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SUMMARY 
 
The reliability and security of rope design for moving crane are very important especially for the nuclear 
plant in high seismic zones. The conventional linear analysis indicates that a slack rope occurs very likely 
for severe earthquake load excitation. In other words, the rope will overcome its lifted weight and will go 
into compression. The nonlinear time history method according to NOG-4154 shall be applied for slack 
rope design. In order to perform nonlinear time history analysis subject to earthquake excitation, the 
tension-only nonlinear properties of element shall be taken into account. The designated program – 
GTStrudl or other nonlinear – program may have such a capability for solving nonlinear dynamic systems. 
However, the result shows that the current tension-only nonlinear finite element in GTStrudl has the 
reasonable accurate results with comparing theoretical results for damped single degree-of-freedom 
(SDOF), but it fails to converge for a large-scale DOF of computer model for trolley-bridge system due to 
severe nonlinearity of rope. Simplified analysis shall be employed in rope slack nonlinear study. Because 
only vertical mass of lifted weight is included, the rope forces caused by horizontal earthquake load in 
high modes are very small and can be neglected. According to this dynamic characteristic, we simplify 
and use two-degree-of-freedom (2DOF) structural systems to represent a multi-DOF of bridge-trolley with 
lifted load system in vertical direction. The results show that this simplification proved to be very accurate 
and successful. This paper presents a very simple 2DOF nonlinear dynamic model and compares rope 
forces between linear dynamic analysis and nonlinear slack rope analysis. The results also show that rope 
force could be much larger than those from conventional linear dynamical analysis varied with rope 
length. The proposed slip-slack model shows that the brake slip device can limit rope force, predicts the 
displacement for prescribed design level, and prevents rope failure due to slack rope impact. 
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INTRODUCTION 
 
The safety and security of the rope design for moving crane are crucial, especially, for the nuclear industry 
in high seismic zones. The rope shall be designed and constructed to remain in place and support a critical 
load during and after a seismic event and has single-failure-proof features such that any credible failure of 
a single component will not result in the loss of capability to stop and/ or hold the critical load. A critical 
load is defined as any lifted load whose uncontrolled movement or release could result in potential 
unacceptable off-site radiation exposure. During a severe earthquake, the lifted object may overcome its 
self-weight and the rope slacks. The restoring forces of the rope will be changed from the spring forces to 
gravity forces while slack rope happens. Attaway [1] discussed the dynamic impact load on the climbing 
rope for the rope safety design in his memoriam paper for the loss life of his friend, a rock-climber, due to 
rope failure. He used energy balance principle to calculate dynamic factor due to slack impact load. For 
the rope system design of the crane system, the slack rope occurs very likely for strong earthquake load. 
The conventional linear analysis, which modeled the rope as spring element without slack rope, obviously 
results in an unconservative solution, particularly in severe vertical seismic excitation. Thus, according to 
seismic safety guideline for crane of ASME NOG-1-2002 [2] and ASCE 4-98 [3], nonlinear time history 
analysis shall be employed. In order to perform nonlinear time history analysis subject to earthquake 
excitation, the tension-only nonlinear properties of element shall be taken into account. The designated 
program – GTStrudl [4] or other nonlinear programs – may have such a capability for solving nonlinear 
dynamic systems. From nonlinear time analysis, GTStrudl shows the reasonable accurate results with 
comparing theoretical results for damped Single degree-of-freedom (SDOF), and experiences difficulty to 
converge for a large-scale DOF of computer model for trolley-bridge system. Simplified analysis for rope 
system design is apparently very attractive and tentative. Since the rope can only take tension load, in 
other words, only vertical mass of lifted weight is included, the rope forces caused by horizontal 
earthquake load can be neglected. According to this dynamic characteristic, a two-degree-of-freedom 
(2DOF) nonlinear structural system was proposed to represent a multi-DOF of bridge-trolley with lifted 
load system along the vertical direction for the rope system design. The results show that this 
simplification proved to be very accurate and successful for slack rope analysis. This paper discusses the 
slack rope mechanism by using a simple 2DOF nonlinear dynamic model and also compares rope forces 
between linear dynamic analysis and nonlinear slack rope analysis. The results show that slack rope can 
produce a larger impact load on the rope system. Conventional linear dynamic analysis of the rope system 
will significantly underestimate dynamic impact load if the rope slacks. To mitigate impact load on the 
rope due to slack rope, a slip brake device is introduced to limit the rope forces. A mathematical model is 
proposed for the slip brake device in order to predict the displacement of the lifted object for prescribed 
design level. 
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THE MECHANISM OF SLACK ROPE  
 
Fundamental Equation  
Typical moving crane system consists of bridge girders with end-tie beam, trolley truck, and the rope 
system with hang hook for lifting object. A lifted object does not usually participate in any horizontal 
motion because the rope only takes tension forces. Therefore, for the rope system design, only vertical 
motion of the crane system is considered. Furthermore, the crane system with lifted load along vertical 
direction can be simplified as two-degree-of-freedom (2DOF) dynamic system, which is the bridge girders 
with trolley girt and lifted object. This simplification diagram of an analytical model and definitions of the 
mass stiffness are shown in Figure 1. Because only the vertical mode of the crane system is considered for 
rope study, activated mass of the crane bridge for vertical mode is included. The equivalent stiffness of the 
bridge girders with trolley load girt can be estimated by deflection of girders at the lifted object position 
under static gravity load of lifted load (k=P/∆). Activated crane masses can be either approximated by 
vertical mode of dynamic analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 1 - Simplification model for 2DOF of crane system  
 
The displacement of the crane (x1) and lifted weight (x2) have their coordinates started from their static 
equilibrium position. The fundamental equilibrium dynamic equations of crane system with lifted load can 
be expressed in 2DOF dynamic system,  
 
 

gxmxxFxFxxxxCxxCxm &&&&&&& 1212112121211111 )],()([)],,,(),([ −=−+−+     Eq.1 

 gxmxxFxxxxCxm &&&&&& 22122121222 ),(),,,( −=++       Eq.2 

 
where the masses of the crane system (m1) and lifted load (m2) are simply obtained by their weights 
divided by gravity acceleration (g). The right sides of equations are the ground acceleration input. The 
damping forces for crane (C1) and lifted load of rope (C2) can be defined as the function of the 
displacements and velocities as follows  
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Figure 2 - Slack Rope Mechanisms 
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where ξ1 and ξ2 are the critical damping coefficient of the crane system and lifted rope, respectively. If the 
relative displacement (x2-x1) between crane and lifted object overcomes the stretch of the rope (xs), the 
rope damping forces will be zero. The restoring forces for crane system (F1) and lifted load of rope (F2) 
can be describe as the function of their relative displacement as shown in Equations 5 and 6.  
 
 1

2
11 1)( xxF ω=           Eq.5 

 
⎩
⎨
⎧

−
−≥−−

=
Otherwiseg

xsxxifxx
xxF

)()(
),( 12122

2

212

ω       Eq.6  

        
When the lifted object is moving upwards, the relative displacement (x2-x1) is less than the stretch of the 
rope (xs), the rope starts to slack. The restoring force from rope spring force becomes constant downwards 
gravity force. In other words, the lifted object starts tossing upwards until it reaches the highest point, then 
drops by gravity forces and begins to stretch the rope again, where it may produce impact load on the rope. 
The rope stretch (xs) can be calculated by 2

2/2/2 ωgkwxs ==  where the lifted load reaches its static 
equilibrium position. The radian frequencies of the crane and lifted load are defined according to their 
definitions, 
 
   1/11 wgk ⋅=ω   2/22 wgk ⋅=ω     Eq.7 

 
and stiffness and weights of the crane system (w1, w2, k1 and k2) are defined in Figure 1. Therefore, the 
dynamic system becomes nonlinear dynamic system for slack rope from Equations 4 and 6.  
 
Rope Dynamic Load with Initial Pull-Down Displacement   
In order to reveal dynamic impact load for the 
slack rope, assume the crane has infinite rigid 
stiffness compared to the rope stiffness, the 
dynamic system is degraded to an SDOF as shown 
Figure 2. Pull down the lifted object, then release. 
Assume that the lifted weight has 256 kips, rope 
length (L) is 71 feet, the rope cross section area (A) 
has 8.61 in2, and the rope elastic modulus (E) is 
14,000 ksi. The dynamic SDOF system with initial 
condition can be established accordingly and 
solved. 
 
For the first approach, according to energy balance 
for the conservative system without energy 
dissipation, the strain energy at the pull-down 
position shall be equal to potential energy at the 
highest point position, 
 

K (x0 + xs)2 /2 = W (xmax + x0) Eq.8 
 



where the x0 is the initial pull-down displacement (3 inches). The rope stiffness (K) is equal to EA/L. and 
the stretch of the rope (xs) under static gravity load (W) is 1.81 inches by W/K. The maximum 
displacement (xmax) of lifted object can be reached as high as 3.39 inches by solving Equation 8.  
 
For the second approach, due to nonlinear dynamic system for slack rope, nonlinear time history analysis 
is necessary and the Runge-Kutta (RK) numerical direct integration method is most widely used for a few 
DOF dynamic systems. The undamped dynamic response of the rope force and displacement with initial 
pull down is calculated by the RK method and displayed as function of time, see Figure 3. The same 
maximum displacements (xmax) are found in diagram as predicted by energy balance method. The rope 
force in Figure 3 does not include self-weight of the lifted load. 

 
Figure 3 - Dynamic Responses due to Initial Pull Down  

 
For the third approach, solving analytic equation for projectile motion, the theoretical motion solution for 
undamped dynamic response of the displacement with initial pull down is x0 cos(2πf t). The frequency of 
the system (f = 2.325 Hz) can be calculated from Equation 7, where (f = ω/2π). Actually, when the lifted 
object overcomes the stretch of the rope (xs), the rope slacks off. The lifted object will continue to move 
up with initial velocity, and the required object climbing time (t1) at the time when the rope starts to slack 
can be calculated by 
 
 t1 = acos(-xs/x0)/( 2πf)         Eq. 9 
 
and the initial velocity (v1) at this point will be 
 
 v1 = 2πf x0 sin[acos(-xs/x0)]        Eq. 10 
 
The object will be moving upwards, following the projectile motion with initial velocity. The maximum 
displacement (3.391 inches) will accordingly be obtained from projectile motion equation (v12/ 2g + xs). 
The first cycle of time shifted (δt = 0.055sec) in Figure 3 due to rope slack can also be calculated by 
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this time shift will be accumulated for each cycle motion as indicated from figure 3.  
 
The rope forces will be zero after including self-weight of lifted object in Figure 3, and the maximum rope 
forces from the first approach is equal to (x0 + xs) K = (3+1.81) 256/1.81 = 680 kips. It is the same with 
dynamic response of the rope forces shown in Figure 3, which is (1.658 +1) W = 680 kips after including 
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self-weight. Because there is no input excitation, the maximum dynamic amplification factor is equal to 
2.66 for both slack rope solution and elastic solution without slack rope.    
 
Rope Dynamic Load with Harmonic Excitation   
As discussed above, if the rope overcomes the stretch of the rope (xs), the object will start to slack and 
travel in projectile motion. The object drops down and stretches the rope again with the time delay. This 
time delay may produce dynamic impact on the rope in an additive way with input excitation. For 
illustration, considering above the SDOF dynamic system with adding 4 percent damping, input a 
harmonic excitation with intensity (p0) in terms of gravity (g) with excitation frequency (fin). Thus, the 
excitation input at right side of Equation 2 can be substituted by p0 sin(2πfin t)g as the function of time (t). 
The nonlinear dynamic response can be easily solved by using RK direct integration (second approach). 
For comparison, the dynamic response of the rope forces (excluding self-weight) for input harmonic 
excitation frequency at 0.7, 1.0, and 1.3 of natural frequency of the SDOF dynamic system are plotted in 
Figures 4, 5, and 6, respectively; the magnitude of the input harmonic excitations is 1.0g. 
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Figure 4 - Dynamic Response of Rope Force for Input Frequency at 0.7f   
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Figure 5 - Dynamic Response of Rope Force for Resonant Frequency   



Rope Force (g's) with Harmonic Excitation
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Figure 6 - Dynamic Response of Rope Force for Input Frequency at 1.3f    

 
From dynamic response of the rope forces with three different input excitation frequencies, we found that 
 
1. The dynamic amplification factors for slack rope are 5.5, 4.1, and 3.1, respectively (with  

self-weight included) for input frequencies (fin) at 0.7, 1.0, and 1.3 of system frequency (f). The 
dynamic impacts on rope due to rope slack are significantly higher at the lower excitation 
frequency and gradually drop as input frequency increase.  

 
2. The dynamic behavior for slack rope is different with elastic spring solution and no dynamic 

resonant response will occur for slack rope. In other words, dynamic impact for slack rope at 
resonant frequency is much lower than that of elastic-spring solution. Because half of the 
restoring force from the slack rope is constant gravity load, it will not be magnified as the spring 
force response in resonant condition. 

 
3. As the input frequency gets higher from structure system frequency, or in other words, the 

frequency of the rope system is much lower than excitation frequencies. The dynamic 
amplification due to slack rope will be diminished; therefore, the elastic-spring solution becomes 
feasible by ignoring the nonlinear slack rope effects.   

 
As discussed above, the object starts to toss up; the object is only subject to the constant gravity load. The 
time delay also prevents object dancing with harmonic excitation input in same tone. Low-frequency 
contents of excitation compared to the frequency of the rope system will most likely produce the impact 
effect on the rope due to slack rope. Because the rope length typically varies, it is very useful for 
investigators to judge the slack rope impact from the given frequency contents response spectra.    
 
 

DYNAMIC RESPONSE OF SLACK ROPE FOR EARTHQUAKE EXCIATION 
 
Earthquake Time History Input   
Because the linear dynamic response spectra are not applicable for nonlinear slack rope system, due to 
lack of recorded time history database, the spectrum-compatible-artificial-synthesized time history 
becomes a very popular expedient solution for nonlinear dynamic time history analysis. The common 
method for synthesizing earthquake is that of superposing sinusoidal components with random phase 



angle. The amplitudes are determined from estimates of the spectral density function of ground motion. 
They may vary in time or constant for duration of earthquake. SIMQKE is that kind of artificial 
synthesized time history program, developed by Gasparini and Vanmarcke in 1976 [5]. It has been widely 
used over the last two decades. The main procedure of SIMQKE includes (i) deriving the spectral density 
function from the response spectrum, which is to be matched; (ii) adjusting the generated peak 
acceleration to match the target value; and (iii) adjusting the ordinates of the spectral density function to 
smoothen the match. The typical simulated time history by simulation is plotted in Figure 7.  
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Figure 7 - Typical Simulated Ground Acceleration Time Histories 

 
The acceleration and velocity response spectra corresponding to three set of simulated time histories are 
plotted and compared to target design response spectra in Figures 8 and 9 
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Figure 8 - Simulated Acceleration Spectra Comparison with Target Response Spectra 

 



Vertical Velocity Response Spectra (4% Damping)
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Figure 9 - Simulated Velocity Spectra Comparison with Target Response Spectra 

 
 
Dynamic Response of Slack Rope for Earthquake Input   
As discussed above, nonlinear dynamic response for slack rope can be simplified and easily calculated 
without dealing with a large DOF nonlinear dynamic analysis. Considering a crane system that consists of 
a moving trolley truck with lifted hook riding on a crane bridge moving along the runway, a simplified 
2DOF system can be established as described earlier for rope design. The lifted object weights and the 
filtered floor spectra at the runway are typically provided by manufactures, and the property of the rope 
and lifted load are specified as the same as previous section for SDOF system. The rope lengths vary 
according to site and project requirement specified by manufacturer’s provider. According to NOG 4153, 
moving trolley position on the crane bridge shall be considered at midspan, 1/4 span, and end span of 
crane bridge girders. For simplification, trolley position factors are considered by estimating equivalent 
stiffness and activated masses of the crane system from linear dynamic analysis for vertical mode.  The 
equivalent stiffness and effective masses for crane system at different trolley position in this analysis are 
assumed here 
 
    Effective Crane Weight (W1) Equivalent Crane Stiffness (K1) 

Trolley at midspan:  108 kips   1683 kips/inch  
Trolley at 1/4 span:  105 kips   2430 kips/inch 
Trolley at end span:  102 kips   3546 kips/inch 

 
where effective weights of the crane system are the activated vertical masses, and equivalent crane 
stiffnesses are estimated from the vertical defection of crane at the trolley position produced by the lifted 
weight (W2/∆defection). For simplification, three rope lengths of the trolley truck at different positions are 
considered for high, mid, and low hook position. The frequencies of the crane system and the rope system 
are calculated by their definition, see Equation 7 and fi=ωi/2π. Both crane system and rope system have 4 
percent damping. The natural frequency of the crane system combined with the rope system are calculated 
and listed in Table 1. 
   



 
Table 1 - Natural Frequencies (Hz) of Crane System for Simplified 2DOF System 

  High Hook (L=8.5ft) Mid Hook (L=30ft) Low Hook (L=71ft) 
  Rope Freq. f2=6.721Hz Rope Freq. f2=3.578Hz Rope Freq. f2=2.325Hz 

 Crane Freq. Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

Trolley at Midspan f1=12.35Hz 16.751 4.973 13.616 3.262 12.884 2.245 

Trolley at 1/4 Span f1=15.05Hz 18.795 5.4 16.114 3.359 15.501 2.274 

Trolley at End Span f1=18.446Hz 21.594 5.76 19.336 3.43 18.824 2.296 

 
The frequency contents of the vertical excitation of the earthquake are mostly located between 2Hz to 5Hz 
and the peak acceleration can be as high as 4.3g. Table 1 shows that the frequency variation of the rope 
system has fallen into earthquake frequency range, the significant impacts due to slack rope are expecting. 
Three sets of simulated dynamic time history response of rope forces with slack rope with 4 percent 
structural damping are compared with linear dynamic modal analysis and linear dynamic response spectra 
analysis for the 3-D crane system finite element analysis from GTStrudl computer modeling (not shown 
for simplicity). The results for comparison are shown in Table 2. 
 

Table 2 - Rope Forces (g’s) without Slack Rope 
Self weight included     Time History Analysis Modal Analysis GTStrudl 

  Hook  Rope Length TH(Set-1) TH(Set-2) TH(Set-3)     

  position (ft) (g’s) (g’s) (g’s) (g’s) (g’s) 

Trolley at Midspan High 

Hook 

8.5 3.878 3.917 3.822 3.35 3.327 

 Mid Hook 30 6.144 6.249 5.788 5.577 5.516 

 Low Hook 71 4.698 4.648 5.59 5.097 5.039 

Trolley at 1/4 Span High 

Hook 

8.5 3.179 3.382 3.193 2.801 2.81 

 Mid Hook 30 6.001 6.108 5.716 5.511 5.469 

 Low Hook 71 4.884 4.789 5.542 5.12 5.075 

Trolley at End Span High 

Hook 

8.5 3.172 3.059 3.32 2.57 2.585 

 Mid Hook 30 5.534 5.465 5.874 5.455 5.425 

 Low Hook 71 5.143 4.934 5.515 5.135 5.094 

 
From the table, the results show that the linear dynamic response of the rope force from modal analysis for 
simplified 2DOF system has less than 1 percent that compared to the response spectra analysis for multi-
DOF analysis from GTStrudl results. Therefore, the simplified 2DOF system is accurate to represent crane 
system for rope analysis. For comparison, three sets of linear time history analysis from the above 
simulated earthquake are also compared in Table 1. The results show that linear time history analysis has 
the reasonable accuracy comparing with corresponding response spectra analysis. Because the 2DOF 
dynamic system has been proven to be effective and accurate in nonlinear rope slack analysis, direct 
integration RK method can be easily applied to 2DOF system for nonlinear time history analysis of the 
slack rope. The results for nonlinear time history analysis for slack rope dynamic response with various 
rope lengths are shown in Figures 9 and 10 (self weights are included in rope forces) for 4 percent and 7 
percent damping of the rope system. 
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Figure 9 - Slack Rope forces with Various Rope Lengths for 4% Damping  
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Figure 10 - Slack Rope Forces with Various Rope Lengths for 7% Damping  

 
The results from diagrams above show that the slack rope impacts are not significant at the beginning for 
very short rope length, but quickly rise to the peak as the rope length increasing. The impact load due to 
slack rope becomes very significant, and then gradually drops as the rope length continuously increases. In 
other words, under severe vertical earthquake excitation (here, 4.3g peak acceleration), the lifted weight 
bundled with the crane bridge together for short rope lengths. As the rope length reaches a certain length, 
the rope starts to slack, and the lifted object gives a significant impact on the rope. As the rope length 
increases, lifted weight is gradually isolated from the earthquake due to longer rope lengths like soft-
spring. The slack rope impact is reduced accordingly, and is matched to the elastic solution without slack 



rope. The impact loads due to slack rope are also much more severe than that of elastic spring expectation. 
These dynamic characters for slack rope are quite different with that of elastic spring solution with various 
rope lengths. In the elastic spring solution, the impact load peaks at midhigh hook position rather than 
high hook position from nonlinear slack rope solution. Increasing the stiffness of the crane bridge, the 
rope length that results in slack rope impact may increase, as well. Adding damping into the rope system 
always helps the rope forces.      

 
 

THE BRAKE SLIP FOR IMPACT OF SLACK ROPE 
 
Brake Slip Mathematic Model   
The above discussion shows that, at the 
certain length of the rope, the rope slack 
may introduce a large impact load on the 
rope under severe earthquake excitation. 
Furthermore, it may result in a large impact 
force on crane bridge structures. This 
impact may be very expensive to design the 
rope, crane, support structures, and other 
attachment components. To mitigate this 
impact load, one of slip-brake device was 
proposed by the manufacturer. The 
mechanism of the slip-brake is that the rope 
force reaches a certain threshold and the 
brake starts to slip. The rope force bears the 
constant brake resisting forces until the 
brake stops slips, and the object starts to 
rebound upwards. Based on this 
mechanism, the nonlinear restoring force in 
Equation 5 for slack rope may be modified 
by introducing new variable (y), 
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where the brake resisting force (Fy) is typically specified by the brake manufacturer. The relative 
displacement (x) between lifted load and crane is defined (x2 – x1) in Equations 1 and 2. The radian 
frequency (ω) has the same definition as (ω2) in equation 7. The α is the hardening slope for the constant 
brake forces. The new variable (y) can be solved by combining the following equation H(v,y), by using 
bilinear model proposed by Asano and Iwan [6] in 1984 
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where the unit function unit(x) is equal to unity when x>0 and null when x<0. The relative velocity (v) 
which 12 xxv && −= , has the same definition as defined in Equations 1 and 2.  

Brake Forces vs. Displacement for Brake Slip 
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Figure 11 - Rope Force versus Displacement 



 
Dynamic Response for Brake Slip with Slack Rope   
Considering a SDOF system with same parameters as previous sections, assume brake force (Fy) is twice 
of the gravity load (2g) and harmonic excitation input. The intensity harmonic excitation is three times 
that of that gravity load (3g), and harmonic excitation frequency is 0.7 of the structural natural frequency 
of the rope system. No hardening is assumed for brake slip (α = 0). The relationship of brake force with 
slip displacement is plotted in Figure 11. If the rope force is larger than twice that of gravity (2g), the 
brake starts to slip on the other side, the rope overcomes the self-weight of the lifted load, and then the 
rope begins to slack. Because the slip displacement cannot be recovered, the dynamic response of 
displacement of the lifted object due to slack-slip motion will be constantly increased as shown in Figures 
11 and 12.  
 
The comparison of dynamic response of rope forces (without self-weight) and displacement for the slack-
slip, slack. and no slack are shown in Figures 12 and 13. The results from diagrams show that the brake 
slip device for slip-slack successfully limits the rope force with the target brake slip force. But the price 
should be paid for constantly increasing displacement of lifted object by slipping the brake device rather 
than tossing the lifted object into the air and hitting the rope. Because the slip displacement is predicable 
by solving nonlinear dynamic equations, it is rather easy and economic to find the availability of the 
environment than design enormous impact load due to slack rope, particularly, for high hook position 
where the severe slack rope impact most likely occurs.      
 

Dynamic Response Comparison for Rope Force 
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Figure 12 - Dynamic Response Comparisons of Rope Forces 

Dynamic Response Comparison for Lifted Weight Displacement 
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Figure 13 - Dynamic Response Comparisons of Displacement 

 
 



 
CONCLUSION AND DISCUSSION 

 
Simplified analysis by using 2DOF dynamic system instead of the complex trolley-crane system proves to 
be very efficient and accurate in rope force study for vertical earthquake excitation. Further, it is very easy 
and affordable to apply nonlinear restoring force function for nonlinear time history analysis. Elastic linear 
spring analysis for the rope design is significantly underestimate dynamic impact load on rope due to rope 
slack especially at short rope length range. Therefore, nonlinear dynamic response for various rope lengths 
is necessary if the slack rope occurs. For the excitation frequency contents lower than that of lifted load 
with rope, the dynamic impact load for slack rope is significant and becomes less significant as the 
excitation frequency increase gradually; in other words, the longer rope length has the less dynamic 
impact load. No resonant will occur.        
 
The brake-slip device can limit impact forces from slack rope and prevent the rope failure from impact 
load. Proposed mathematic model for slip and slack of the rope reveals the mechanism of the slip-slack of 
the rope under severe earthquake excitation and can also predict the maximum slip displacement for the 
prescribed seismic load.  
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