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SUMMARY 
 
A method to estimate floor acceleration demands in multi-story buildings subjected to earthquakes is 
presented. In the proposed method, buildings are modeled as a combination of a shear and flexural beams. 
The model is defined by three parameters: the fundamental period of structure, damping ratio and lateral 
stiffness ratio. The accuracy of the method is then evaluated by comparing accelerations computed with 
the method to those measured in three instrumented buildings in California. A parametric study to 
evaluate the effects of these three parameters on seismic acceleration demands of buildings including peak 
floor acceleration and floor response spectra is also presented. 
 

INTRODUCTION 
 
Nonstructural components typically represent a major portion of the total cost of buildings. Furthermore, 
nonstructural damage often occurs at response intensities that are smaller to those required to produce 
structural damage. Therefore, it is not surprising that when losses due to structural and nonstructural 
components are separated, losses due to nonstructural components have consistently been reported to be 
far greater than those resulting from structural damage (Ayers et al. [1], Whitman et al. [2], Rihal [3]). A 
large portion of nonstructural components and building contents are damaged primarily as a result of 
being subjected to large floor acceleration demands. Components such as suspended ceilings, light 
fixtures, fire sprinklers and parapets are examples of acceleration sensitive components. Figure 1 shows 
photos of a few acceleration sensitive nonstructural components. The functionality of many facilities such 
as hospitals depends on functionality of these components. In the Olive View Medical Center in Sylmar, 
California, during the 1994 Northridge earthquake, the water leakage from broken fire sprinkler and 
chilled water caused the facility to shut down and forced patients to be evacuated (OSHPD 1995 [4]). 
Similarly, the San Francisco International airport was shut down for thirteen hours as a result of the 1989 
Loma Prieta earthquake because of a power failure and nonstructural damage in the control tower, such as 
falling ceiling tiles and several broken windows. 
 
Despite their significance to control economic losses and downtime, seismic behavior and design of 
nonstructural components has received relatively small attention from researchers and practicing 
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engineers compared to the attention that has been devoted to understand and improve the seismic behavior 
of structural members. Seismic provisions provide simplified procedures to estimate acceleration demands 
on nonstructural components. In particular, current U.S. seismic provisions recommend the use of a 
trapezoidal distribution of peak floor accelerations along the height of the building and a floor response 
spectrum regardless of the number of stories in the building or its lateral resisting system. Some limited 
evidence suggests that this variation may be inadequate for some structures (Singh [5]; Soong et al. [6]). 
Villaverde [7] noted that these problems are due to the fact that these design-oriented methods still do not 
account for all the factors that significantly affect the response of nonstructural components. More 
recently, these provisions have seen severely criticized by some practicing structural engineers (Kehoe and 
Freeman [8]; Searer and Freeman [9]) who concluded that the intensity and distribution of floor 
accelerations over the height of the building appears to be influenced by the predominant period of 
vibration of the building and the mode shapes. 
 

 
Figure 1 – Examples of acceleration sensitive nonstructural components 

 
In this paper, a simplified method to estimate peak floor acceleration demands and floor spectra ordinates 
in buildings that are expected to remain elastic or practically elastic when subjected to earthquake ground 
motions is presented. The approximate method is directly relevant to the estimation of seismic demands 
on acceleration-sensitive nonstructural components attached to conventional buildings during small and 
moderate earthquakes in which the structure is expected to remain elastic or practically elastic, as well as 
to the estimation of seismic demands on acceleration-sensitive nonstructural components in critical 
building facilities which are designed to remain elastic or practically elastic even during severe ground 
motions. The efficiency and accuracy of the method is evaluated by a few examples. A brief parametric 
study to evaluate effects of fundamental period of vibration of buildings and lateral resisting systems as 
well as stiffness reduction on peak floor acceleration and floor response spectra is also presented. 
 

APPROXIMATE ESTIMATION OF ACCELERATION DEMANDS 
 
Simplified model of building 
In the method proposed here, multi-story buildings are modeled using an equivalent continuum model 
consisting of a flexural cantilever beam and a shear cantilever beam deforming in bending and shear 
configurations, respectively (Figure 2). It is assumed that lateral deformation of flexural and shear beams 



are identical. Floor masses are assumed to remain constant along the height of the building. As shown in 
figure 3, the approximate model used here has the advantage of being able to consider not only the two 
extremes of deformation (pure shear and pure flexure), but in addition it can consider buildings whose 
lateral deformations are a combination of flexural and shear deformation. 
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Figure 2 - Simplified model to estimate the dynamic properties of multistory buildings 

 
The differential equation of the combined shear-flexural model used here was first developed by Traum 
and Zalewski [10] and by Heidebrecht and Stafford Smith [11]. More recently, Miranda [12] used the 
model to estimate maximum interstory drift demands in buildings subjected to earthquakes. He derived 
closed-form solutions for the lateral displacements normalized by the displacement at the top of the 
structure and for the ratio of the maximum rotation demand to the roof drift ratio (lateral displacement at 
the top divided by the total height) when subjected to a wide variety of static lateral forces. His 
approximate method was more recently extended to buildings with non-uniform lateral stiffness (Miranda 
and Reyes [13]). 
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Figure 3 - Overall lateral deformations in multistory buildings 

 
The governing dynamic equation of motion of the continuum system with uniform lateral stiffness shown 
in Figure 2 when subjected to a horizontal base acceleration of üg(t) is given by the following equation: 
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where ρ(x) is the mass per unit length in the model, u(x , t) is the lateral displacement at non-dimensional 
height x (varying between zero at the base of the building and one at roof level) at time t, H is the total 



height of the building, c(x) is the damping coefficient per unit length, EI0 is the flexural rigidity at the base 
of the structure and α0 is the lateral stiffness ratio defined as: 
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where GA0 is the shear rigidity at the base of the structure. The lateral stiffness ratio is a dimensionless 
parameter α0 that controls the degree of participation of overall flexural and overall shear deformations in 
the simplified model of multi-story buildings and thus, it controls the lateral deflected shape of the 
building. A value of α0 equal to zero represents a pure flexural model (Euler-Bernoulli beam) and a value 
equal to ∞ corresponds to a pure shear model. Intermediate values of α0 correspond to multi-story 
buildings that combine shear and flexural deformations. 
 
Dynamic characteristics of simplified model 
In the method proposed here, the dynamic properties of multistory buildings are approximated by those of 
the simplified model discussed in the previous section. For the case of uniform lateral stiffness, the 
dynamic characteristics can be obtained in closed form. In particular, the mode shape associated to the ith 
mode of vibration is given by (Miranda and Taghavi [14]): 
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where ηi is defined as: 
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γi is an eigenvalue parameter associated with mode i and the root of the following characteristic equation: 
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Once γi is known for ith mode of vibration, the modal participation factor and the period ratio of ith mode 
are given by: 
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Examination of equations 3 to 7 shows that mode shapes, modal participation factors and period ratios are 
fully defined by a single parameter, the lateral stiffness ratio, α0 (see figures 4 and 5). Miranda and Reyes 
[13] have indicated that this parameter can be estimated based on the type of lateral resisting system in the 
building. Shear wall and braced frame buildings usually have values of α0 between 0 and 1.5; buildings 



with dual structural systems consisting of a combination of moment-resisting frames and shear walls or a 
combination of moment-resisting frames and braced frames usually have values of α0 between 1.5 and 5; 
whereas moment-resisting frame buildings usually have values of α0 between 5 and 20. Hence, the 
simplified model presented in the previous section has the important advantage of allowing estimation of 
the dynamic characteristic of a multi-story building based only on its lateral resisting system and its 
fundamental period of vibration. 
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Figure 4 - Effect of α0 on mode shapes when the lateral stiffness remains constant.  

 
In the proposed method, floor acceleration demands are approximated by only including the first few 
modes of vibration. Therefore, using modal analysis equations, the absolute (total) floor acceleration at 
non-dimensional height x can be approximated as: 
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where )(tDi
&& is the relative acceleration of the ith mode SDOF system subjected to ground acceleration. 

In equation 8, modal participation factors and mode shapes are functions of lateral stiffness ratio, α0 and 
)(tDi

&& is a function of period of the ith mode which is a function of α0 and T1, and modal damping ratio ξ. 
Therefore total acceleration at a certain location x can be computed by knowing fundamental period of 
vibration of the building T1, lateral stiffness ratio α0, modal damping ratio ξ and ground acceleration. 
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Figure 5 - Effect of α0 on modal participation factors and period ratios. 

 



The computational effort in the proposed method is very small. In particular, the computational effort is 
much smaller than the computational effort involved in the computation of a linear elastic response 
spectrum.  

Equations 3 to 8 assume that the lateral stiffness of the building remains constant along the height of the 
building. With the exception of one to three story buildings such assumption is not usually realistic. 
Miranda and Taghavi [14] studied the effect of reduction of stiffness along the height on the product of 
the mode shape and the modal participation factor (product of equations 3 and 6) and on period ratios 
(equation 7). They considered linear and parabolic reductions of stiffness along the height and up to 75% 
reduction in lateral stiffness from the base to the roof. Their study showed that reductions in lateral 
stiffness along the height have a relatively small effect on the product of the mode shape and the modal 
participation factor (product of equations 3 and 6) and on period ratios (equation 7). Hence, using Γi φi(x) 
and Ti / T1 computed from a uniform model provides a relatively good approximation to these dynamic 
properties in non-uniform buildings. 
 

VALIDATION OF THE PROPOSED METHOD 
 
Accuracy of the proposed method is evaluated in this section by comparing floor acceleration demands 
computed with the continuum model to those recorded in three instrumented buildings in California. The 
first building is a 30-story reinforced concrete building in Emeryville that recorded the 1989 Loma Prieta 
earthquake. The second and third buildings are 13-story reinforced concrete building and 6-story steel 
building that were shaken by the 1994 Northridge earthquake.  

When the lateral stiffness is assumed to remain constant along the height of the building, the continuum 
model used in the method is fully defined with knowledge of only three parameters: the fundamental 
period of the structure, the damping ratio and the lateral stiffness ratio α0. As mentioned before, α0 can be 
approximated based on knowledge of the lateral resisting system. The parameters used for each of the 
buildings are shown in table 1 for each component. The fundamental period of vibration and the damping 
ratio of these buildings correspond to those available in the literature and the lateral stiffness ratio is based 
on the lateral resisting system of each building.  
 

Table 1 – Information of the buildings used for evaluation of the method 

Bldg. Location 
No. of 
stories 

Earthquake Dir T1 (s) ξ (%) Structural 
System α0 Reference 

N-S 2.59 3 MRF 12.5 [15] 1 Emeryville 30 Loma Prieta 
E-W 2.69 3 MRF 12.5  
N-S 3.0 5 MRF 12.5 [16] 

2 
Sherman 

Oaks 
13 Northridge 

N-S 2.8 8 MRF 12.5  
N-S 0.33 12 Dual System 3.1 [17] 

3 Sylmar 6 Northridge 
E-W 0.33 18 Dual System 3.1  

 
Comparison of acceleration demands 
Figure 6 shows a comparison of peak floor acceleration predicted with the proposed method using the 
parameters listed in table 1 with peak recorded accelerations. It can be seen that for all three buildings and 
for both directions the proposed method produces very good estimates. Also shown in the figure are the 
peak floor accelerations the floor accelerations computed according to the FEMA-368 [18] assuming that 
the peak ground acceleration is known. As shown in the figure, these provisions recommend a linear 
variation of lateral acceleration demands varying from an acceleration equal to peak ground acceleration at 
the base to three times the peak ground acceleration at the roof. As shown in the figures, in many cases 
these recommendations can lead to significant errors.  
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Figure 6 – Comparison of recorded peak floor accelerations with those of simplified model and 

NEHRP provisions 
 
In addition to estimation of peak floor acceleration demands, the proposed method can also be used to 
estimate floor spectra and floor acceleration time histories. Figure 7 shows comparison of recorded and 
estimated acceleration time histories at roof level in the 6-story Sylmar Medical Center and the 13-story 
Sherman Oaks building. Considering the simplicity of the method, the results are very promising. Floor 
response spectra at roof level for the perpendicular direction of the same buildings are shown in figure 8. 
As shown in this figure, the proposed method is also able to estimate floor spectra relatively well. 

 

           

  
Figure 7 – Comparison of recorded acceleration time histories with those of simplified model at roof 

levels of 6-story Sylmar and 13-story Sherman Oaks Buildings 



0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5
Period (s)

 Approximate

 Exact

SFA (cm/s2)

From  Records

  

0
200

400
600

800
1000
1200

1400
1600

1800
2000

0 1 2 3 4 5
Period (s)

 Approxim ate

 Exact

SFA (cm/s2)

From  
Records

 
Figure 8 – Comparison of floor response spectra computed from recorded accelerations and those 
calculated by the method at roof levels of 6-story Sylmar and 13-story Sherman Oaks Buildings 

 
 

PARAMETRIC STUDY ON PEAK FLOOR ACCELERATIONS 
 
Some studies have suggested that the variation of acceleration demands along the height of buildings and 
in particular the ratio of the peak floor acceleration demand to peak ground acceleration is independent of 
the period of vibration of the structure (Bachman and Drake [19] and Drake and Gillengerter [20]). 
However, as shown figure 6, the acceleration profile can change significantly from one building to 
another. Kehoe and Freeman [8] have criticized the NEHRP provisions to estimate floor accelerations in 
buildings and have indicated that the period of vibration may influence the distribution of accelerations 
along the height of the building, but have not provided specific recommendations on how this parameter 
should be taken into account.  In the following paragraph the results of a parametric study of the effects of 
fundamental period of vibration, lateral stiffness ratio and stiffness reduction along the height on seismic 
peak floor acceleration demands are summarized and discussed. 
 
Structural parameters 
For building with uniform stiffness along the height the simplified model is defined by three parameters: 
fundamental period of the structure, modal damping ratio and lateral stiffness ratio. For buildings with 
non-uniform stiffness, a fourth parameter corresponding to the ratio of the lateral stiffness at roof to the 
lateral stiffness at the base. (Miranda and Taghavi [14]). In this study, all models are assumed to have the 
modal damping ratio equal to 5 percent. The fundamental period of the structure was varied from 0.5s to 
4.0s with increment of 0.25 s. The lateral stiffness ratio, α0, was varied from 0 (flexural behavior) to 20 
(nearly shear behavior) with increments of 2. Finally, the stiffness reduction parameter was varied from 0 
to 75 percent with increment of 25 percent. 
 
Ground motions considered 
Eighty recorded ground motions were used in this study. The ground motions were recorded on sites 
classified as class D according to recent NEHRP provisions. These ground motions were then classified 
into four bins according to their earthquake magnitude and epicentral distance as follows: (1) SMSR 
(Small Magnitude, Small Distance); (2) SMLR (Small Magnitude, Large Distance); (3) LMSR (Large 
Magnitude, Small Distance); (4) LMLR (Large Magnitude, Large Distance). The earthquakes with 
magnitude of 5.8 to 6.5 are referred as small magnitude and from 6.6 to 6.9 are referred as large 
magnitude. The distance of recording station to epicenter from 13 to 30 km is referred to as small distance 
and from 30 to 60 km is referred to as large distance. The ground motions have PGAs ranging from 0.03g 
to 0.44g. More information regarding the ground motions can be found in Medina [21]. 
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Figure 9 – Effect of T1 of peak floor acceleration profile 

 
Effects of fundamental period of vibration and lateral stiffness ratio on PFA profile 
Figure 9 shows the effect of the fundamental period of vibration on the variation of peak floor 
accelerations along the height of the building. Results shown in this figure correspond to mean ratios 
(average of 80 records) of peak floor acceleration demands to peak ground acceleration. It can be seem 
that floor accelerations are amplified as the period of vibration decreases. In particular, short period 
structures exhibit large amplification of acceleration demands as height increases. For buildings with 
small values of α0  mean amplifications at roof level can be larger than those currently recommended in 
NEHRP provisions. It can also be observed that the effect of the fundamental period of vibration of the 
structure is larger in buildings that deflect laterally like shear beams than those that deflect laterally like 
flexural beams. However, the latter buildings are more likely to experience sharp local amplifications near 
the top of the building as a result of higher modes. 
 
Figure 10 shows the effects of the lateral stiffness ratio α0 on the variation of peak acceleration demands a 
long the height of buildings. It can be seen that for short period structures, floor acceleration increase as 
height increases regardless of the lateral stiffness ratio. It can be seem that long period buildings that 
deflect laterally like shear beams on average will have acceleration demands that are smaller than those 
occurring at the base. 
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Figure 10 – Effect of α0 on the variation of peak floor accelerations along the height of the building 

 



 

z / H =0.5

0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0
Period (s)

 α = 0
 α = 4
 α = 20

PFA / PGA

x = 0.5

  

z / H =0.5

0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0
Period (s)

PFA / PGA

x = 1.0

 
Figure 11 – Variation of peak floor acceleration at mid height and roof level with changes in the 

fundamental period of vibration T1 for different lateral stiffness ratios.  
 
 
Figure 11 shows changes in peak floor accelerations normalized by peak ground accelerations at mid-
height and roof levels with changes in the fundamental period of vibration. It can be seen that mean PFA 
to PGA ratios tend to decrease as the fundamental period of vibration increases. However, reductions are 
more important for buildings with large values of α0 and are more pronounced at roof level than those at 
mid-height. In some cases the mean reductions are substantial. For example for buildings with large 
values of α0 the PFA to PGA ratio decreases from approximately 3.0 for a period of 0.5s to approximately 
1.0 for period of vibration of 4.0s.  
 
Effect of stiffness reduction on PFA profile 
Figures 9, 10 and 11 correspond to buildings in which the lateral stiffness was assumed to remain constant 
along the height. Miranda and Taghavi [14] studied the effect of the reduction of lateral stiffness on the 
dynamic properties required to estimate lateral acceleration in buildings. They considered variations in 
lateral stiffness defined by two parameters, δ that controls the lateral stiffness at roof to that at the base 
and λ that controls the shape of the stiffness profile (see figure 12). They showed that the effect of λ is 
negligible so only the effect of δ was considered in the parametric study. Figure 13 shows the effect of 
stiffness reduction for moment frame buildings. PFA is plotted for δ = 1.0 (uniform stiffness), 0.75, 0.50 
and 0.25. It is seen that regardless of fundamental period of the structure, stiffness reduction does not has 
a significant effect on the variation of acceleration demands along the height of the building for most of 
the height. A small effect is observed near the top of the structure.  
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Figure 12 – Lateral stiffness  Figure 13 – Effect of stiffness reduction on peak floor 

profile      acceleration profile 



 
PARAMETRIC STUDY OF FLOOR SPECTRA 

 
Floor response spectra are useful to estimate seismic demand of flexible acceleration sensitive 
components mounted on floors of buildings whose mass is significantly smaller to that of the building. 
Various studies have shown that acceleration demands can be greatly amplified for building components 
whose period of vibration coincide with those of the primary structure. A parametric study was conducted 
to study the effects of the fundamental period of vibration, the lateral stiffness ratio and the reduction of 
stiffness along the height on floor spectra. 
 
Effects of fundamental period of vibration and lateral stiffness ratio on floor spectra ordinates 
Figure 14 shows mean floor response spectra at roof level for buildings with fundamental periods T1 equal 
to 1.0, 2.0 and 3.0 s and with lateral stiffness ratio of α0 = 0 and 20. All floor spectra are normalized by 
peak floor acceleration (sometimes also referred to as zero period acceleration). It can be seen that the 
amplitude and location of the peaks in the floor spectra change with changes in the fundamental period of 
vibration. The amplification at a period equal to the fundamental period decreases as the fundamental 
period of the building increase. This amplification is approximately 3.2 for T1 = 1.0s, 2.5 for T1 = 2s and 
1.0 for T1 = 3 s. This trend does not hold for higher modes. It can be seen that the amplification for a 
period equal to the second mode of vibration of the building is 4.0 when T1 = 1.0, 4.4 when T1 = 2.0 and 
3.8 when T1 = 3.0 s. In all three plots, it can be observed that normalized spectral ordinates increase 
around T1 when lateral stiffness ratio increases. In other word, there is a slight increase of floor spectra 
around the first mode of structure in buildings deflecting laterally as shear beams (e.g. moment frame 
buildings) compared to that in buildings that deflect laterally like flexural beams (e.g. shear wall 
buildings). However, around the second mode, this trend is reversed. 
 
Figure 15 shows the variation of spectral amplifications along the height for flexible nonstructural 
components whose periods coincide to those of the first and second periods of vibration of the building. 
As shown in this figure the amplification in spectral ordinates changes not only with the fundamental 
period of vibration of the structure but also with the height level. In general, spectral amplifications for 
periods around T1 are larger in the upper part of the building and can be on average as large as five for 
short period structures at two third of the height. For long period structures, this value reduces to 1.0. Also 
it is clear that for buildings with longer fundamental period, the demand is lower around their 
fundamental period. The spectral amplification around T2 also varies significantly along the height of the 
building. Maximum amplification in this case are expected to occur at one third of the height. The mean 
spectral acceleration ordinate can be as low as PFA and increase to values as large at 4 times PFA with 
changes in height location within the building. The lowest amplifications occur, as expected, at the 
building height where the mode shape of the second mode has a node.  
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Figure 14 – General observations of effects of T1 and α0 on floor response spectra 
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Figure 15 – Variation of floor response spectra peaks around the first and second modes of the main 

structure 
 
Figure 16 shows the variation of floor spectral amplifications at roof level with changes in the lateral 
stiffness ratio. As shown in this figure, an increase in lateral stiffness ratio increases the floor spectral 
acceleration around the fundamental period and decreases it around the second mode. The effect of lateral 
stiffness ratio is smaller for buildings with short periods of vibration than for buildings with long 
fundamental periods of vibration.  
 
Effects of reduction of lateral stiffness along the height of the building on floor spectra 
Figure 17 shows the effect of the reduction of lateral stiffness along the height of the building on floor 
spectra ordinates at the roof level in buildings with a fundamental period of vibration of 4.0s. The figure 
compares floor spectra computed for buildings with uniform stiffness along the height to those computed 
in buildings where the lateral stiffness at the top of the building is one fourth of the lateral stiffness at the 
base of the building (δ = 0.25). can increase the period of higher modes up to 20 percent and therefore the 
peaks in floor response spectra move slightly. It is seen that the floor spectra are not affected significantly 
due to stiffness reduction. The peak on the first period of the structure is reduced by about 10 percent for δ 
= 0.25 in a building with flexural behavior and fundamental period of 4.0 seconds. Changes in spectral 
ordinates are primarily due to changes in building period ratios. A behavior similar to that shown in this 
figure was observed for buildings with other periods of vibration.   
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Figure 16 – Effects of lateral stiffness ratio on amplification of floor spectra ordinates at the roof. 
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Figure 17 – Effect of stiffness reduction on floor response spectra ordinates at roof level. 

 
 

SUMMARY AND CONCLUSIONS 
 
A method to estimate floor acceleration demands in buildings subjected to earthquakes was presented. 
The method uses a simplified model consisting on two continuous beams. A close form solution of the 
dynamic characteristics of the model was presented when the lateral stiffness of the model is uniform. The 
model is fully defined with only three parameters: the fundamental period of the structure, a modal 
damping ratio and the lateral stiffness ratio. The accuracy of the method was evaluated by comparing the 
peak floor acceleration demands, time histories and floor spectra computed with the method to those 
obtained from acceleration records in three instrumented buildings. It was shown that the method is able 
to capture acceleration demands with reasonable accuracy with a very small computational effort.  
 
A parametric study was performed to study the effects of various parameters on acceleration demands in 
buildings. The parameters that were studied are: the fundamental period of the structure, the lateral 
stiffness ratio and a parameter describing the amount of reduction of lateral stiffness along the height. 
Variation of these parameters was studied together with 80 ground motions recorded on firm sites in 
various earthquakes in California. It was observed that both the fundamental period of the structure and 
the lateral stiffness ratio can significantly change acceleration demands in buildings. On the other hand, 
results indicate the reduction in lateral stiffness along the height of the building do not have a significant 
effect on acceleration demands. A similar parametric study was performed to investigate the effect of 
these parameters on floor spectra ordinates. Results indicate that spectral amplifications around the 
periods of the main structure can change significantly with change in fundamental period of the structure, 
lateral stiffness ratio as well as floor level. Spectral amplifications around the first mode of the structure 
decrease as the fundamental period of vibration increases and increase as the lateral stiffness ratio 
increases. Effects of structural nonlinearity are currently being investigated. 
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