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SUMMARY 

Earthquakes affecting urban areas in the recent past have clearly demonstrated the vulnerability of urban 
building stock to ground motions. A large number of engineered buildings designed and constructed using 
modern techniques have been damaged. Several modern vibration control techniques using base isolation 
have been proposed in published literature to provide seismic resistance, some of which have also been 
implemented successfully. However most of these isolation devices are of limited effectiveness under 
near-source ground motions due to pulse-type characteristics of such excitations. A recently proposed 
sliding isolation system, known as the variable frequency pendulum isolator (VFPI) has unique 
characteristics that help overcome the limitations of traditional isolation system for near source ground 
motions. The VFPI incorporates isolation, energy dissipation as well as restoring force mechanisms in a 
single unit, and has additional advantages due to response-dependent variable frequency of oscillation and 
bounded restoring force. Isolator parameters of VFPI can be chosen to obtain the desired rate of time-
period variation as well as initial time period. In this paper, behavior of structures isolated using VFPI 
subjected to near source ground motions has been numerically examined. Response of typical structural 
systems isolated with VFPI and other isolation systems under near-source ground motions have been 
investigated. The traditional isolation systems are found to be of limited effectiveness in reducing the 
response of structures while VFPI show significant reduction in response. 

INTRODUCTION 

Use of base isolation systems has emerged as a very effective technique for aseismic design of structures. 
In base isolation technique, a flexible layer (or isolator) is placed between the structure and its foundation 
such that relative deformations are permitted at this level. Due to flexibility of the isolator layer, the time 
period of motion of the isolator is relatively long; as a result the use of isolator shifts the fundamental 
period of the structure away from the predominant periods of ground excitation. Extensive review of base 
isolation systems and its applicability is available in literature (Buckle and Mayes [1], Kelly [2], and 
Naeim and Kelly [3]).  
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Practical isolation devices typically also include energy dissipating mechanism so as to reduce 
deformations at the isolator level. For example friction type base isolators like Pure-Friction System 
(horizontal sliding surface) have been found to be very effective in reducing structural response 
(Mostaghel et al. [4]). The performance of friction isolators is relatively insensitive to variations in the 
frequency content and amplitude of the input excitation, making performance of sliding isolators very 
robust. Pure-Friction (PF) system may experience large sliding and residual displacements, which are 
often difficult to incorporate in structural design. An effective mechanism to provide restoring force by 
gravity has been utilized in Friction Pendulum System (FPS) (Zayas et al. [5]). In this system, the sliding 
surface takes a concave spherical shape so that the sliding and re-centering mechanisms are integrated in 
one unit. One main disadvantage is that FPS isolators can be effectively designed for a specific level 
(amplitude and frequency characteristics) of ground excitation (Sinha and Pranesh [6]). 
 
The authors have recently developed a new isolator called the Variable Frequency Pendulum Isolator 
(VFPI) that incorporates the advantages of both the FPS and PF isolators (Pranesh and Sinha [7], Pranesh 
and Sinha [8]). The most important properties of this system are: (1) its time period of oscillation depends 
on sliding displacement, and (2) its restoring force has a bounded value and exhibits softening behavior. 
Recent investigations systems have shown VFPI to be very effective for a variety of excitation and 
structural characteristics. 
 
The study of structures subjected to near-field ground motions has a special significance due to the nature 
of such ground motions. Near field ground motions are characterized by pulse type excitations having 
narrow range of frequencies. Behavior of most base isolated structures subjected to near-field ground 
motions is not satisfactory due to this nature of ground motion. In the present paper the performance of 
VFPI for aseismic design of multi-degree-of-freedom (MDOF) structures subjected to near-field ground 
motions has been investigated. The effectiveness of VFPI in comparison with the other frictional base 
isolation systems has been examined.  

 

O X 

W = mg 

θ

Y 

fR  

N 

Equation: 
y = f(x) 

W – Weight of Structure 
N – Normal Reaction 
fR – Restoring Force 

x 

 
Figure 1. Free body diagram of smooth sliding surface of isolator. 



VFPI DESCRIPTION 

Consider the motion of a rigid block of mass m sliding on a smooth curved surface of defined geometry, 
( )y f x=  as shown in Fig. 1. At any instant the horizontal restoring force due to weight of the structure is 

given by 

R
dy

f mg
dx

=  (1) 

Assuming that the restoring force is mathematically represented by an equivalent non-linear mass-less 
horizontal spring, the spring force can be expressed as the product of the equivalent spring stiffness and 
the deformation, i.e., 

( )Rf k x x=  (2) 
where k(x) is the instantaneous spring stiffness, and x is the sliding displacement of the mass. If the mass 
is modeled as a single-degree-of-freedom oscillator, the spring force (restoring force) can be expressed as 
the product of the total mass of the system and square of oscillation frequency 

2 ( )R bf m x x= ω  (3) 

Here, ( )b xω  is the instantaneous isolator frequency, and depends solely on the geometry of sliding 
surface. In Friction Pendulum System, which has a spherical sliding surface, this frequency is almost 

constant and is approximately equal to /g R , where R is the radius of curvature of the sliding surface 

(Zayas et al. [9]). 
 
Sliding surface based on the expression of an ellipse has been used as the basis for developing sliding 
surface of VFPI (Pranesh [10]). The equation of an ellipse with a and b as its semi-major and semi-minor 
axes, respectively, and with co-ordinate axes as shown in Fig. 1 is given by, 

2 2(1 1 )y b x a= − −  (4) 

The expression for frequency of elliptical surface is given by 
2 2 2 2( ) 1b Ix x aω = ω −  (5) 

where 2 2/I b a=ω  is the square of initial frequency. From this expression it is observed that the frequency 
of the surface is inversely proportional to the square of semi-major axis. So to get the desired variation of 
the frequency, the semi-major axis is expressed as a variable to obtain the geometry of VFPI. The semi-
major axis has been expressed as 

a x d= +  (6) 
Substituting this in the equation of an ellipse with origin as shown in Fig. 1, the expression for geometry 
of sliding surface of VFPI is obtained as 

2 2 sgn( )
1

sgn( )

d dx x
y b

d x x

⎡ ⎤+
⎢ ⎥= −

+⎢ ⎥
⎣ ⎦

 (7) 

where sgn(x) is the signum function introduced for maintaining symmetry of sliding surface about the 
central vertical axis. This assumes a value of 1+  for positive sliding displacement and 1−  for negative 
sliding displacement. The slope at any point on this sliding surface is given as 

2 2( sgn( )) 2 sgn( )

dy bd
x

dx d x x d dx x
=

+ +
 (8) 

To simplify the notations, a non-dimensional parameter sgn( )r x x d=  has been used.  By substituting r 

and the initial frequency 2 2
I gb d=ω  in (4), and combining with (1) and (2), the isolator frequency at 

any sliding displacement can be expressed as 
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In the above equations, parameters b and d completely define the isolator characteristics. It can be 

observed that the ratio 2b d  governs the initial frequency of the isolator.  Similarly, the value of 1 d  
determines the rate of variation of isolator frequency, and this factor has been defined as frequency 
variation factor (FVF). The profile of sliding surface and variation of oscillation frequency of a typical 
VFPI with respect to the sliding displacement is shown in Figs. 2(a) and (b), respectively. For comparison 
purposes, the oscillation frequency of FPS with same initial frequency has also been shown, which is 
found to be almost constant. From this plot it is seen that the oscillation frequency of VFPI decreases with 
increasing sliding displacement and asymptotically approaches zero. The rate of decrease can be 
controlled by the value of FVF parameter. The force-deformation hysteresis for example FPS and VFPI 
are shown in Fig. 2(c). It can be observed that the isolator force in VFPI first increases to reach its 
maximum value, and later slowly decreases so as to asymptotically approach the frictional force at large 
sliding displacement. This is an important property of VFPI, which limits the force transmitted to the 
structure. 

MATHEMATICAL FORMULATION 

Consider an N-story shear structure isolated by sliding type isolator. The motion of the structure can be in 
either of two phases: non-sliding phase and sliding phase. In non-sliding phase, the structure behaves like 
a conventional fixed base structure since there is no relative motion at the isolator level. When the 
frictional force at the sliding surface is overcome, there is relative motion at the sliding surface, and the 
structure enters sliding phase. The total motion consists of a series of alternating non-sliding and sliding 
phases. 

Non-sliding Phase 
In non-sliding phase the structure behaves as a fixed-base structure, since there is no relative motion 
between the ground and base mass.  The equations of motion in this phase are:  

gx+ + = −0 0 0 0 0 0 0 0M x C x K x M r&& & &&  (10) 

and 
constant; 0b bx x x= = =& &&  (11) 

where, M0, C0 and K0 are the mass, damping and stiffness matrices of the fixed-base structure, 

respectively, 1 2[ , , , ]TNx x x=0x L  is the vector of displacements of the degrees of freedom (DOFs) of 
the superstructure relative to the base mass (excluding the DOF of base mass), xb is the displacement of 
the base mass (mb) relative to the ground, gx  is the ground displacement, r0 is the influence coefficient 

vector and over-dot indicates derivative with respect to time. Since the base mass does not move relative 
to the ground, the velocity and acceleration of the base relative to the ground are zero. However the 
sliding displacement may be non-zero. The structure is classically damped in this phase and hence (10) 
can be readily solved by usual modal analysis procedures (Clough and Penzien [11]). 

Initiation of Sliding Phase 
When the structure is subjected to base excitation, it will remain in non-sliding phase unless the frictional 
resistance at the sliding surface is overcome.  Therefore the condition for the beginning of sliding phase 
can be written as 

2

1

( ) ( )
N

i i g b g t b b t
i

m x x m x m x x m g
=

⎧ ⎫⎪ ⎪+ + + ω ≥ µ⎨ ⎬
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∑ && && &&  (12) 
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Figure 2. Properties of VFPI and FPS for different geometrical parameters (µ = 0.02, TI = 2.0 s) (a) 
Sliding Surface Profile, (b) Frequency Variation, and (c) Hysteresis Curves. 

Sliding Phase 
Once the inequality (12) is satisfied the structure enters sliding phase and the degree of freedom (DOF) 
corresponding to the base mass also experiences motion. The equations of motion are now given by 



g fx+ + = − −Mx Cx Kx Mr r&& & && µ  (12) 

where, M, C, K are the modified mass, damping and stiffness matrices of order N+1, r is the modified 
influence coefficient vector and fµ  is the frictional force as given below. 
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Equation (12) can be solved numerically. But for large size problems the computational effort is large and 
the analysis does not provide proper insight into the behavior of the structure. In view of this and the non-
classical nature of damping, complex modal analysis is used in the present investigations. 

Direction of Sliding 
The direction of sliding depends on the signum function that in turn depends on the forces acting on the 
structure at the end of the previous non-sliding phase. Once inequality (12) is satisfied, the structure starts 
sliding in a direction opposite to the direction of the sum of total inertia force and restoring force at the 
isolator level. So, we have 
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The signum function remains unchanged in a particular sliding phase. The end of a sliding phase is 
governed by the condition that the sliding velocity of the base mass is equal to zero, i.e., 

0bx =&  (15) 
Once the sliding velocity is zero, the structure may enter a non-sliding phase, reverse its direction of 
sliding, or have a momentary stop and then continue in the same direction. To determine the correct state, 
the solution process needs to continue using equations of non-sliding phase wherein the sliding 
acceleration is forced to zero and the validity of the inequality (12) is checked. If this inequality is 
satisfied at the same instant of time when the sliding velocity is zero, it shows that there is a sudden stop 
at that instant. 

ENERGY BALANCE 

Base isolators reduce structural response by filtering the seismic excitations and by dissipating energy 
thereby reducing the energy that needs to be dissipated by the structure. Often it is very difficult to decide 
a proper trade-off between structural deformations and isolator displacements for determination of 
isolator properties. The energy quantities are convenient to consider since they involve all the response 
quantities and hence represent overall response of the structure.  As they are scalar, only a single energy 
equation for the entire structure can be derived irrespective of the number of degrees of freedom in the 
structure. So, the energy quantities can represent the isolator performance in a more unified manner and 
can be used to decide the overall performance of the isolator. 
 
The energy balance at any instant can be easily derived by calculating the total work done by all 
conservative and non-conservative forces up to that instant. This can be achieved by calculating the 
differential work done by all the forces during a small deformation of the structure dx0, and then 
integrating to get the total work done. The final expression for the energy balance is found to be 
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Equation (17) is similar to the absolute energy equation derived for the conventional MDOF structure in 
published literature, except for the additional terms involving the potential energy due to rising of the 
structure along the curved surface (third term in (16)) and the non-conservative energy term due to 
friction (sixth term in (16) (Uang and Bertero [12]).  There is no energy dissipation due to sliding friction 
during the non-sliding phase. Equation (16) can be written in short as 

k r s iE E E E E E+ + + + =ξ µ  (17) 

where Ek is the sum of absolute kinetic energies of all the masses, Er and Es are the restorable potential 
energy due to rising of the structure along the sliding surface of the isolator and elastic energy due to 
structural deformations, respectively. Eξ and Eµ are the energy dissipated due to structural damping and 
sliding friction respectively. As the sum of frictional force and the restoring force is identical to the total 
inertia force, the term Ei on RHS is the absolute input energy. 

RESPONSE OF EXAMPLE STRUCTURE 

The effectiveness of VFPI to reduce response of an example MDOF structure subjected to near-field 
earthquake excitations has been presented in this section. The example structure is a five-story shear 
structure. The example building is represented as a lumped mass model with equal lumped mass of 60080 
kg and equal story stiffness of 112600 kN/m for each floor. The frequencies and modal properties for the 
fixed-base and isolated structures are given in Table 1. Since the natural frequencies of a structure 
isolated by VFPI change continuously with the isolator sliding displacement, the frequencies shown in 
Table 1 thus indicate the upper bound on the frequencies when the isolator displacement is zero. 

Table 1. Modal properties of fixed-base and isolated structures. 
Mode Isolator 1 2 3 4 5 

Fixed – Freq. (Hz) - 1.96 5.72 9.02 11.59 13.22 
Eff. Modal Mass (%)  - 87.95 8.72 2.42 0.75 0.16 
Isolated – Freq. (Hz) 0.49 3.64 6.92 9.76 11.93 13.31 
Eff. Modal Mass (%) 99.93 0.07 0.00 0.00 0.00 0.00 

 
The example structure is analyzed for ten near field ground motions. The details of the ground motions 
are presented in Table 2. These ground motions are derived from historical recordings. The ground 
motions chosen cover a wide variety of near field ground motions having different peak ground 
acceleration (PGA), frequency composition and duration. Using the formulation presented in the paper, 
time history analysis is carried out for the structure isolated by VFPI. The VFPI chosen in this study has 
an initial isolator time period of 2.0 s and FVF equal to 5.0 per m. The corresponding values of isolator 
parameters b and d are 0.04 m and 0.20 m, respectively. To investigate the effectiveness of VFPI, the 
responses are compared with those of structure is isolated with FPS and PF isolators. The FPS has been 
chosen with radius of 1.0 m so that its time period is around 2.0 s (equal to the initial period of the 
example VFPI). Coefficient of friction is assumed to be equal to 0.02. The structural damping is assumed 
as 5% of critical for all modes. 
 
The response quantities are evaluated by solution of the equations of motion as discussed in the preceding 
sections. The main response quantities of interest are acceleration of top story, sliding displacement of 
isolator. Time-history plots for these response quantities of the example structure are subject to 
Northridge (Rinaldi) 1994 excitation are shown in Fig. 3. The maximum response values are also shown. 
It is seen from Fig. 3(a) that there is substantial reduction in the base shear for structure isolated by VFPI 



throughout the time history, when compared to that isolated by FPS. This is due to the bounded restoring 
force characteristics of VFPI, which results in lesser forces transmitted to the structure. It is also observed 
from Fig. 3(b) that the accelerations in the structure are substantially lesser in VFPI-isolated structure than 
that isolated by other isolation systems. These plots clearly demonstrate the effectiveness of VFPI in 
comparison with conventional FPS and PF system. From Fig. 3(c), it is observed that the sliding 
displacements in case of VFPI increase and are even more than PF system. This is due to the fact that the 
isolator force in VFPI can act either as restoring or driving force depending on the direction of motion 
whereas in the PF system the constant frictional force always opposes the motion. However the residual 
displacements in VFPI are very small and are close to those of FPS, which clearly shows the effectiveness 
of the restoring mechanism in spite of large sliding displacements. From these response characteristics, it 
is therefore found that VFPI retains the main advantages of both FPS and PF isolators. 

Table 2. Details of earthquake records used during numerical simulations. 
S. 

No. Name of earthquake Designation Magnitude Distance of 
source (km) PGA (g) Duration 

(sec.) 
1 Tabas, 1978 NFR-01 7.4 1.2 0.900 50 
2 Loma Prieta, 1989, Los 

Gatos 
NFR-02 7.0 3.5 0.718 25 

3 Loma Prieta, 1989, Lex. 
Dam 

NFR-03 7.0 6.3 0.686 40 

4 C. Mendocino, 1992, 
Petrolia 

NFR-04 7.1 8.5 0.638 60 

5 Erzincan, 1992 NFR-05 6.7 2.0 0.432 21 
6 Landers, 1992 NFR-06 7.3 1.1 0.713 50 
7 Nothridge, 1994, Rinaldi NFR-07 6.7 7.5 0.890 15 
8 Nothridge, 1994, Olive 

View 
NFR-08 6.7 6.4 0.732 60 

9 Kobe, 1995 NFR-09 6.9 3.4 1.088 60 
10 Kobe, 1995, Takatori NFR-10 6.9 4.3 0.786 40 

 
The maximum response of the example structure subjected to ten near field ground motions has been 
presented in Table 3 for the three isolation systems. From these results it is seen that VFPI remains 
effective for a wide range of near-field excitation characteristics. The acceleration response of FPS is very 
large when compared to VFPI and PF systems for most of the excitations. But the sliding displacements 
in VFPI are substantially high. However the system comes to its original position in most cases as is seen 
from residual displacements. 
 
The effectiveness of isolators can be better understood using energy quantities. Table 4 shows the input 
energy and conservative energy for the example system subjected to different ground motions. Input 
energy is a measure of effectiveness of isolation and conservative energy is the energy transmitted to the 
structure. The difference in the two is the energy dissipated. From Table 4 it is observed that the input 
energy and conservative energy in case of FPS is substantially high when compared with FPS and PF 
systems. This shows the effectiveness of VFPI. 

CONCLUSIONS 

The effectiveness of variable frequency pendulum isolator (VFPI) for vibration control of MDOF systems 
subjected to near field ground motions has been presented in this paper. A five-story shear structure has 
been analyzed for different near-field ground motions. From these investigations it is found that the VFPI 
is very effective in reducing the response of structures when compared to the FPS and PF isolators. The 
VFPI reduces the response substantially without losing the restoring capability thereby combining the 
advantages of both FPS and PF isolators.  



 

Table 3. Response of example system for different near-field ground motion records. 
Maximum Structural 

Acceleration (g) 
Maximum Sliding 
Displacement (m) 

Residual Displacement 
(m) 

S. 
No. 

Earthquake 
Record 

VFPI FPS PF VFPI FPS PF VFPI FPS PF 
1 NFR-01 0.217 0.875 0.178 1.641 0.620 0.726 0.002 0.002 0.293 
2 NFR-02 0.203 13.33 0.189 1.342 0.989 0.810 0.275 0.040 0.360 
3 NFR-03 0.166 2.088 0.164 1.274 0.848 0.902 0.982 0.004 0.834 
4 NFR-04 0.222 0.865 0.150 1.271 0.616 0.767 0.000 0.000 0.653 
5 NFR-05 0.144 0.798 0.134 0.470 0.583 0.528 0.005 0.203 0.078 
6 NFR-06 0.198 0.364 0.189 2.404 0.305 1.037 2.251 0.000 0.505 
7 NFR-07 0.177 0.838 0.200 0.597 0.587 0.628 0.007 0.284 0.497 
8 NFR-08 0.144 0.958 0.137 0.573 0.648 0.661 0.001 0.001 0.502 
9 NFR-09 0.190 1.435 0.154 0.775 0.766 0.457 0.000 0.004 0.087 
10 NFR-10 0.195 6.345 0.155 0.685 0.973 0.801 0.011 0.235 0.171 

 
Based on investigations of response of MDOF systems isolated by VFPI, the following conclusions can 
be drawn: 

1. The VFPI is very effective in reducing the response of structures under variety of near-field 
ground excitations. The performance of VFPI is found to be robust and superior to that of FPS 
and PF isolators. 

2. VFPI acts as an isolator combined with effective energy dissipation and restoring mechanism. 
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Figure 3. Time history response of example structure subjected to 1994 Northridge (Rinaldi) 

ground motions. 

 



Table 4. Energy characteristics of example system subjected to various near-field ground 
motions. 

Input Energy (104 N.m) Conservative Energy (104 N.m) S. 
No. 

Earthquake 
Record VFPI FPS PF VFPI FPS PF 

1 NFR-01 43.48 168.0 35.40 7.920 113.0 1.779 
2 NFR-02 39.88 721.8 34.26 4.581 516.0 0.873 
3 NFR-03 25.05 210.2 17.29 4.471 155.3 1.588 
4 NFR-04 23.88 114.8 17.72 6.190 95.83 1.518 
5 NFR-05 17.75 124.8 11.66 1.748 88.10 0.541 
6 NFR-06 36.50 326.4 21.73 14.97 28.25 5.075 
7 NFR-07 22.83 128.7 15.84 2.720 73.30 0.859 
8 NFR-08 18.00 118.1 14.57 1.190 99.90 0.697 
9 NFR-09 30.73 222.0 26.27 1.677 144.4 0.471 

10 NFR-10 46.60 566.0 38.84 1.976 464.6 0.521 
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