ISDA and RDA and corresponding 16% and 
84% fractiles for SMRF. 
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Figure 18. Minimum and Maximum Mean values in terms of both ISDA and RDA and corresponding 16% and 
84% fractiles for GMRF. 

 
Moreover, for any PGA value, the segment obtained by connecting the points corresponding to the 
maximum mean value (solid triangle) and to the minimum mean value (solid circle) provides a measure of 
the scatter of the inelastic structural response due to the earthquake action, with reference to the examined 



set of accelerograms. It can be recognized that the seismic stochastic response of steel structures is more 
significantly affected by the randomness of the seismic action rather than by the other two considered 
random parameters (mechanical properties and vertical loads). This is more evident as the design criterion 
becomes less severe. 
As an example, with reference to a seismic event with PGA equal to 0.60g and considering only the most 
significant control variable (ISDA), from these figures it can be observed that the scatter due to 
randomness of vertical loads and material properties is, respectively for OMRF, SMRF and GMRF, equal 
to 31.31%, 14.19% and 6.88% of the scatter due to the randomness of seismic action. Moreover, with 
reference to the considered set of accelerograms and to the examined range of the peak ground 
acceleration values, the magnitude of this scatter is, respectively for OMRF, SMRF and GMRF, on 
average equal to 33.49%, 19.50% and 10.22% of that due to randomness of the earthquake. 
Therefore, with reference to frames designed to assure a collapse mechanism of global type (GMRF), the 
effects of randomnesses are significantly reduced. For this reason, in this case the use of probabilistic 
methods for evaluating the structural reliability could be promoted by considering only one source of 
randomness, i.e. the seismic action, and ignoring the randomness due to vertical loads and material 
properties. 
 
 

CONCLUSIONS 
 
A procedure, based on Monte Carlo simulation, aiming at the evaluation of fragility curves corresponding 
to predefined limit states has been illustrated in this paper. The fragility curves include the randomnesses 
due to material mechanical properties, vertical loads and seismic action. In other words, they represent the 
result of an almost complete probabilistic analysis and, consequently, they represent an accurate tool for 
predicting the nonlinear seismic response of structures. 
The application of such methodology to MRFs designed with different criteria (OMRF, SMRF and 
GMRF) has pointed out that frames designed to assure a collapse mechanism of global type are the most 
reliable for any considered limit state leading to a 100% reliability until 0.32g for ISDA = 1%, which 
corresponds to the Operational limit state, and until 0.70g for ISDA = 5%, which corresponds to the Near 
Collapse limit state. However, with reference to earthquakes having a relatively moderate magnitude 
(PGAmax = 0.35g), such as those occurring in European countries, also SMRFs provide good results for 
any considered limit state. Conversely, the lack of any requirement aiming at the failure mode control, 
leads to unacceptable structures, because of their poor energy dissipation capacity and, as a consequence, 
poor reliability independently of the magnitude of the earthquake action. 
In addition, the seismic stochastic response of steel structures, both in terms of RDA and ISDA, is clearly 
more prone to the effects of the seismic action randomness rather than to the effects due to the other two 
considered random parameters (mechanical properties and vertical loads). This is more significant as the 
design criterion becomes less severe. With reference to frames designed to assure a collapse mechanism of 
global type (GMRF), the effects of randomnesses are significantly reduced, so that for such frames the use 
of probabilistic methods considering only the effects of seismic action randomness could be promoted. 
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