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SUMMARY 
 
Seismic reliability assessment of nonlinear stochastic structures is a challenging problem in that there 
have been only preliminary investigations on response analysis of stochastic structures involving 
nonlinearity. In recent a class of probability density evolution method (PDEM), in which the probability 
density evolution equation governing the response of nonlinear structures is derived, has been proposed 
by the authors. Based on the newly developed PDEM, a seismic reliability assessment method for 
nonlinear stochastic structures is put forward. In the method, dynamic reliability for a first passage 
problem can be obtained by imposing an absorbing boundary condition corresponding to the failure 
criterion on the probability density evolution equation and integrating over the safe domain. The proposed 
method is performed through a numerical algorithm combining the time integration method and the 
difference method with TVD schemes. In the proposed method, the computation of mean crossing rate is 
not needed, neither the assumption about the crossing process such as Poisson or Markovian suppose. A 
frame subject to seismic excitation is studied to assess the reliability and the results are compared with 
those obtained by the Monte Carlo method. The investigation shows that the proposed method is of high 
accuracy and time saving. 
 
 

INTRODUCTION 
 
Seismic reliability assessment is of paramount importance in the structural performance evaluation. In 
principle, the reliability should be evaluated considering the inherent randomness of the structural 
parameters Brenner [1]. However, in the state-of-the-art researches, an uncoupling treatment is used that 
the randomness is considered in the reliability evaluation but neglected in the structural analysis to 
compute the loading effects. The gap may be bridged through carrying out the reliability assessment with 
stochastic structural analysis techniques where the randomness of the structural parameters is taken into 
account directly. It is a pity that the existing stochastic structural analysis techniques, including random 
perturbation method and the orthogonal polynomials expansion method Schueller [2], are mainly focus on 
up to second moments, inadequate for the reliability assessment, letting out the nonlinear structures.  In 
2003 an original approach named probability density evolution method, through which the instantaneous 
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probability density function the structural response can be evaluated, was proposed by Li [3], suitable for 
either linear or nonlinear stochastic structure. 
On the other hand, the traditional dynamic reliability analysis methods, based on diffusion process theory 
or the level-crossing process theory, were extended to reliability assessment of stochastic structures, see 
Jensen [4] and Spencer [5]. Nonetheless, the method based on diffusion process theory is usually used in 
SDOF system, difficult to apply in general MDOF system, while in the method based on level-crossing 
process theory and the Rice formula, additional assumptions, such as the Poisson or Markovian 
assumption, about the level-crossing process should be imposed, which may lead to unpredictable errors. 
With the probability density evolution method, the dynamic reliability can be evaluated by imposed an 
absorbing boundary condition on the probability density evolution equation. Numerical algorithm is 
discussed. An 8-story frame is investigated, demonstrating that the proposed method is of accuracy and 
efficiency. 
 
 

THE PROBABILITY DENSITY EVOLUTION METHOD FOR DYNAMIC ANALYSIS OF 
NONLINEAR STOCHASTIC STRUCTURES 

 
Without loss of generality, a MDOF system exhibiting nonlinearity is governed by 

( ) ( ) ( , ) ( )t+ + =M Θ X C Θ X f Θ X F&& &                                                       (1) 
where M,C are the mass and damping matrices, respectively; f is the nonlinear restoring force vector; 

, ,X X X& &&  are the displacement, the velocity and the acceleration vectors, respectively; F is the dynamic 
excitation, either deterministic or random process; Θ  is the physical parameter vector, representing 
random field or random vector in the stochastic structural analysis. In many occasions, Θ  can be 
reasonably treated as random vector; in the occasions Θ  is modeled as a random field, it can be 
transformed to a random vector with a random field decomposition technique such as the Karhunen-
Loeve decomposition or the random field discretization such as the middle points and so on Schueller [2]. 
In the present paper, Θ  is uniformly treated as a random vector with known joint probability density 
function ( )p

Θ
θ . 

The initial condition of the MDOF system  

0 0 0 0( ) | , ( ) |t tt t= == =X x X x& &                                                               (2) 
is known. For instance, when the MDOF system is subjected to earthquake excitation, usually there 
is 0 0,= =x x&0 0 . 
Evidently, because Θ  is a random vector, the response X(t) is a random process dependent on Θ , which 
can be expressed in the form 

( ) ( , )t t=X G Θ                                                                       (3) 
This means that the randomness of X(t) stems completely from Θ , and therefore the probabilistic 
information of random process X(t), such as the instantaneous probability density function, is inherent in 
and thus determined by the probabilistic information of Θ . 
For the component form, we have 

( ) ( , )l lX t G t= Θ                                                                      (4) 
where Xl(t) is the l-th component of X(t), Gl is the l-th component of G. 
Similarly the response ( )tX&  is also dependent on Θ , expressed in the form 

( ) ( , )t t=X H Θ&                                                                       (5) 
with the component expression 

( ) ( , )l lX t H t= Θ&                                                                      (6) 

where ( )lX t&  is the l-th component of ( )tX& , Hl is the l-th component of H.  
Comparing Eq.(3) with Eq.(5) will lead to 
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G Θ
H Θ                                                                    (7) 

Although the analytical expressions of G and H are usually unavailable for a general structural dynamics 
system (1), we will find later that it does not matter. What is important is that they are existent and unique 
for a general well-posed dynamics problem. 
In the system (6), the randomness inherent in ( ( ), )lX t Θ  stems originally from Θ  and no additional 
randomness is added into or reduced from the dynamics system. This means that the probability in the 
system is preserved at any time of instants. Let ( , , )

lXp x t
Θ

θ  denote the joint probability density function 

(PDF) of ( ( ), )lX t Θ , using the mentioned principle of preservation of probability will lead to Syski [6] 

( , , ) ( , , )
( , ) 0l lX X

l

p x t p x t
H t

t x

∂ ∂
+ =

∂ ∂
Θ Θ

θ θ
θ                                                   (8) 

This is the probability density evolution equation, which usually cannot be analytical solved in that the 
explicit expression of the coefficient Hl is usually unavailable. However, for the numerical solution, 
which will be discussed in the latter section, the value of Hl, rather than the explicit expression, is actually 
used in Eq.(8). In this sense, Eq.(8) is modified into 

( , , ) ( , , )
( , ) 0l lX X

l

p x t p x t
X t

t x

∂ ∂
+ =

∂ ∂
Θ Θ

θ θ
θ&                                                   (9) 

The initial condition is 

0 ,0( , , ) | ( ) ( )
lX t lp x t x x pδ= = −
Θ Θ

θ θ                                                     (10) 

where ,0lx is the l-th component of x0; ( )δ ⋅ is the Dirac’s function. 

After obtaining ( , , )
lXp x t
Θ

θ , the PDF of Xl(t), denoted as ( , )
lXp x t  can be obtained with a integration 

( , ) ( , , )d
l lX Xp x t p x t

Ω
= ∫

Θ

Θ
θ θ                                                         (11) 

where Ω
Θ

 is the distribution domain of Θ . 
 
 

DYNAMIC RELIABILITY ASSESSMENT 
 
Dynamic reliability can be defined by different failure criterions. The first passage criterion is a common 
used one. For the first passage problem, the dynamic reliability is defined by 

s( ) { ( ) , [0, ]}R T P X Tτ τ= ∈Ω ∈                                                  (12) 
where {}P ⋅  means the probability of a random event; X(t) is the dynamic response by which the reliability 

is defined; T is the considered time interval; sΩ  is the safe domain. Obviously, the failure probability is  

f f( ) 1 ( ) { ( ) , , [0, ]}P T R T P X Tτ τ τ= − = ∈Ω ∃ ∈                                       (13) 

where fΩ is the failure domain, s f s f,Ω Ω = Ω Ω Ω = ∅U I , Ω  is the response space of X(t). 
The reliability defined by Eq.(12) means that the reliability is the probability that the specified response 
always remains in the safe domain. In other word, once the response outcrosses the boundary of the safe 
domain, the system is failure. Therefore the reliability is the summary of probability of the random events 
that the specified response always remains in the safe domain, whereas probability of those random 
events that the response outcrosses the boundary of the safe domain at least once is eliminated. This is 
equivalent to a boundary condition imposed on the probability density evolution, i.e., 

f( , , ) 0,   for 
lXp x t x= ∈Ω
Θ

θ
(

                                                        (14) 

Numerically solving Eq.(9) with the initial condition Eq.(10) and the boundary condition Eq.(14) will 
give the “remaining” PDF ( , , )

lXp x t
Θ

θ
(

 and then ( , )
lXp x t

(

. 

The reliability defined by Eq.(12) then equals to 
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(

                                                           (15) 

 
 

NUMERICAL ALGORITHM 
 
The proposed method can be carried out with a numerical algorithm, combining the deterministic 
dynamic response analysis techniques and the finite difference method. The procedure is outlined as 
follows: 
(i)  Chose points from domain Ω

Θ
. Denote the chosen points as pθ  with the probability qP , 1,2, ,q N= L ; 

(ii) For a chosen qθ , let q=Θ θ  and solve Eq.(1) with a deterministic dynamic response analysis method 

to give the velocity ( , )l qX tθ& ; 

(iii)For the qθ , substitute ( , )lX tθ&  with ( , )l qX tθ&  in Eq.(9) and solve the initial-boundary-value problem 

(9), (10) and (14) with the finite difference method to give the numerical solution of the 
“remaining“ PDF ( , , )

lX j q kp x t
Θ

θ
(

, where ,  jx j x= ∆   1, 2, ,    ,  1,2,kj t k t k= ± ± = ∆ =L L ,  x∆  is the 

space step, t∆  is the time step; 
(iv) Carry out numerical integration to give the dynamic reliability  

1

( ) ( , , )
l

k

N

X j q k
j q t T

R T p x t x
= =

= ∆∑∑ Θ
θ

(

                                               (16) 

In step (i), pθ  can be chosen with different tactics. The coherent probability qP  is computed according to 

the choosing tactics and the PDF ( )p
Θ
θ . For instance, when Θ  is a one-dimensional random variable, 

the uniformly discretized points can be selected, and 
( )q qP p θ θ= ∆

Θ
                                                                   (17) 

When Θ  is a multi-dimensional random vector, the used tactics is a special problem beyond the scope of 
the present paper and will not be detailed here. For any choosing tactics, the probability compatibility 
condition is satisfied, i.e., 

1

1
N

q
q

P
=

=∑                                                                          (18) 

In step (iii), the discretized initial condition reads (from Eq.(10)) 
       0 , , 1( , , ) | ( (1 ) )

lX j q k k q z j z z j zp x t P a δ a δ x= += + − ∆
Θ

θ                                     (19) 

where ,0[ ]lz x x= ∆ , [ ]⋅ means getting the integer no more than the quantity in []; ,01z la z x x= + − ∆ , ,δ⋅ ⋅  is 

the Kronecker signal. 
We will now easily understand that it is the value rather than the expression of the ( , )lX tθ&  that actually 
used in Eq.(9). Therefore, the unavailability of analytical expression of G and H does not matter. 
 
Deterministic dynamic response analysis 
Step (ii) is a deterministic dynamic response analysis process. The nonlinear structural dynamics system 
Eq.(1) can be numerically solved with a incremental-varying-stiffness principle and time integration 
method Clough [7]. The incremental dynamics equation of Eq.(1) reads 

( ) ( )t∆ + ∆ + ∆ =M X C X K X X F&& &                                                       (20) 

where qθ  is omitted from ( ), ( )q qM θ C θ  and ( , )qK θ X for simplicity of writing. K is the instantaneous 

stiffness matrix dependent on X. 



In the numerical solving process, at a new time instant t t+ ∆ , the instantaneous stiffness matrix K  is 
first determined tracing the hysteretic restoring force. Eq.(20) can then be solved with a time integration 
method, say, the Newmark method is used in the present paper Nemark [8]. 
 
The finite difference method 
Eq.(9) is a one order quasi-linear partial differential equation with time variant coefficient. The numerical 
solving algorithms for such class of equation have been extensively studied. Among the developed 
method, the finite difference method is powerful, especially the schemes with high accuracy developed in 
the computational fluid dynamics Anderson [9]. The modified Lax-Wendroff scheme with TVD (total 
variance descent) nature is used here. 
For a specified qθ , the modified Lax-Wendroff difference scheme of Eq.(9) is Shen [10] 

1 1 1 1
2 2 2 2
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r h r h r r p p r r p pψ ψ
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+ −+ + − −

= − + − + − −

− − − − −

                       (21) 

where 
,

k
q jp  denotes ( , , )

lX j q kp x t
Θ

θ
( , for simplicity; Lr t x= ∆ ∆  is the lattice ratio; 
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; ( , )r rψ + −  is the 

flux limiter; 

, 1

1
[ ( , ) ( , )]

2q k l q k l q kh X t X t−= +θ θ& &                                                      (22) 

Because the coefficient of Eq.(9) is time variant, sometimes positive and sometimes negative, the flux 
limiter should be adaptive to different signal of hq,k. Thus the Roe-Sweby flux limiter 

( ) max(0,min(2 ,1),min( , 2))sb r r r− − −=ψ                                        (23) 

is employed as a basis to construct an adaptive one, i.e., 

, ,( , ) ( ) ( ) ( ) ( )q k sb q k sbr r u h r u h rψ ψ ψ+ − + −= − +                                      (24) 

where ( )u ⋅  is the Heaviside function 

1,   for   0
( )

0,  otherwise

x
u x

≥
= 


                                                            (25) 

The CFL condition of the scheme (21) yields 

L , 1q kr h ≤                                                                        (26) 

In the computation, after estimating ,max(| |)q kh , the lattice ratio rL can then be determined. The condition 

(26) should be checked in every time step. 
The probabilistic compatibility condition is satisfied in the difference scheme (21), i.e., it can be proved 
that 

1 0
, , ,

k k
q j q j q j q

j j j

p p p P+ = = =∑ ∑ ∑                                                   (27) 

Eq.(27) can be used as one of the condition to checking the program. 
 
 

NUMERICAL EXAMPLE 
 
When the dynamic excitation is earthquake motion, the probability density evolution method can be used 
to evaluate the seismic reliability of a nonlinear structure with random parameters. 



Consider an 8-story shear story structure shown in Fig.1. The sizes and the lumped mass of the structure 
are listed in Table 1 and Table 2, respectively. The restoring force is shown in Fig.2, where 1 0α K K=  

0.1= , y∆ = 0.010m. The Young’s modulus E is a truncated normal distributed random variable with the 

coefficient of variation = 10%. Obviously, the inter-story yielding strength is random with truncated 
normal distribution. Rayleigh damping, i.e., C = aM + bKt, is used, taking the value a = 0.01, b = 0.005. 
Owing to the randomness of Kt, C is also a random matrix. El Centro earthquake acceleration in E-W 
direction is used as the dynamic excitation with the PGA 2 m/s2. 
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                                                       Fig.1  An 8-story frame                                                Fig.2  The restoring force 
 

Table 1  The sizes of the structure 
h1 h Beams Section of the columns 

4 m 3 m EI→∞ 500×500mm2 

 
Table 2  The lumped masses of the structure (×105kg) 

m1 m2 m3 m4 m5 m6 m7 m8 
0.5 1.1 1.1 1.0 1.1 1.1 1.3 1.2 

 
With the proposed probability density evolution method, the instantaneous PDFs are computed and 
depicted in Fig.3. Shown in Fig.3(a) are the evolving probability density surface composed of the  time 
varying instantaneous PDF, in Fig.3(b) is the typical PDF at certain time instants. It is noted that seldom 
results on the instantaneous PDF of the response have been reported so far in existing literatures. The 
most noticeable characteristic is that the PDFs vary with time and is quite irregular, quite different from 
commonly used distribution such as the normal distribution and so on. 

            
 

                                   (a) The evolving surface of PDF                                            (b) Typical PDF at certain instant of time 
Fig.3 The PDF of nonlinear stochastic structural response 

(Annotation: PDF:Probability density function) 



Shown in Fig.4 are the mean and the standard deviation of the response, comparing with those computed 
with the Monte Carlo simulation. There is perfect agreement in the two methods. 
 

 
Fig.4  The mean and the standard deviation of nonlinear stochastic structures 

(Annotation:  Mean: the mean , Std.D.: the standard deviation;  
PDEM: the probability density evolution method, MCM: the Monte Carlo method) 

 
Dynamic reliability is defined as B{ ( ) , [0, ]}R P X τ x τ T= ≤ ∈ , where X is the displacement of the top 

story, xB is the boundary. The dynamic reliabilities are listed in Table 3 when T = 15 sec. In the table 
listed are also the results by the Monte Carlo simulation. The comparisons show that the proposed method 
is of high accuracy. At the same time, the proposed method is also much time saving, say, 936 sec is 
needed in the Monte Carlo simulation on a computer with CPU 2.7GHz and ROM 512 Mb, whereas only 
47 sec is needed with the proposed method. 

 
Table 3 The dynamic reliability of nonlinear stochastic structure 

Threshold/m 

Bx  
The proposed 

method 
The Monte Carlo 

simulation 

0.070 0.01627 0.0172 

0.080 0.56078 0.5606 

0.090 0.87414 0.8763 

0.100 0.94327 0.9442 

0.105 0.98398 0.9859 

0.110 1.0000 1.0000 

 
 

 
CONCLUSIONS 

 
An original method for dynamic reliability assessment of nonlinear structures is outlined. In the method, 
an uncoupled one-dimensional probability density evolution equation governing the instantaneous PDF is 
deduced first. To obtain the dynamic reliability, an absorbing boundary condition is imposed and then an 
initial-boundary-value problem is numerically solved. The numerical algorithm combining the 
deterministic dynamic response analysis and the finite difference method is discussed. An 8-story frame 
subjected to earthquake excitation is analyzed. The investigations demonstrate that the probability density 
evolution method is of high accuracy and efficiency for seismic reliability evualuation. 
 



 
ACKNOWLEDGEMENTS 

 
The supports of the Natural Science Fund of China for Distinguished Young Scholars (Grant 
No.59825105) and the Natural Science Fund of China for Innovative Research Groups (Grant No. 
50321803) are greatly apppreciated. 
 
 

REFERENCES 
 
1. Brenner CE, Bucher C. “A contribution to the SFE-based reliability assessment of nonlinear 

structures under dynamic loading”. Probabilistic Engineering Mechanics; 1995, 10: 265-273. 
2. Schueller GI ed. “A state-of-the-art report on computational stochastic mechanics”. Probability 

Engineering Mechanics 1997; 12(4): 198-321. 
3. Li J, Chen JB. “Probability density evolution method for dynamic response analysis of stochastic 

structures”. Zhu WQ, Cai GQ & Zhang RC, Editors. Advances in Stochastic Structural Dynamics. 
Proceedings of the 5th International Conference on Stochastic Structural Dynamics-SSD03, 
Hangzhou, China. Boca Raton: CRC Press, 2003: 309-316. 

4. Jensen H, Iwan WD. “Response of systems with uncertain parameters to stochastic excitation”. 
Journal of Engineering Mechanics 1992; 118(5): 1012-1025. 

5. Spencer BF, Jr., Elishakoff I. “Reliability of uncertain linear and nonlinear systems”. Journal of 
Engineering Mechanics 1988; 114(1): 135-149. 

6. Syski R. “Stochastic differential equations”. Saaty TL, Editor. Modern Nonlinear Equations. New 
York: McGraw-Hill, 1967. 

7. Clough RW, Penzien J. Dynamics of Structures; 2nd edn. New York: McGraw-Hill, 1993. 
8. Newmark NM. “A method of computation for structural dynamics”. ASCE Transactions 1962; 127: 

1406-1435. 
9. Anderson JD Jr. “Computational Fluid Dynamics”. New York: McGraw-Hill, 1995 
10. Shen MY, Zhang ZB, Niu XL. “Some advances in study of high order accuracy and high resolution 

finite difference schemes”. Dubois F, Wu HM, Editors. New advances in computational fluid 
dynamics. Beijing: Higher Education Press, 2001. 


	Return to Main Menu
	=================
	Return to Browse
	=================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



